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Let F be a field of characteristic 0. The algebra A
(1)
1

is the affine Kac-Moody algebra over field F with gen-

eralized Cartan matrix A = (aij)0≤i,j≤1 =

(
2 −2

−2 2

)
.

The algebra A
(1)
1 has a Chevalley-Serre presentation with

generators e0, e1, f0, f1, h0, h1, d and relations

[hi, hj] = 0, [hi, d] = 0,

[ei, fj] = δijhi,

[hi, ej] = aijej, [hi, fj] = −aijfj,
[d, ej] = δ0,jej, [d, fj] = −δ0,jfj,
(ad ei)

3ej = (ad fi)
3fj = 0, i 6= j.

Alternatively, we may realize A
(1)
1 through the loop

algebra construction

A
(1)
1
∼= sl2 ⊗ F[t, t−1]⊕ Fc⊕ Fd

with Lie bracket relations

[x⊗ tn, y ⊗ tm] = [x, y]⊗ tn+m + nδn+m,0(x, y)c,

[x⊗ tn, c] = 0 = [d, c], [d, x⊗ tn] = nx⊗ tn,

for x, y ∈ sl2, n,m ∈ Z, where ( , ) denotes the Killing

form on sl2. For x ∈ sl2 and n ∈ Z, we write x(n) for

x⊗ tn.



Let ∆ denote the root system of A
(1)
1 , and let {α0, α1}

be a basis for ∆. Let δ = α0+α1, the minimal imaginary

root. Then

∆ = {±α1 + nδ | n ∈ Z} ∪ {kδ | k ∈ Z \ {0}}.

A subset S of the root system ∆ is called closed if α, β ∈
S and α + β ∈ ∆ implies α + β ∈ S. The subset S

is called a closed partition of the roots if S is closed,

S ∩ (−S) = ∅, and S ∪ −S = ∆. The classification of

closed partitions of the root system for affine Lie algebras

was obtained by Jakobsen and Kac and also indepently

by Futorny.

The set

S = {α1 + kδ | k ∈ Z} ∪ {lδ | l ∈ Z>0}

is a closed partition of ∆ and is W × {±1}-inequivalent

to the standard partition of the root system into positive

and negative roots.



For g = A
(1)
1 , let g

(S)
± =

∑
α∈S g±α. In the loop alge-

bra formulation of g, we have that g
(S)
+ is the subalgebra

generated by e(k) = e ⊗ tk (k ∈ Z) and h(l) = h ⊗ tl

(l ∈ Z>0) and g
(S)
− is the subalgebra generated by f (k) =

f ⊗ tk (k ∈ Z) and h(−l) (l ∈ Z>0). Since S is a par-

tition of the root system, the algebra has a direct sum

decomposition

g = g
(S)
− ⊕ h⊕ g

(S)
+ .

Let U(g
(S)
± ) be the universal enveloping algebra of g

(S)
± .

Then, by the PBW theorem, we have

U(g) ∼= U(g
(S)
− )⊗ U(h)⊗ U(g

(S)
+ ),

where U(g
(S)
+ ) is generated by e(k) (k ∈ Z), h(l) (l ∈

Z>0), U(g
(S)
− ) is generated by f (k) (k ∈ Z), h(−l) (l ∈

Z>0) and U(h), the universal enveloping algebra of h, is

generated by h, c and d.



Let λ ∈ Λ, the weight lattice of g = A
(1)
1 . A U(g)-

module V is called a weight module if V = ⊕µ∈PVµ,

where

Vµ = {v ∈ V | h·v = µ(h)v, c·v = µ(c)v, d·v = µ(d)v}.

Any submodule of a weight module is a weight module.

A U(g)-module V is called an S-highest weight module

with highest weight λ if there is a non-zero vλ ∈ V such

that (i) u+ · vλ = 0 for all u+ ∈ U(g
(S)
+ ) \ F∗, (ii) h ·

vλ = λ(h)vλ, c · vλ = λ(c)vλ, d · vλ = λ(d)vλ, (iii)

V = U(g) · vλ = U(g
(S)
− ) · vλ. An S-highest weight

module is a weight module.

