

The Valuation of Basket Credit Derivatives:

A Copula Function Approach

David X. Li

Risk Management

AXA Financial

1290 Ave of Americas

New York, NY 10104

email: david.li@axacs.com

Phone: 212-314-3509

Toronto

December 8, 2000

/AXA FINANCIAL

Outline

- The Construction of Credit Curves
- On Default Correlation: The Joy of Copula Functions
- The Valuation of Credit Default Swaps
- The Valuation of Basket Credit Derivatives
 - First default / first loss
 - CBOs/CLOs

Credit Markets Are Being Transformed

- Shrinking Loan Profit Margin
- Low interest rate environment
- Huge amount of investment money
- Changing regulatory environment
- Theoretical and analytical advancements
- Technology

Credit Derivative Products

Structures


- •Total return swap
- Default contingent forward
- Credit swap
- Credit linked note
- Spread forward
- Spread option

Underlying Assets

- Corporate loans
- Corporate bonds
- Sovereign bonds/loans

- Specified loans or bonds
- Portfolio of loans or bonds

Credit Swap Pricing: Illustration

Reference Credit: Company X

Swap Tenor: 3 Years

Event Payment: Par - Post Default Market Value

Bond Insurance v.s. Credit Default Swaps

Bond insurance

Credit Default Swaps

Player

Insurance company

Banking

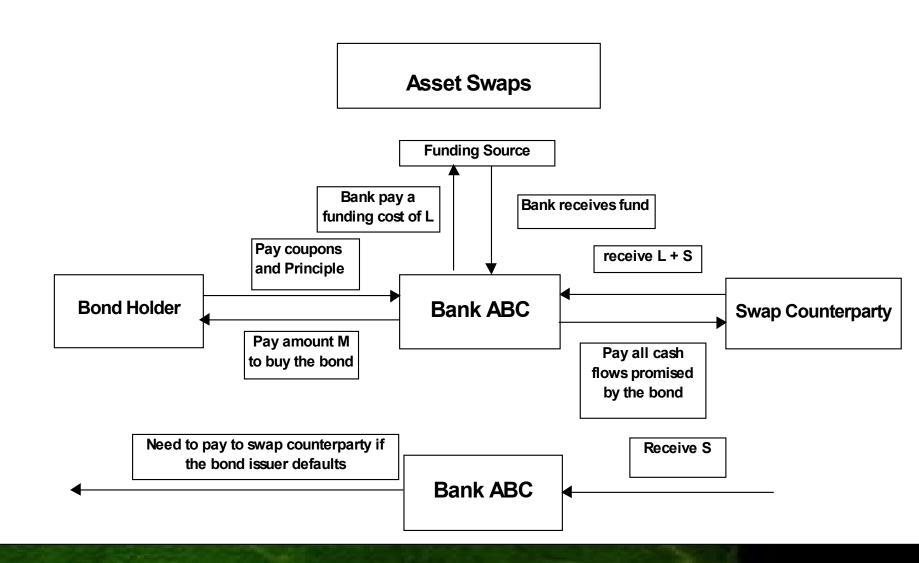
which side of credit risk

long

long and short

How to price

Actuarial approach based


on historical data

Relative pricing based asset swap spread

Default Probabilities

- From Historical Data
 - Moody's and S&P publish historical data
- From Merton's Option Framework
 - data
 - method to address term structure of default rates
- From Market Observed Credit Spread or Asset Spread

Asset Swaps of Bonds

Credit Swap Pricing:

A credit curve gives instantaneous default probabilities of a credit at any time in the future conditional on the survival at that time

- Construct a discount curve, such as LIBOR
- Construct a credit curve for the reference credit
- Construct a credit curve for the counterparty
- Calculate the NSP of the protection
- Amortize the NSP into a number of years

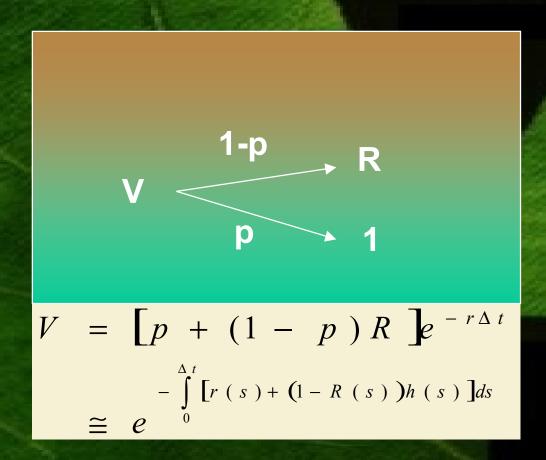
The Characterization of Default

- Define a random variable called the time-until-default to denote the survival time Pr[T < t] = F(t)
- Use survival function or hazard rate function to describe this survival time

