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Summary

• Problem definition
• Solution strategy
• Multiple-choice
• Piecewise linear optimization
• Further research



Problem definition

 Given c1×n , Am×n , and bm×1 , find xn×1 that 
maximizes

                      cx
 subject to
                     Ax ≤ b,
                        x ≥ 0,
 and complicating combinatorial constraints
  



Examples of combinatorial 
constraints

• Special ordered sets of type I:
· at most one variable in the set can be positive, 

e.g. {x1, x2, x3, x4, x5} and {x6, x7, x8}
· LCP, capital budgeting, variable upper bound 

flows with GUBS
• Cardinality Constraints:

· at most K variables can be positive
· portfolio optimization, location-allocation



Examples of combinatorial 
constraints

• Semi-continuous variables:
· x = 0 or l ≤ x ≤ u
· portfolio optimization, synthesis of process 

networks
• Special ordered sets of type II:

· at most 2 variables can be positive, and if two 
variables are positive they must be adjacent in 
the set, e.g. {x1, x2, x3, x4, x5} and {x6, x7, x8} 

· piecewise linear optimization, scheduling



Solution strategy

• We will tackle these problems through 
branch-and-cut

• Our cutting plane strategy will follow the 
pioneering work of Crowder, Johnson, and 
Padberg (1985)

• Another ingredient is lifting



Branch-and-bound

It is an enumeration approach that uses:
• a divide-and-conquer strategy
• linear programming relaxations (LPR) to 

reduce the required amount of 
enumeration (or the number of branch-
and-bound nodes) to prove optimality or 
infeasibility



Branch-and-cut

• Makes the use of LPR more efficient by 
sharpening them with cutting planes

• In many cases, improves over the number 
of branch-and-bound enumeration nodes 
and branch-and-bound computational time 
tremendously

• However, it needs to be used judiciously



Crowder, Johnson, and Padberg 
cutting plane strategy

• Introduced for 0-1 programming
• Consists of deriving cutting planes valid for 

knapsack relaxations of the problem, given 
by the individual constraints of Ax ≤ b



Lifting

• Deriving cutting planes is a difficult task
• One alternative to deriving strong cutting 

planes is lifting, which consists in 
simplifying the problem first, obtaining a 
cutting plane for the simple problem, and 
then incrementally returning to the original 
problem



Multiple-choice
• If x and y are variables, complementarity 

means that at most one can be positive in a 
feasible solution, i.e. x y = 0

• If x1, …, xn are variables and satisfy 
complementarity pairwisely, we call the set 
{x1, …, xn} a special ordered set of type 1 
(SOS1)



Multiple-choice
Traditionally it is modeled by introducing to each 
variable xj a binary variable yj and constraints:

· xj ≤ uj yj

•∑j∈S yj ≤  1
 



Applications
Numerous, see e.g. Williams (1999) 
• Approximation of nonlinear functions, e.g. 

bilinear (de Farias, Kozyreff, and Zhao, 
forthcoming)

• Auctions (Sandholm 2007)
• Capacity planning (Wolsey, 1990)
• Finance (Perold 1984)
• Lienar complementarity problem (Cottle et al., 

1990)



Linear complementarity problem
They arise as:

A x + s = b
x, s ≥ 0 
{xi, si} is SOS1 ∀i



Problem definition
maximize c x
subject to

A x ≤ b
x ≥ 0,
{x1j, …, xTj}is SOS1 ∀j



Previous and related work

• Jeroslow (1972)
• Ibaraki (1975)
• Mitchell et al. (2011)
• Richard and Tawarmalani (2011)
• de Farias et al. (2002)



Assumptions

• T ≥ 2
• A ≥ 0, b > 0
• xij ∈ [0, 1] ∀ij



Polyhedral strategy

We use as cutting planes inequalities valid for 
the complementarity knapsack set P, i.e. the 
convex hull of the set defined by
• Σij aij xij ≤ b
• xij ∈ [0, 1] ∀ij
• {x1j, …, xTj}is SOS1 ∀j
So, from now on we focus on the set P.



Assumptions

• b ≥ a1j  >  > aTj ≥ 0
• Σj a1j  ≥ b



Basic results

Proposition The inequality Σi xij  ≤ 1 is valid 
∀j. It is facet-defining iff aTj  < b.  �



Basic results

Proposition The set P is full-dimensional. �

Proposition Inequality xij ≥ 0 is facet-defining 
∀ij. �

Proposition Inequality Σij aij xij ≤ b is facet-
defining iff Σj−k a1j  + aTk ≥ b ∀k.  �



Cutting planes for P

• Two families of lifted cover inequalities
• They include the inequalities of de Farias et 

al. (2002) as special cases



Lifted cover inequalities

Consider the knapsack constraint:
(6x11 + x21) + (2x12 + x22) + (4x13 + 3x23) + 

(8x14 + 6x24+ x34) + (9x15 + 4x25) ≤ 13
The set C = {(1, 4), (1, 5)} is a cover and
8x14 + 9x15 ≤ 13
is a cover inequality, which can be lifted to
(8x14 + 6x24) + 9x15 ≤ 13. Because of SOS1, 

it can 
be  lifted further to (8x14 + 6x24+ 4x34) + 

(9x15 + 5x25) ≤ 13.