For λ ∈ Λ, let IS(λ) denote the ideal of U(A
(1)
1 ) gener-

ated by e(k) (k ∈ Z), h(l) (l > 0), h−λ(h)1, c−λ(c)1,

d − λ(d)1. Then we define M(λ) = U(A
(1)
1 )/IS(λ) to

be the imaginary Verma module of A
(1)
1 with highest

weight λ. Imaginary Verma modules have many struc-

tural features similar to those of standard Verma mod-

ules, with the exception of the infinite-dimensional weight

spaces. In particular, M(λ) has a unique maximal sub-

module and it is irreducible if and only if λ(c) 6= 0.



The quantum group Uq(A
(1)
1 ) is the F(q1/2)-algebra

with 1 generated by

e0, e1, f0, f1, K
±1
0 , K±1

1 , D±1

with defining relations:

DD−1 = D−1D = KiK
−1
i = K−1

i Ki = 1,

eifj − fjei = δij
Ki −K−1

i

q − q−1
,

KieiK
−1
i = q2ei, KifiK

−1
i = q−2fi,

KiejK
−1
i = q−2ej, KifjK

−1
i = q2fj, i 6= j,

KiKj −KjKi = 0, KiD −DKi = 0,

DeiD
−1 = qδi,0ei, DfiD

−1 = q−δi,0fi,

e3
i ej − [3]e2

i ejei + [3]eieje
2
i − eje

3
i = 0, i 6= j,

f 3
i fj − [3]f 2

i fjfi + [3]fifjf
2
i − fjf

3
i = 0, i 6= j,

where, [n] = qn−q−n
q−q−1 .

The quantum group Uq(A
(1)
1 ) can be given a Hopf al-

gebra structure with a comultiplication given by

∆(Ki) = Ki ⊗Ki,∆(D) = D ⊗D,

∆(ei) = ei ⊗K−1
i + 1⊗ ei,∆(fi) = fi ⊗ 1 +Ki ⊗ fi,

and an antipode given by

s(ei) = −eiK−1
i , s(fi) = −Kifi, s(Ki) = K−1

i , s(D) = D−1.



We also need the Drinfeld realization forUq(A
(1)
1 ), which

is as follows. Let Uq be the associative algebra with 1 over
F(q1/2) generated by the elements x±(k) (k ∈ Z), a(l)

(l ∈ Z \ {0}), K±1, D±1, and γ±
1
2 with the following

defining relations:

DD−1 = D−1D = KK−1 = K−1K = 1, (1)

[γ±
1
2 , u] = 0 ∀u ∈ U, (2)

[a(k), a(l)] = δk+l,0
[2k]

k

γk − γ−k

q − q−1 , (3)

[a(k), K] = 0, [D,K] = 0, (4)

Da(k)D−1 = qka(k), (5)

Dx±(k)D−1 = qkx±(k), (6)

Kx±(k)K−1 = q±2x±(k), (7)

[a(k), x±(l)] = ± [2k]

k
γ∓

|k|
2 x±(k + l), (8)

x±(k + 1)x±(l)− q±2x±(l)x±(k + 1) (9)

= q±2x±(k)x±(l + 1)− x±(l + 1)x±(k),

[x+(k), x−(l)] =
1

q − q−1

(
γ

k−l
2 ψ(k + l)− γ

l−k
2 φ(k + l)

)
,

(10)

where
∞∑
k=0

ψ(k)z−k = K exp

(
(q − q−1)

∞∑
k=1

a(k)z−k

)
, (11)

∞∑
k=0

φ(−k)zk = K−1 exp

(
−(q − q−1)

∞∑
k=1

a(−k)zk
)
.

