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Simple complex Lie algebra

@ gis a simple, complex Lie algebra

@ R, A" setof roots, Q, Q", P, P+ (positive ) root and weight
lattice

@ xFandh, =[x, x]], aj, w

a ) o

@g=n"oHhon"

Let A be a commutative associative algebra with unit over C.
We define a Lie bracket on g ® A by

[x®a,y®b]:=[x,y]®ab

forx,y e gand a,b € A.
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Introduction
Notations
Current and loop modules

Weyl modules of current and loop algebras

@ Relation to charp

@ Chari-Pressley defined global and local Weyl modules for
g ® C[t*"] (resp. g ® C[t]) by generators and relations

@ Motivated by representations of quantum affine algebras

@ Feigin-Loktev defined them when A is the coordinate ring
of an affine variety

Fourier Weyl modules



Category of locally finite modules
The Weyl functor
Functorial in A

Definition

Projectives

Let Z4 be the category of g ® A modules which are integrable
as g modules. The morphism are g ® A module homomorphism.
Let V be a left g—module, define a left g ® A module

P(V):=U(g® A) ®u(g) V.

Proposition

Let V be an integrable g module, then P(V) is a projective
module inZ 4. If \ € P, then P(V()\)) is generated by
px = 1 ® v, with relations

nt@1=0, (h—A(h) =0, (xz ® 1))t =0,
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Category of locally finite modules
The Weyl functor

Definition

Functorial in A

Forv e Pt and V € ObZ4, let V¥ € ObZ4 be the unique
maximal g ® A-quotient of V satisfying

wt(V") c v — Qt.
We define 7% to be full subcategory of 74 of objects V s.t.
V=V

We define for A € P+

the "global Weyl module”.
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Category of locally finite modules
The Weyl functor

Definition

Functorial in A

Original definition

There is another definition of the global Weyl module by
generator and relations, which is the “original” definition by
Chari-Pressley in the case A = C[t*1].

Proposition

For \ € P*, the module Wx()) is generated by wy # 0 with
relations:

(I‘l+ & A)W)\ =0, hw,= )\(h)W/\, (X(;i & 1))\(ha/)+1 wy = 0.
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Category of locally finite modules
The Weyl functor
Functorial in A

Definition

Annihilator algebra

Set
Anngga(wy) = {uc U(h® A) : uw, = 0},

and define
A)\ = U(f) () A)/Annh@)A(W)\).

Define a right h ® A-module structure on Wx()) by
zwy.(h® a) .= z(h® a)w,

forzeU(geA),h®ache A
Wa(\) is a bi-module for (g ® A, h @ A), in fact for (g ® A, Ay).

Fourier Weyl modules



Category of locally finite modules
The Weyl functor
Functorial in A

Definition

Weyl functor

Let mod A, be the category of left A\—modules. Let
W) : mod Ay — T
be given by
WoM = Wa(\) @a, M, Wif=1®f,

where M, M’ € mod A, and f € Homa, (M, M) .
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Definition
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Let mod A, be the category of left A\—modules. Let
W) : mod Ay — T
be given by
WoM = Wa(\) @a, M, Wif=1®f,
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We have
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Category of locally finite modules
The Weyl functor
Functorial in A

Definition

Weyl functor

Let mod A, be the category of left A\—modules. Let
W) : mod Ay — T
be given by
WoM = Wa(\) @a, M, Wif=1®f,

where M, M’ € mod A, and f € Homa, (M, M) .
We have

@ WM e ObZ).
@ W, is right exact.
(] WﬁA)\ gg@,q WA()\)
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Category of locally finite modules
The Weyl functor
Functorial in A

Definition

Restriction functor

@ For A e PT,V € ObZ?, we have V), € modA,
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Category of locally finite modules
The Weyl functor
Functorial in A

Definition

Restriction functor

@ For A e PT,V € ObZ?, we have V), € modA,
@ Define R) : 7, — mod A, by R}V = V,
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Category of locally finite modules
The Weyl functor
Functorial in A

