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Let IF be a field of characteristic 0. The algebra Agl)
is the affine Kac-Moody algebra over field F with gen-

2 =2
eralized Cartan matrix A = (a;;)o<ij<1 = (_2 5 )

The algebra Agl) has a Chevalley-Serre presentation with
generators eg, e1, fo, f1, ho, b1, d and relations

[hia h’j] - 07 [hlv d] — 07

[ez’, fj] = 5z'jhz’7
hiy €] = aijej,  [hi, fj] = —ai f;,
d, e;] = dojej, |d, fj] = =00 f;,

(ade;)’e; = (ad £;)°f; =0, i # .
Alternatively, we may realize Agl) through the loop

algebra construction
AV =~ 51, @ Flt, ¢t | & Fe @ Fd
with Lie bracket relations

(@t y@t" = [r,y] @ """ + nduimolz, y)e,
lz®@t" c]=0=1d,d, d,x @1t"] =nx @ t",

for x,y € sly, n,m € Z, where ( , ) denotes the Killing
form on sly. For x € sly and n € Z, we write x(n) for
xRt



Let A denote the root system of Agl), and let {ag, aq }
be a basis for A. Let § = ay+ a1, the minimal imaginary
root. Then

A={+a1+nd|necZ Ulks|keZ\{0}).

A subset S of the root system A is called closed if o, 3 €
S and aa+ # € A implies a + 6 € S. The subset S
is called a closed partition of the roots if S is closed,
SN(=S)=10,and SU—-S = A. The classification of
closed partitions of the root system for affine Lie algebras
was obtained by Jakobsen and Kac and also indepently
by Futorny:.

The set
S={a1+kd | ke ZYU{IS |1 € Zp}

is a closed partition of A and is W x {=£1}-inequivalent
to the standard partition of the root system into positive
and negative roots.



For g = A<11>, let gf> = Y neg 4. In the loop alge-

bra formulation of g, we have that gf) is the subalgebra

generated by e(k) = e® t* (k € Z) and h(l) = h @ t!
(I € Z~g) and g(_S> is the subalgebra generated by f(k) =
f@tt (k€ Z)and h(-1) (I € Zsg). Since S is a par-
tition of the root system, the algebra has a direct sum
decomposition

S S
s=gVonagd

Let U (gf )) be the universal enveloping algebra of gf )

Then, by the PBW theorem, we have
~ S S
Ule) = U(a"™) @ U(h) 2 U(s"”),

where U(gf)) is generated by e(k) (k € Z), h(l) (I €
Z-o), U(g"?) is generated by f(k) (k € Z), h(—1) (I €
Z~¢) and U(h), the universal enveloping algebra of b, is
generated by h, c and d.



Let A € A, the weight lattice of g = Agl). A Ulg)-
module V' is called a weight module it V' = @,cpV),
where

V,={veV]|hv=puhv,cv=pulchdv=plduv}.

Any submodule of a weight module is a weight module.
A U(g)-module V is called an S-highest weight module
with highest weight A if there is a non-zero vy, € V such
that (i) u™ - vy, = 0 for all u™ € U(g@) \ F*, (i) h -
vy = Ah)vy, ¢ - vy = Ac)uy, d - vy = Ad)vy, (iii)
Vi =Ulg) vy = U(g(_s)) - v). An S-highest weight
module is a weight module.

For A € A, let Is(\) denote the ideal of U (Agl)) gener-
ated by e(k) (k € Z), h(l) (I > 0), h—A(h)1, c — A(c)1,
d — A(d)1. Then we define M(\) = U(AY)/I5()) to
be the imaginary Verma module of A§” with highest
weight A. Imaginary Verma modules have many struc-
tural features similar to those of standard Verma mod-
ules, with the exception of the infinite-dimensional weight
spaces. In particular, M () has a unique maximal sub-
module and it is irreducible if and only if A(c) # 0.



The quantum group Uq(Agw) is the F(¢"/?)-algebra

with 1 generated by
eo, e1, fo. f1, Ky ' Ky, DY
with defining relations:
DD '=D'D=KK;'=K'K; =1,
K — K
eifj — fiei = 5@'3'?7
Kie,K; ' =q’e;, K fiK;'=q"f;
Kie;K7' = q%ej, Kf;K;'=¢f;, i}
K,K; — K;K; =0, K,D—- DK, =0,
De;D™" = ¢’i%;, Df;,D~"=q %0 f;
ele; — [3leieje; + [3leejer —ejel =0, i #
f@'gfj - [S]fZQf]fz + [3]fzfyf12 - fjf@g =0, ©i#J

n

_ "=q
I
The quantum group Uq(Agl)) can be given a Hopf al-
gebra structure with a comultiplication given by
AK)=K;,® K;,A(D)=D® D,
Ale) =60 K '+1®e,A(fi) = fi®o1+ K ® fi,

and an antipode given by

where, [n]

sle)) = —e;K; ' s(fi) = —K,fi,s(K;) = K; !, s(D) = D

)