(12)



The algebras Uq(A
(1)
1 ) and Uq are isomorphic. The

action of the isomorphism, which we call the Drinfeld

Isomorphism, on the generators of Uq(A
(1)
1 ) is:

e0 7→ x−(1)K−1, f0 7→ Kx+(−1),

e1 7→ x+(0), f1 7→ x−(0),

K0 7→ γK−1, K1 7→ K, D 7→ D.

We use the formal sums

φ(u) =
∑
p∈Z

φ(p)u−p, ψ(u) =
∑
p∈Z

ψ(p)u−p, x±(u) =
∑
p∈Z

x±(p)u−p

(13)
Then it follows from Drinfeld’s relations (3), (8)-(10)

that:

[φ(u), φ(v)] = 0 = [ψ(u), ψ(v)] (14)

φ(u)x±(v)φ(u)−1 = g(uv−1γ∓1/2)±1x±(v) (15)

ψ(u)x±(v)ψ(u)−1 = g(vu−1γ∓1/2)∓1x±(v) (16)

(u− q±2v)x±(u)x±(v) = (q±2u− v)x±(v)x±(u) (17)

[x+(u), x−(v)] = (q − q−1)−1(δ(u/vγ)ψ(vγ1/2)− δ(uγ/v)φ(uγ1/2))
(18)

where g(t) = gq(t) is the Taylor series at t = 0 of

the function (q2t − 1)/(t − q2) and δ(z) =
∑

k∈Z z
k is

the formal Dirac delta function. Writing g(t) = gq(t) =∑
p≥0 g(p)t

p we have

g(0) = q−2, g(p) = (1− q4)q−2p−2, p > 0.

Note that gq(t)
−1 = gq−1(t).



Using the root partition S = {α1 + kδ | k ∈ Z} ∪
{lδ | l ∈ Z>0}, we define:

U+
q (S) to be the subalgebra of Uq generated by x+(k)

(k ∈ Z) and a(l) (l > 0);

U−
q (S) to be the subalgebra of Uq generated by x−(k)

(k ∈ Z) and a(−l) (l > 0), and

U 0
q (S) to be the subalgebra of Uq generated by K±1,

γ±1/2, and D±1.

Then we have the following PBW theorem due to Cox,

Futorny, Kang and Melville.

Theorem: A basis for Uq is the set of monomials of

the form

x−a−KαDβγµ/2a+x+

where

x± = x±(m1)
n1 · · ·x±(mk)

nk, mi < mi+1, mi ∈ Z,
a± = a(r1)

s1 · · · a(rl)sl, ±ri < ±ri+1, ±ri ∈ N∗,

and α, β, µ ∈ Z, ni, si ∈ N. In particular,

Uq ∼= U−
q (S)⊗ U 0

q (S)⊗ U+
q (S).

Let NN∗ denote the set of all functions from {kδ | k ∈
N∗} to N with finite support. Then we can write

a+ = a
(sk)
+ := a(r1)

s1 · · · a(rl)sl, a− := a
(sk)
− = a(−r1)s1 · · · a(−rl)sl

for f = (sk) ∈ NN∗
where f(rk) = sk and f(t) = 0 for t 6= ri, 1 ≤

i ≤ l.



Now consider the subalgebra N−
q , generated by γ±1/2,

and x−(l), l ∈ Z. Then any element in N−
q is a sum of

products of elements of the form

P = γl/2x−(m1) · · ·x−(mk),

where mi ∈ Z,m1 ≤ m2 ≤ · · · ≤ mk, k ≥ 0, l ∈ Z
and such a product is a summand of

P = P (v1, . . . , vk) := γl/2x−(v1) · · ·x−(vk).

Set P̄ = x−(v1) · · ·x−(vk) and

P̄l = x−(v1) · · ·x−(vl−1)x
−(vl+1) · · ·x−(vk).