Definition

Restriction functor

@ For A e PT,V € ObZ?, we have V), € modA,
@ Define R) : 7, — mod A, by R}V = V,
@ Rj is an exact functor
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Category of locally finite modules
The Weyl functor
Functorial in A

Definition

Restriction functor

@ For A e PT,V € ObZ?, we have V), € modA,
o Define R} : T} — mod A, by RAV = V,

@ Rj is an exact functor

o ida, = R\W),
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Category of locally finite modules
The Weyl functor
Functorial in A

Definition

Restriction functor

For A € P,V € ObZ%, we have V) € modA,
Define R} : 7, — mod A, by RV = V,

Ry, is an exact functor

ida, = RAW),

R), is right adjoint to W
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Category of locally finite modules
The Weyl functor
Functorial in A

Definition

We have a categorical definition of WQ\M, which is maybe the
most important improvement in this paper.

LetV ¢ Ijl. Then V = WQ‘RQ‘V iff for all U € Ijl with Uy, = 0,
we have

Homp, (V. U) =0, Ext}ﬁ‘(v, U) =0.

We can deduce from this
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Category of locally finite modules
The Weyl functor

Definition

Functorial in A

We have a categorical definition of WQ\M, which is maybe the
most important improvement in this paper.

LetV ¢ Ijl. Then V = WQ‘RQ‘V iff for all U € Ijl with Uy, = 0,
we have

Homp, (V. U) =0, Ext}ﬁ‘(v, U) =0.

We can deduce from this

The functor W, is exact iff for all U € T°; with U, = 0, we have

Ex%(wﬁ\/\//, U)=0, Y MecmodA,.
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Category of locally finite modules
The Weyl functor
Functorial in A

Definition

Induced maps

For f: A— B, denote also by f the morphismf: g A — g® B.
For a B-module (resp. g ® B-module) M, denote by f*M the A
(resp. g ® A)-module. For A € P™ we have

fy : A, — By
and bi-module map

£ - Wa(h) — F(Wa(\)).
For M € mod B, we have

WM — F*WAM as g © A — modules
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Category of locally finite modules
The Weyl functor
Functorial in A

Definition

Induced maps

The comultiplication A of U(h ® A) induces
A:Ayv, — A ®A,
The assigment w, ,, — w) ® w,, induces a bi-module map
7 Wa(A + 1) — Wa(X) © Wa(p).
For M € modA,, N € modA, we have

7 WY A*(M® N) — WiM @ WAN as g © A — modules
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Tensor product phenomen
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What is this algebra?
Irreducible modules

Finitely generated algebras Finitely generated Weyl modules
Tensor product phenomen

Recall
A)\ = U(h ® A)/ Annu(h®A)(W)\)

What is A,?
)\:Zf/w;, I’)\:ZI’,‘, Sy = Sr1 X ... X SrnCSr)\
A = @A)

i
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What is this algebra?
Irreducible modules

Finitely generated algebras Finitely generated Weyl modules
Tensor product phenomen

Theorem
For \ € Pt, we have

A, = (A5

as algebras. If A is finitely generated, than A, is finitely
generated.
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What is this algebra?
Irreducible modules

Finitely generated algebras Finitely generated Weyl modules
Tensor product phenomen

From now on, we will suppose that A is finitely generated!
max(A,) = max((A®"))
i

which is
max(A)*" /S, x ... x max(A)*"/S,,

max(A,) are orbits of the Sy action on max(A®™).
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What is this algebra?

Irreducible modules

Finitely generated Weyl modules
Tensor product phenomen

Finitely generated algebras

Irreducibles
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What is this algebra?
Irreducible modules

Finitely generated algebras Finitely generated Weyl modules
Tensor product phenomen

Irreducibles

Lemma

@ Let\ € P™ and assume that V € T, is irreducible. There
exists u € Pt N (XA — Q") such that

wtV Cpu—QF, dimV, =1.
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Irreducibles

Lemma

@ Let\ € P™ and assume that V € T, is irreducible. There
exists u € Pt N (XA — Q") such that

wtV Cpu—QF, dimV, =1.