$$S(t) = 1 - F(t)$$

$$h(t) = \frac{f(t)}{1 - F(t)} = -\frac{S'(t)}{S(t)}$$

$$-\int_{0}^{t} h(s) ds$$


$$S(t) = e$$

$$t q_{x} = \Pr[T - t \le t | T > x]$$

$$t p_{x} = 1 - t q_{x}$$

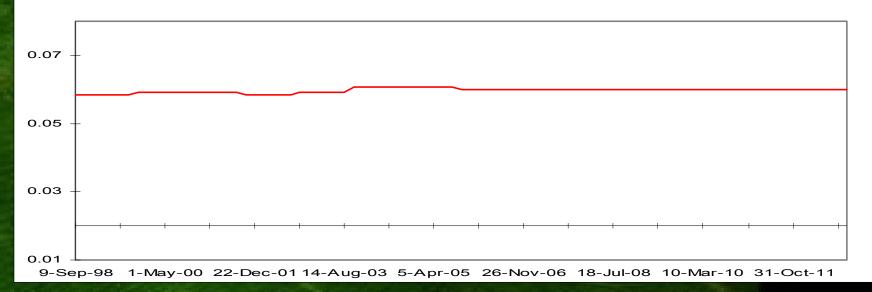
Constructing a Credit Curve

- Valuation of Risky Bond -- Duffie and Singleton Approach
- Default Treatment: Recover a fixed % R of the value just before default
- One period

Multiperiod

General Case

$$V(t_0) = \sum_{i}^{n} C_i \cdot e^{-\int_{t_0}^{t_i} [r(s) + (1 - R(s)) h(s)] ds}$$


Asset Swap Spreads

Maturity	LIBOR	Asset Swap
Year	Yield	Spread
1	5.89%	200 bp
2	6.13%	200
3	6.30%	200
4	6.40%	200
5	6.48%	200
7	6.62%	200
10	6.78%	200

An Example

M aturity	Coupon	Spread	Price
1 year	7.89%	200	100.00
2 year	8.13%	200	100.00
3 year	8.30%	200	100.00
4 year	8.40%	200	100.00
5 year	8.48%	200	100.00
7 year	8.62%	200	100.00
10 year	8.78%	200	100.00

Credit Curve B: Instantaneous Default Probability (Spread = 300 bp, Recovery Rate = 50%)

Default Correlation

- What is the default correlation?
- Traditional Correlation defined in the current finance literature

$$Corr(A,B) = \frac{\Pr[A \cap B] - P[A] \cdot P[B]}{\sqrt{P(A)[1 - P(A)]P(B)[1 - P(B)]}}$$

Problems with This Approach

- One year is an arbitrary choice, useful information about the term structure of default rates could be lost
- Default correlation is a time dependent variable
- Need correlation over a number of years instead of only one year
- Estimation of default correlation has its problem
 Lucas Approach

Default Correlation: The Joy of Copulas

- We first know the marginal distribution of survival time for each credit
- We need to construct a joint distribution with given marginals and a correlation structures
- Copula function in multivariate statistics can be used
- The correlation parameters used in copula function can be interpreted as the asset correlation between two credits used in CreditMetrics

What is a Copula Function?

- Function that join or couple multivariate distribution functions to their one-dimensional marginal distribution functions
- For m uniform r. v., U1, U2,, Um

$$C(u_1, u_2, \dots, u_m) = \Pr[U_1 \le u_1, U_2 \le u_2, \dots, U_m \le u_m]$$

- Suppose we have m marginal distributions with distribution function $F_i(x_i)$
- Then the following defines a multivariate distribution function

$$F(x_1, x_2, \dots, x_m) = C(F_1(x_1), F_2(x_2), \dots, F_m(x_m))$$

A Few Copula Functions

Normal Copula Function

$$C(u.v) = \Phi_{2}(\Phi^{-1}(u), \Phi^{-1}(v), \rho)$$

Frank Copula Function

$$C(u,v) = \frac{1}{\alpha} \ln \left[1 + \frac{\left(e^{\alpha u} - 1\right)\left(e^{\alpha v} - 1\right)}{e^{\alpha} - 1} \right]$$