Lifted cover inequalities



Lifted cover inequalities



Lifted cover inequalities

The knapsack again is:
(6x11 + x21) + (2x12 + x22) + (4x13 + 3x23) + 

(8x14 + 
6x24+ x34) + (9x15 + 4x25) ≤ 13
The cover is C = {(2, 2), (2, 3), (3, 4), (1, 

5)} and 
the cover inequality is x22 + 3x23 + x34 + 9x15 

≤ 13, 
which can be lifted to:
(x12 + x22) + (3x13 + 3x23) + (8/5x14 + 6/5x24 + 

x34) +  (9x15 + 8x25) ≤ 13



Computation

We tested randomly generated instances:
• very sparse: 2% of SOS1’s
• relatively small: 60 rows and 100 SOS1’s to 200 rows and 260 

SOS1’s (5 instances of each size), each SOS1 has 5 elements
• additionally, instances with very large SOS1’s
• In some of the instances, the variables xij were continuous, in 

some they were binary, and in some they were general integers



Computation

• We limited CPU time to 1 hour
• We used the Texas Tech High Performance 

Computing Center running GUROBI 4 Callable 
Library



Summary of computational results

• The cutting planes were extremely useful for the 
instances with continuous and general integer 
variables. Here, the average computational time 
reduction was 82% and the average number of nodes 
reduction was 98%

• The results for the instances with binary variables 
were mixed, mostly disadvantageous. Here, the 
average computational time reduction was −32% and 
the average number of nodes reduction was 13% 



Some computational results

                  # rows & # SOS Time default Time B&B

60 &100 1,853 3,600

60 & 120 2,520 3,600

60 & 140 525 2,830

60 & 160 1,720 3,600

80 & 100 2,329 3,600

80 & 120 789 3,600

80 & 140 2,890 3,600

80 & 160 1,250 2,820

# rows & # SOS Time default Time B&B



Some computational results

                  # rows & # SOS Time default B&B w/ cuts

60 &100 1,853 850

60 & 120 2,520 376

60 & 140 525 200

60 & 160 1,720 1,000

80 & 100 2,329 1,550

80 & 120 789 320

80 & 140 2,890 880

80 & 160 1,250 430

# rows & # SOS Time default B&B w/ cuts



Some computational results

                  # rows & # SOS Time default Default w/ cuts

60 &100 1,853 38

60 & 120 2,520 32

60 & 140 525 2

60 & 160 1,720 59

80 & 100 2,329 110

80 & 120 789 58

80 & 140 2,890 86

80 & 160 1,250 220

# rows & # SOS Time default Default w/ cuts



Modeling alternatives

• SOS1 approach (Beale and Tomlin 1970)
• “Usual” MIP (Dantzig 1961; we will call it 

MIP)
• LOG (Vielma and Nemhauser 2009 and 

Vielma Ahmed and Nemhauser 2010)



Computational results

• The cuts were helpful in all three formulations
• However, by far, MIP was the best, consistently, 

in all instances, even the ones with very large 
SOS1’s

• Why?



Further research
• Bilinear programming
• Multiple-choice over multiple rows
• New inequalities for multiple-choice



Piecewise linear optimization
• Problem definition
• Modeling alternatives
• Valid inequalities
• Intersection with semi-continuous constraint
• Computational results
• Further research



Problem definition
maximize f1 (x1) + ⋅ ⋅ ⋅ + fn (xn)
subject to

A x ≤ b
x ≥ 0,

where fj (xj) is a continuous piecewise linear 
function ∀j. We assume that some of the fj’s 
are nonconcave.



Problem definition

f (x)

d0 d1 d4d2 d5d3

x

breakpoints

line segments



Applications
• Approximation of nonlinear functions 

(Bazaraa, Sherali, Shetty 2006)
• Network optimization with economies of scale 

(Ahuja, Magnanti, Orlin 1993)
• Auctions (Sandholm 2007)
• Gas network optimization (Martin, Möller, 

Moritz 2006)
• Portfolio optimization (Perold 1984)



SOS2

The set {λ1, …, λT} is SOS2 if: 
• at most 2 variables are allowed to be nonzero, 

and 
• if 2 variables are nonzero, they must be 

adjacent in the set. 