We also need the Drinfeld realization for Uq(Agl)), which
is as follows. Let U, be the associative algebra with 1 over

F(q'/?) generated by the elements z*(k) (k € Z), a(l)
(I € Z\ {0}), K*!, D*! and ~E2 with the following

defining relations:

DD '=D'D=KK'=K'K=1, (1)
2,u]=0 Yuel, (2)
o), )] = g L =T )
[a(k)vK]:Ov [DvK]: g (4)
Da(k)D™* = ¢*a(k), (5)
Da*(k)D™! = ¢*z* (k), (6)
Ko (k)K= ¢™205(k), (7)
k), 2*(0)) = + (k4 ), )
v (k + Da* (1) — ¢ 22 (DaF (k4 1) 9)
= ¢ 22T (K2t (1 + 1) — 251 + 1™ (k),

ot (k)2 (0) = ——— (T o+ ) = ok + D).
(10)
where Zw(k)z_k = Kexp ((q —q b Z a(k)zk> . (11)

k=0 k=1

> o(—k)2F = K exp (—(q —q N> a(—k)2k> -
k=0 —

k=1
(12)



The algebras Uq(Agw) and U, are isomorphic. The
action of the isomorphism, which we call the Drinfeld
Isomorphism, on the generators of Uq(Agl)) is:

€y — x_(l)K_la fO = K.fl?+<—1),
er — x7(0), fir a2 (0),
Ky— K™, Ki— K, D~ D.

We use the formal sums

= e, ) = v, aF(w) = s (pu’

PEZL PEZ PEL
(13

)
Then it follows from Drinfeld’s relations (3), (8)-(10)
that:

[D(u), d(v)] = 0= [ ( ) ()] (14)
o(u)r (v)p(u) " = gluv™ 772 (v) (15)
Yu)a(v)p(u) ™t = glou 'y T T () (16)

(% u —v)z*(v)a™(w)  (17)
[ (w), 2™ (V)] = (g — a7 (@ (w/vy) (') = d(uy/v)d(uy'?))

where g(t) = g,(t) is the Taylor series at ¢ = 0 of
the function (¢t — 1)/(t — ¢*) and 0(z) = >, .5 2" is
the formal Dirac delta function. Writing ¢(t) = g,(t) =

szo g(p)t? we have
9(0)=q7% glp)=0—-¢"Yg > p>0.
Note that g,(t)~" = g,-1(t).



Using the root partition S = {a1 + kd | kK € Z} U
{10 | I € Z~y}, we define:
U/ (S) to be the subalgebra of U, generated by z* (k)
(k€ Z) and a(l) (I > 0);
U, (S) to be the subalgebra of U, generated by z~ (k)
(k€ Z) and a(—I[) (I > 0), and
UJ(S) to be the subalgebra of U, generated by K*',
,}/j:1/27 and DEL

Then we have the following PBW theorem due to Cox,
Futorny, Kang and Melville.

Theorem: A basis for U, is the set of monomials of

the form
= a” KODPA#2q gt
where
v =T (my)" - T (my)"™, m; < mijr1, m; €7,
a* = a(r)® - a(r)®, +r; < £ri, =+r; € N,

and o, B, u € Z, n;, s; € N. In particular,
U, 22U (S)® UqO(S) ® U, (S).

Let NV denote the set of all functions from {k§ |k €
N*} to N with finite support. Then we can write

at = af’“) =a(r)® - -a(r)® a” = ol = a(—ry)% - a(—r)*

for f = (s) € NN where f(ry) = sy and f(t) =0 fort #r;,1 <
1 < L.



Now consider the subalgebra N ¢ generated by fyil/ 2

and 27 (1), I € Z. Then any element in N~ is a sum of
products of elements of the form

P =~"a"(ma) -2~ (my),
where m; € Z,my <mo < - <mp, k>0, € Z
and such a product is a summand of
P =P(vy,...,05) =~z (v1) -z (vp).
Set P =x (vy)-- 2~ (v;) and

Pr=x (v)- -2 (v_1)z (vg1) - 27 ().

Note that by Drinfeld relations (15) and (16) we have:

-1

z(v1) 2 (uo)(uy'?) = Hg(’Ujvz_l) (o) (vr) 2 (vm)

=1

z (v1) - -x (v-1) 1:[ u*yv wy D (vy) - ().



So by Drinfeld relation (18) we have

[ (), P = a(vn) - [ (w) o™ ()] -2 (g)

q—q!

i u/v v 1/2y _ u~y /v u 1/2
; .<5( Juy)(oy=) = d(uy/v)p(uy )) e
U (u

—1/2)

=Y

k-1
11 90 (vj/v) Pd(ujur)
=1 j=1
1/2 kE 1-1

1 Hg UZ/UJ Pl (uy/vr)

=1 j=1

q9—dq

Now we have the following lemma.