Note that by Drinfeld relations (15) and (16) we have:

x−(v1) · · ·x−(vl−1)ψ(vlγ
1/2) =

l−1∏
j=1

g(vjv
−1
l )−1ψ(vlγ

1/2)x−(v1) · · ·x−(vl−1)

x−(v1) · · ·x−(vl−1)φ(uγ1/2) =
l−1∏
j=1

g(uγv−1
j )φ(uγ1/2)x−(v1) · · ·x−(vl−1).



So by Drinfeld relation (18) we have

[x+(u), P̄ ] =
k∑
l=1

x−(v1) · · · [x+(u), x−(vl)] · · ·x−(vk)

=
k∑
l=1

x−(v1) · · ·
(
δ(u/vlγ)ψ(vlγ

1/2)− δ(uγ/vl)φ(uγ1/2)

q − q−1

)
· · ·x−(vk)

=
ψ(uγ−1/2)

q − q−1

k∑
l=1

l−1∏
j=1

gq−1(vj/vl)P̄lδ(u/vlγ)

− φ(uγ1/2)

q − q−1

k∑
l=1

l−1∏
j=1

g(vl/vj)P̄lδ(uγ/vl)

Now we have the following lemma.

Lemma: Fix k ∈ Z. Then for any P ∈ N−
q , there

exists unique

Q(a, (qk)), R(c, (rl)) ∈ N−
q , a, b ∈ Z, (ql), (rm) ∈ NN∗,

such that

[x+(k), P ] =
∑ a

(ql)
+ KaQ(a, (ql))

q − q−1
+
∑ a

(rm)
− Kb R(b, (rm))

q − q−1
.



This Lemma motivates the definition of a family of

operators as follows. Set

Gl = G
1/q
l :=

l−1∏
j=1

gq−1(vj/vl), Gq
l =

l−1∏
j=1

g(vl/vj)

where G1 := 1. Now define a collection of operators

Ωψ(k),Ωφ(k) : N−
q → N−

q , k ∈ Z, in terms of the

generating functions

Ωψ(u) =
∑
l∈Z

Ωψ(l)u−l, Ωφ(u) =
∑
l∈Z

Ωφ(l)u
−l

by

Ωψ(u)(P̄ ) : = γm
k∑
l=1

GlP̄lδ(u/vlγ)

Ωφ(u)(P̄ ) : = γm
k∑
l=1

Gq
l P̄lδ(uγ/vl).

Note that Ωψ(u)(1) = Ωφ(u)(1) = 0. Then we have:

[x+(u), P̄ ] = (q−q−1)−1
(
ψ(uγ−1/2)Ωψ(u)(P̄ )− φ(uγ1/2)Ωφ(u)(P̄ )

)
.



The following Proposition lists the relations among Ω

operators.
Proposition Consider x−(v) =

∑
m x

−(m)v−m as a
formal power series of left multiplication operators x−(m) :
N−
q → N−

q . Then

Ωψ(u)x
−(v) = δ(vγ/u) + gq−1(vγ/u)x−(v)Ωψ(u),

Ωφ(u)x
−(v) = δ(uγ/v) + g(uγ/v)x−(v)Ωφ(u)

(q2u1 − u2)Ωψ(u1)Ωψ(u2) = (u1 − q2u2)Ωψ(u2)Ωψ(u1)

(q2u1 − u2)Ωφ(u1)Ωφ(u2) = (u1 − q2u2)Ωφ(u2)Ωφ(u1)

(q2γ2u1 − u2)Ωφ(u1)Ωψ(u2) = (γ2u1 − q2u2)Ωψ(u2)Ωφ(u1)

In terms of components and as operators onN−
q we have:

Ωψ(k)x−(m) = δk,−mγ
k+
∑
r≥0

gq−1(r)x−(m+r)Ωψ(k−r)γr.

and

Ωψ(k)Ωφ(m) =
∑
r≥0

g(r)γ2rΩφ(r +m)Ωψ(k − r).