SOS2
Traditionally it is modeled by introducing to each 
line segment a binary variable yj and constraints:

•λ1 ≤ u1 y1

•λ2 ≤ u2 (y1+ y2)
•λ3 ≤ u3 (y2+ y3)
•λ4 ≤ u4 (y3+ y4)
•λ5 ≤ u5 y4

· y1 + … + y4 ≤ 1
 



SOS2

Note that SOS2 is more general than it seems. For 
example, it can be used to enforce: 
• multiple-choice
• semi-continuous
• general integer
constraints



Enforcing semi-continuous

Let x ∈ {0} ∪ [1, 2]. 
1. Build the SOS2 {λ0, λ, λ1, λ2}
2. Substitute x = 0 ⋅ λ0 + ½ ⋅ λ + 1 ⋅ λ1 + 2 ⋅ λ2 
3. Fix λ = 0  



Goal

To turn a MILP solver into a general MINLP and 
NLP solver. In particular, NLP with structure.



Basic model

f (x)

d0 d1 d4d2 d5

x

λ1 λ2 λ3 λ4 λ5λ0

d3



Basic model

                 x = ∑k ∈ K dk λk  (K = {1, …, T})
                     f (x) = ∑ k ∈ K  f (dk) λk

                     ∑ k ∈ K  λk = 1
                     λ ≥ 0

                     {λ1, …, λT} is SOS2
We give new cutting planes for piecewise 

linear optimization implied by the following 
underlying knapsack set:



Underlying knapsack set



Underlying knapsack set

• S =  { λ∈ ℜnT :   λ satisfies (6) − (9) }
• P = conv (S)
• We refer to (7) as convexity constraints
•  N = N+ ∪ N−

• aj1  >  > ajT > 0



Approaches to the basic model

• Incremental cost (Markowitz and Manne 1957) 
• Convex combination (Dantzig 1961; equivalent 

to incremental cost, see Keha, de Farias, 
Nemhauser 2004; we will call it MIP)

• Special ordered set of type 2 (SOS2, Beale and 
Tomlin 1970)

• LOG (Vielma and Nemhauser 2009 and 
Vielma Ahmed and Nemhauser 2010)



Cutting planes

• Convexity constraint cutting planes
• Cover inequality cutting planes
But… do we really need such generic 
cuts? Aren’t they (and more) already 
present in CPLEX, or GUROBI, or 
Xpress, or your favorite solver?



Computation

• We tested transportation and transshipment 
optimization problems with concave objective 
function

• Instances generated as in Keha at al. (2006)
• We used Texas Tech High Performance Computing 

Center nodes running GUROBI 3 Callable Library
• We limited CPU time to 1 hour for transportation and 

2 hours for transshipment



Characteristics of the problem

• The transportation instances varied in size 
from 25 supply, 50 demand nodes and 7 
breakpoints to 100 supply, 400 demand nodes 
and 22 breakpoints

• The transshipment instances varied in size 
from 15 to 100 nodes, and 7 to 22 breakpoints

• Integrality gap is extremely small 



Do we need new (generic) cutting 
planes? (Transshipment tests)

                  # Nodes & part. Time default Time B&B

30 & 6 1,853 1,074

30 & 10 3,286 2,844

30 & 15 3,325 3,142

40 & 10 5,089 5,383

50 & 6 7,200 7,077

60 & 4 6,685 7,200

70 & 3 5,771 7,200

70 & 5 7,200 7,200

# Nodes & part. Time default Time B&B



Do we need new (generic) cutting 
planes? (Transshipment tests)

                  # Nodes & part. Time default Time w/ cuts

30 & 6 1,853 81

30 & 10 3,286 119

30 & 15 3,325 299

40 & 10 5,089 524

50 & 6 7,200 871

60 & 4 6,685 707

70 & 3 5,771 289

70 & 5 7,200 3,132

# Nodes & part. Time default Time w/ cuts



Do we need new (generic) cutting 
planes? (Transportation tests)

                  #Nodes & part. Time default Time B&B

25 × 50 & 5 936 1,286

25 × 100 & 5 971 1,452

25 × 200 & 5 2,578 3,290

25 × 300 & 5 3,600 3,600

25 × 400 & 5 3,600 3,200

50 × 100 & 5 171 282

50 × 200 & 5 272 232

50 × 300 & 5 617 630

#Nodes & part. Time default Time B&B



Do we need new (generic) cutting 
planes? (Transportation tests)

                  #Nodes & part. Time default Time w/ cuts

25 × 50 & 5 936 18

25 × 100 & 5 971 34

25 × 200 & 5 2,578 101

25 × 300 & 5 3,600 103

25 × 400 & 5 3,600 479

50 × 100 & 5 171 37

50 × 200 & 5 272 43

50 × 300 & 5 617 99

#Nodes & part. Time default Time w/ cuts



Cutting planes: previous work 
(Keha, de Farias, Nemhauser 2006)