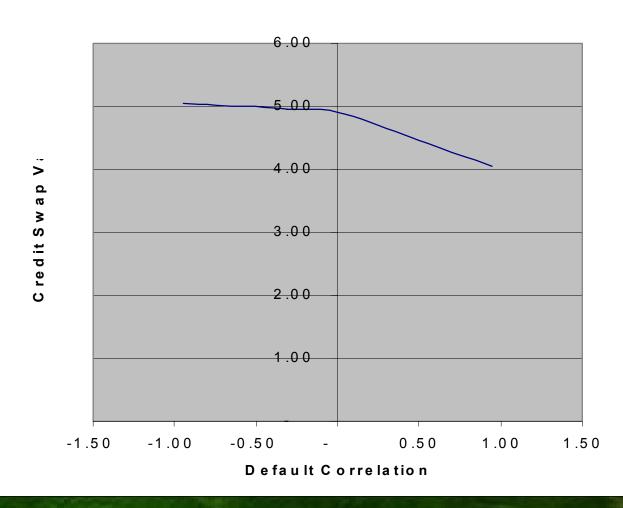
Mixture Copula Function

$$C(u,v) = (1-\rho)uv + \rho \min(u,v)$$

Credit Swap Pricing:

- Calculate the PV of Payment
 - 100 Q(ti) if bond issuer defaults, but the seller does not
 - [100 Q(ti)]Rc if both the bond issuer and the default protection seller defaults

$$\sum_{i=1}^{n} \left(\frac{[100 - Q(t_i)] \Pr[t_{i-1} < \tau_B \le t_i, \tau_c > t_i] +}{R_C [100 - Q(t_i)] \Pr[t_{i-1} < \tau_B \le t_i, \tau_c \le t_i]} \right) \bullet D(t_i)$$


Calculate the PV of Premium

$$X \sum_{i=0}^{n-1} \Pr[\tau_B > t_i, \tau_C > t_i] \cdot D(t_i)$$

 The Periodic or Level Premium X can be solved by equating the above two equations

Numerical Examples of Default Swap Pricing

Default Correlation vs Credit Swap Value

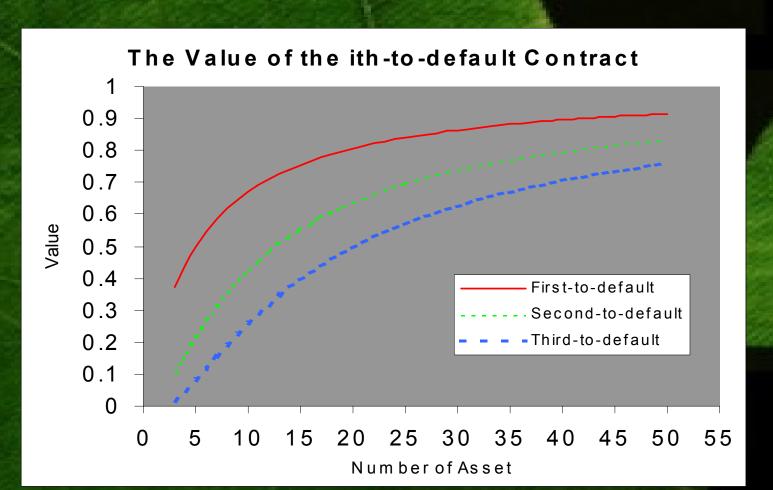
How do we simulate the default time?

- Map obligors to countries and industries
- Calculate asset correlation based on the historical data of equity indices, use CreditManager
- Simulate y1, y2, ..., yn from a multivariate normal distriution with the asset correlation matrix
- Transform the equity return to survival time by

$$T_i = F_i^{-1}(\Phi(Y_i))$$

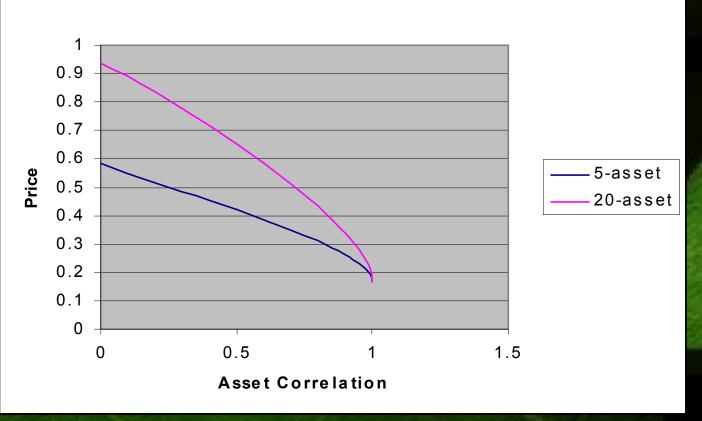
Summary of the Simulation

- Use CreditMetrics Approach to Default Correlation
- Simulate correlated multivariate normal distribution with the asset correlation
- Translate the multivariate normal random variable into survival times by using marginal term structure of default rates