Note that the sum on the right hand side turns into a

finite sum when applied to an element in N−
q .



We define the Kashiwara algebra Kq to be the F(q1/2)-
algebra with generators Ωψ(m), x−(n), γ±1/2, m,n ∈ Z
where γ±1/2 are central and the defining relations are:

q2γΩψ(m)x−(n+ 1)− Ωψ(m+ 1)x−(n)

= (q2γ − 1)δm,−n−1 + γx−(n+ 1)Ωψ(m)− q2x−(n)Ωψ(m+ 1),

q2Ωψ(k+1)Ωψ(l)−Ωψ(l)Ωψ(k+1) = Ωψ(k)Ωψ(l+1)−q2Ωψ(l+1)Ωψ(k),

x−(k+1)x−(l)−q−2x−(l)x−(k+1) = q−2x−(k)x−(l+1)−x−(l+1)x−(k)

and
γ1/2γ−1/2 = 1 = γ−1/2γ1/2.

We have the following Lemmas:

Lemma: The F(q1/2)-linear map ᾱ : Kq → Kq given by

ᾱ(γ±1/2) = γ±1/2, ᾱ(x−(m)) = Ωψ(−m), ᾱ(Ωψ(m)) = x−(−m)

for all m ∈ Z is an involutive anti-automorphism.

Lemma: N−
q is a leftKq-module andN−

q
∼= Kq/

∑
k∈ZKqΩψ(k).

Lemma: There is a unique symmetric form ( , ) defined on
N−
q satisfying

(x−(m)a, b) = (a,Ωψ(−m)b), (1, 1) = 1.



Let λ ∈ Λ, the weight lattice of A
(1)
1 . Denote by

Iq(λ) the ideal of Uq = Uq(ŝl(2)) generated by x+(k),

k ∈ Z, a(l), l > 0, K±1 − qλ(h)1, γ±
1
2 − q±

1
2λ(c)1 and

D±1− q±λ(d)1. The imaginary Verma module with high-

est weight λ is defined to be

Mq(λ) = U/Iq(λ).

Cox, Futorny, Kang and Melville showed that the imag-

inary Verma module M(λ) over the affine ŝl(2) admits

a quantum deformation to the imaginary Verma module

Mq(λ) over Uq in such a way that the dimensions of the

weight spaces are invariant under this deformation. They

also proved:

Theorem: Imaginary Verma moduleMq(λ) is simple

if and only if λ(c) 6= 0.



Suppose now that λ(c) = 0. Then γ±
1
2 acts on Mq(λ)

by 1. Consider an ideal J q(λ) of Uq generated by Iq(λ)

and a(l) for all l. Denote

M̃q(λ) = Uq/J
q(λ).

Then M̃q(λ) is a homomorphic image of Mq(λ) which we

call reduced imaginary Verma module. Module M̃q(λ)

has a Λ-gradation:

M̃q(λ) =
∑
ξ∈Λ

M̃q(λ)ξ.

If α denotes a simple root of sl(2) and δ denotes an indi-

visible imaginary root then M̃q(λ)λ−ξ 6= 0 if and only if

ξ = 0 or ξ = −nα +mδ with n > 0, m ∈ Z.

If ξ = −nα +mδ then we set |ξ| = n. Note that N−
q

has also a Λ-grading: x−(n1)x
−(n2) . . . x

−(nk) ∈ (N−
q )ξ,

where ξ = −kα + (n1 + . . . + nk)δ, |ξ| = k.

Theorem: Let λ ∈ Λ such that λ(c) = 0. Then

module M̃q(λ) is simple if and only if λ(h) 6= 0.



Using this Theorem we can prove:

Lemma: Let P ∈ N−
q . If Ωψ(s)P = 0 for any s ∈ Z,

then P is a constant multiple of 1.

This in turn gives our main theorem:

Theorem: The algebraN−
q is simple as aKq-module.