Two families of valid inequalities:
• lifted convexity constraint
• lifted cover inequality
Computation:
• performed with MINTO
• cutting planes tremendously effective, in SOS2 

and MIP
• clear best option is SOS2 branching with the three 

cuts



Cutting planes: new contribution

• New families of inequalities
• The inequalities of Keha et al. are special 

cases of the new inequalities
• Extension to intersecting with semi-

continuous variables
• New computational analysis



Lifted convexity constraints 1

                                             
The inequality: 

is valid for P, where:



Example

0 1 3 4 x1

f1

x2

f2

0 5 9 10

(0 ⋅λ10 + 2 λ11 + 6 λ12 + 8 λ13) + (0 ⋅λ20 + 5 λ21 + 9 λ22 + 10 λ23) ≤ 10

2 x1 + x2 ≤ 10



Example

The point: 

λ12 = 5/6, λ21 = 1, λij = 0 otherwise 

is an extreme point of the LP relaxation that is cut off by:

 −3 λ11 + λ12 + 3 λ13 + 5 λ21 + 5 λ22 + 5 λ23 ≤ 5



Lifted convexity constraints 2

The inequality:

is valid for P, where:



Definition (N = N+):

Definition :

Cover



Cover inequality



Lifted cover inequality
We have inequalities (N = N+):

   (LCI1)
and 

   (LCI2)

Also in general, we have 

(GLCI)

with                        and   



Summary of cutting planes 
results

• Regardless of the formulation (MIP, LOG, or 
SOS) the vast majority of the instances of either 
transportation or transshipment could not be 
solved by GUROBI in default setting

• Virtually all instances are solved through proven 
optimality with the cuts

• For the instances GUROBI could solve without 
our cuts, the average reduction in computational 
time is of 92% and in nodes 98%



Summary of cutting planes 
results

• For very large SOS2’s (40 elements or 
above), the cuts were not efficient

• However, they were very efficient for the 
Vielma-Nemhauser instances



Formulation

• In the clear majority of cases SOS was better than 
MIP

• In some cases SOS and MIP were the best
• But in the vast majority of cases LOG was the 

best. Why? Is this due to MIP cutting planes? 
Preprocessing? Primal heuristic? Or just branching 
implementation? 



Formulation

We hope that LOG breaks the symmetry 
of the network formulations. However, it 
could very well be that LOG’s advantage 
is due to branching implementation.



Formulation

We note that, regarding the Vielma-Nemhauser 
instances:
• B&B and default gave virtually the same results
• while with CPLEX LOG was considerably 

superior to SOS2, with GUROBI they were 
virtually the same

• with the PLO cuts, LOG and SOS2 were virtually 
the same  



PLO with semi-continuous 
constraints

0 1 3 4 x1

f1

x2

f2

0 5 9 10

(2 λ11 + 6 λ12 + 8 λ13) + (5 λ21 + 9 λ22 + 10λ23) ≤ 10

2 x1 + x2 ≤ 10

Suppose now that x1 ∈ [0, 1] ∪ [3, 4] 



Semi-continuous constraints

• The point  λ11 = 1/4, λ12 = 3/4, λ21 = 1, λij = 0 otherwise is 
an extreme point of P that does not satisfy the semi-
continuous constraint

• We then add an artificial breakpoint with variable λ 
between λ11 and λ12, with coefficient, say 3

• We obtain the lifted convexity constraint:
 −2 λ + λ12 + 3 λ13 + 5 λ21 + 5 λ22 + 5 λ23 ≤ 5

• We fix λ = 0, and the resulting inequality 
       λ12 + 3 λ13 + 5 λ21 + 5 λ22 + 5 λ23 ≤ 5 
    cuts off the point



Semi-continuous computation

• We tested transportation with the constraint x 
∈ {0} ∪ [d1, dT] for all variables x

• The semi-continuous constraints made the 
problem considerably harder.  We were able to 
solve only small instances, even with the 
piecewise linear cuts



Semi-continuous computation

Inst. size Default Time SC cut Time PL cut
10×20 & 10 9 4 5

5×20 & 5 1,518 42 32

5×20 & 10 62 10 18

7×14 & 5 143 45 27

7×14 & 10 158 52 79

8×16 & 5 7,200 2,098 1,770

8×16 & 10 7,200 821 1,486

10×20 & 5 7,200 5,809 5,877

Inst. size Default Time SC cut Time PL cut



Further research
Piecewise linear optimization for:
• MINLP
• NLP
• NLP with structure, e.g. cardinality constraint
• MILP
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