@ V is the unique irreducible quotient of W,,R, V,.
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What is this algebra?
Irreducible modules

Finitely generated algebras Finitely generated Weyl modules
Tensor product phenomen

Irreducibles

Lemma

@ Let\ € P™ and assume that V € T, is irreducible. There
exists u € Pt N (XA — Q") such that

wtV cCpu—QF, dmV, =1.

@ V is the unique irreducible quotient of W,,R, V,.

@ IfV' € ObZy, thenV = V' asg® A-modules iff V,, =V},
as A,—modules.
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What is this algebra?
Irreducible modules
Finitely generated Weyl modules

Finitely generated algebras
Tensor product phenomen

Irreducibles

Lemma

@ Let\ € P™ and assume that V € T, is irreducible. There
exists u € Pt N (XA — Q") such that

wtVcp—QF, dmV,=1.
@ V is the unique irreducible quotient of W,,R, V,.

If V' € ObZy, thenV = V' as g ® A-modules iff V,, = V,,

as A,—modules.
For M < irr Ay, we denote the unique irreducible quotient of

WAM by VAM.
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Finitely supported functions

@ Define = := {¢ : max(A) — P | & finitely supported}
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What is this algebra?
Irreducible modules

Finitely generated algebras Finitely generated Weyl modules
Tensor product phenomen

Finitely supported functions

@ Define = := {¢ : max(A) — P | & finitely supported}
@ supp¢ = {S € max(A) | {(S) # 0}

Fourier Weyl modules



What is this algebra?
Irreducible modules
Finitely generated algebras Finitely generated Weyl modules

Tensor product phenomen

Finitely supported functions

@ Define = := {¢ : max(A) — P | & finitely supported}
@ supp¢ = {S € max(A) [ £(S) # 0}
owté= Y ¢(S)

Semax(A)
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What is this algebra?
Irreducible modules
Finitely generated algebras Finitely generated Weyl modules

Tensor product phenomen

Finitely supported functions

@ Define = := {¢ : max(A) — P | & finitely supported}
@ supp¢ = {S € max(A) [ £(S) # 0}
owté= Y ¢(S)

Semax(A)
@ = ={{ec=|wt{= )}
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Finitely supported functions

@ Define = := {¢ : max(A) — P | & finitely supported}
@ supp¢ = {S € max(A) [ £(S) # 0}
owté= Y ¢(S)

Semax(A)
0 =) ={e=| wtE= A}
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@ supp¢ = {S € max(A) [ £(S) # 0}
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What is this algebra?
Irreducible modules
Finitely generated algebras Finitely generated Weyl modules

Tensor product phenomen

Finitely supported functions

@ Define = := {¢ : max(A) — P | & finitely supported}
@ supp¢ = {S € max(A) [ £(S) # 0}
owté= Y ¢(S)

Semax(A)
0 =) ={e=| wtE= A}
@ M € mod A,, finite—dimensional, then supp M = | supp(&;)

=, parametrizes max(A,),irr Ay, and so irr U(g ® A) of highest
weight \.
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What is this algebra?
Irreducible modules

Finitely generated algebras Finitely generated Weyl modules
Tensor product phenomen

A is still finitely generated.

@ For \ € P, Wx()) is a finitely generated right Ax—module.

@ If M € mod A, is finitely generated then Wﬁ\M is a finitely
generated left g @ A—module. Same for finite—dimensional
modules.
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What is this algebra?
Irreducible modules

Finitely generated algebras Finitely generated Weyl modules
Tensor product phenomen

A is still finitely generated.

@ For \ € P, Wx()) is a finitely generated right Ax—module.