Lemma: Fix k& € Z. Then for any P € N, there
exists unique

Q(CL, (Qk?>)7 R(Cv (rl» = /\/;1_7 a,b € Z, (QZ)v (T’m) < NN*)
such that

A\D a0 (g q'm) b r
[zt (k), P :Z KQ( 7(%))_'_2 KT R(b, ( m))

q—qt q—q !




This Lemma motivates the definition of a family of
operators as follows. Set

[—1
G = ng (wi/v), Gf=T]glw/v)
j=1

where GG; := 1. Now define a collection of operators
Qu(k), Q4(k) + N — N7, k € Z, in terms of the

generating functions

= Qu, Qlu) =D Q(bu™

leZ leZ

k
Qu)(P) : =" 3 GiP(u /o)
=1

k
Qu(w)(P): =7 S GIRS(uy/v).

=1
Note that €,(u)(1) = Q4(u)(1) = 0. Then we have:

2 (w), P) = (4=~ ™" (¥ (™) Q2u()(P) = 6(uy )0 (u)(P))



The following Proposition lists the relations among {2

operators.
Proposition Consider 27 (v) =) = (m)v™™ as a
formal power series of left multiplication operators = (m) :

./\/q_ — ./\/'q_. Then

Qy

(W™ (v) = 0(vy/u) + gg1 (vy/u)ar™ (v)Qy(u),
Qs(uw)z™ (v) = 0(uy/v) + gluy/v)x™ (v)Qs(u)
(qPur — ug) (1) Qy (1) = (ur — ¢ ug) 0y (u2)Qy (uy)
(qPur — u2)Q(u1) Qs (ug) = (w1 — ¢ u2)Qp (ug) g ()
(@*7 ur — 2)Q (1) (ug) = (YPur — ¢ uz)Qy (u) Qg (ur)

w)x (v

In terms of components and as operators on NV, , Wwe have:

(k)2 (m) = 8 wt*+> " g (r)a™ (metr) (k1)

and

Qu(k)Qs(m) = Y glr)y™ Qe +m)Qu(k — 7).

Note that the sum on the right hand side turns into a
finite sum when applied to an element in N g



We define the Kashiwara algebra IC, to be the F(g'/?)-
algebra with generators Q,(m), x=(n),y=/2, m,n € Z
where 412 are central and the defining relations are:

¢y Q(m)z” (n+1) — Qu(m + 1z~ (n)

= (¢*y = 1)dn,—n-1 + 72 (n 4+ 1)Q(m) — ¢*2~ (n)Qy(m + 1),
¢y (k1) () = (D (k+1) = Qy (k) Q2 (14+1) = ¢y (141) Q2. (k)
v (kD)2 (D) —q 2z~ (D™ (k+1) = ¢ 22 (k) (I+1)—2 ((-+1)z" (k)
and

A2 =12 ] = 120102,

We have the following Lemmas:
Lemma: The F(¢'/?)-linear map a : K, — K, given by

a(y?) =42 alam(m) = Qu(=m),  a(Qyu(m)) = 2~ (~m)
for all m € Z is an involutive anti-automorphism.
Lemma: N is aleft K,-module and N = K,/ >, o K Qy (k).

Lemma: There is a unique symmetric form ( , ) defined on
Nq_ satisfying

(x” (m)a,b) = (a,Qp(—m)b), (1,1) =1.



Let A € A, the weight lattice of Ag”. Denote by
19()\) the ideal of U, = U,(sl(2)) generated by z*(k),
k€ Z, a(l),l >0, K*' — ¢M1, ~E — g9 and
D* — ™MD, The imaginary Verma module with high-
est weight A is defined to be

My(A) = U/TA).

Cox, Futorny, Kang and Melville showed that the imag-
inary Verma module M ()) over the affine s/(2) admits
a quantum deformation to the imaginary Verma module
M,(X) over U, in such a way that the dimensions of the
weight spaces are invariant under this deformation. They
also proved:

Theorem: Imaginary Verma module M,()) is simple

if and only if A(¢) # 0.



Suppose now that A(¢) = 0. Then fyi% acts on My(\)
by 1. Consider an ideal J?(\) of U, generated by I9(\)
and a(l) for all [. Denote

Mq(X) = Uy/ JU(N).

Then M,()) is a homomorphic image of M, (\) which we
call reduced imaginary Verma module. Module M,(\)
has a A-gradation:

My(A) =) My(Ne.

e

If a denotes a simple root of s/(2) and ¢ denotes an indi-
visible imaginary root then M,(\)y_¢ # 0 if and only if
E=0o0r&=—na+modwithn >0,meZ.

If £ = —na +md then we set || = n. Note that N~
has also a A-grading: 2~ (n1)x™(n2) ... 2~ (k) € (N, )e,
where £ = —ka+ (n1 + ...+ ni)d, || = k.

Theorem: Let A € A such that A(¢) = 0. Then
module M () is simple if and only if A(h) # 0.



Using this Theorem we can prove:

Lemma: Let P € N . If Qy(s)P = 0 for any s € Z,
then P is a constant multiple of 1.

This in turn gives our main theorem:

Theorem: The algebra N, , 1ssimple as a K,-module.