@ If M € mod A, is finitely generated then Wﬁ\M is a finitely
generated left g @ A—module. Same for finite—dimensional
modules.

o In particular for M € irr Ay, we have dim VM < cc.
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What is this algebra?
Irreducible modules

Finitely generated algebras Finitely generated Weyl modules
Tensor product phenomen

A generalization of the tensor product phenomenon

Theorem

Suppose that A and B are finite—dimensional commutative,
associative algebras and let \, ;. € P™. For M € mod Ay,
N € mod B,,, finite—dimensional, we have,

W) a(M @ N) = WaM @ WisN,

as g ® (A® B)-modules.
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What is this algebra?

Irreducible modules

Finitely generated Weyl modules
Tensor product phenomen

Finitely generated algebras

Theorem

Let X\, € Pt,and M € mod Ay, N € modA,,,
finite—dimensional with supp M N supp N = (). Then we have
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What is this algebra?

Irreducible modules

Finitely generated Weyl modules
Tensor product phenomen

Finitely generated algebras

Theorem

Let X\, € Pt,and M € mod Ay, N € modA,,,
finite—dimensional with supp M N supp N = (). Then we have

o W™ (M@ N) =00 WAM @ WEN.
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What is this algebra?

Irreducible modules

Finitely generated Weyl modules
Tensor product phenomen

Finitely generated algebras

Theorem

Let X\, € Pt,and M € mod Ay, N € modA,,,
finite—dimensional with supp M N supp N = (). Then we have
o Wi (M@ N) 200 WAM © WLN.
@ IfM, N are irreducible, then
V(M @ N) Zga VAM © VEN.
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Open subsets
Fundamental Weyl modules

Analyze almost all Weyl modules

We want to analyze WjM, M, € irrmod A,. The tensor product
theorem gives

Wi\\Mﬁ = g0A ® Wi(S)MSy suppés = {S}
Sesupp €
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Open subsets
Fundamental Weyl modules

Analyze almost all Weyl modules

We want to analyze WM, M € irrmod A,. The tensor product
theorem gives

Wi\\Mﬁ = g0A ® Wi(S)MSy suppés = {S}
Sesupp €

Analyze Weyl modules supported on one maximal ideal only. In
general this is though. But ...
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Open subsets
Fundamental Weyl modules

Analyze almost all Weyl modules

We define
=N ={{e=\:&(S) € {0,wy,...,wn}, VS € max A}.
Then =%* is an open subset and

=% « {orbits of non—singular points of the S,, —action on max(A®"™)}
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Open subsets
Fundamental Weyl modules

Analyze almost all Weyl modules

We define
=N ={{e=\:&(S) € {0,wy,...,wn}, VS € max A}.
Then =%* is an open subset and

=% « {orbits of non—singular points of the S,, —action on max(A®"™)}

Want to analyze the Weyl modules of =%°. It is enough to
analyze W,'Msg, i € I.
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Open subsets
Fundamental Weyl modules
Analyze almost all Weyl modules

Notations

Let Jp C I be defined as follows:

la g Oftype Afh Cna
Jo = {n}, g of type By,
{n—1,n}, g oftype Dy.

Given m € Z, let ¢(m, k) be the dimension of the space of
polynomials of degree m in k—variables, i.e

c(m k) =#{s= (s, ,5k) € ZX : sy +--- + s = m}.
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Open subsets
Fundamental Weyl modules
Analyze almost all Weyl modules

Theorem

Let g be of classical type. Let S € max A be such that
dimS/S2 = k and fori € I, let Ms € irrmod A,,.
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Open subsets
Fundamental Weyl modules
Analyze almost all Weyl modules

Let g be of classical type. Let S € max A be such that
dimS/S2 = k and fori € I, let Ms € irrmod A,,.

o Ific Jy, then WY Mg =4 V(w)).
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Open subsets
Fundamental Weyl modules
Analyze almost all Weyl modules

Let g be of classical type. Let S € max A be such that
dimS/S2 = k and fori € I, let Ms € irrmod A,,.

@ Ifi e Jy, then Wﬁ"Ms =g V(wi).
e Ifi ¢ Jy, then

Wi Ms =4 D V(wi—2))*eUh).
I
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