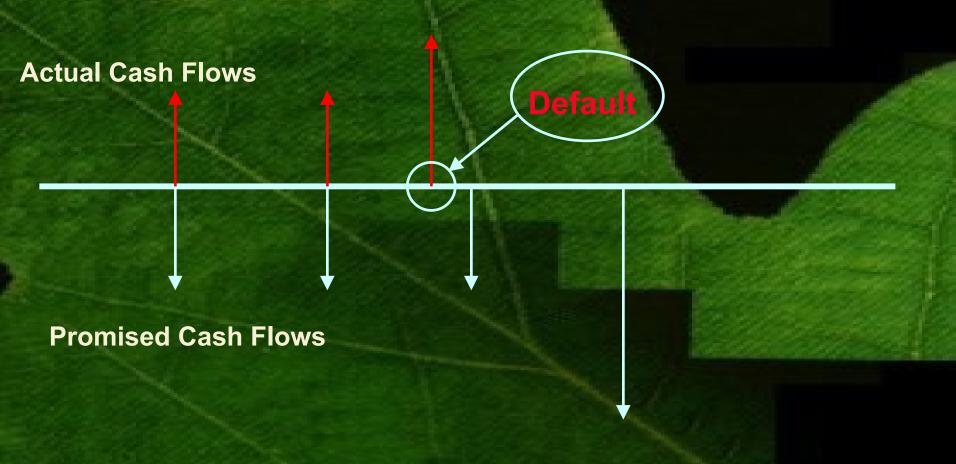

Details: CreditMetrics Monitor, May 1999

The Valuation of the First-to-Default

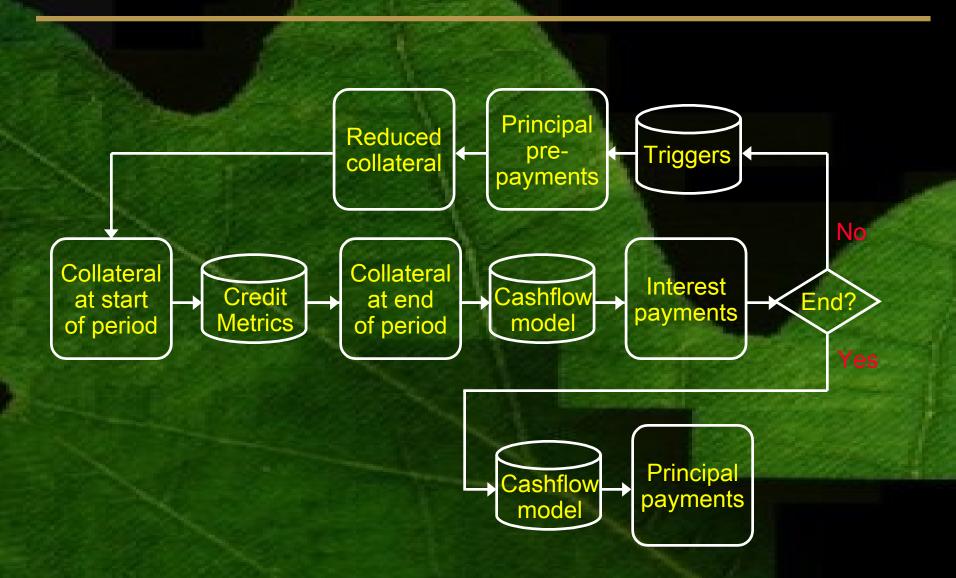
- An Example: The contract pays \$1 if the first default of 5-credit portfolio occurs during the first 2 years
- We use the above approach to construct a credit curve for each credit
- Using asset correlation and normal copula function we can construct a joint distribution of survival times
- Then we can simulate the survival times for all 5 credits


An Numerical Example

Input Parameter
hazard rate = 0.1,
Interest rate = 0.1
Asset Correlation = 0.25


The Impact of Asset Correlation

CBO/CLO Models: Extraction of Cash Flows from Simulation


For a defaultable bond we can project the cash flow if we know when default occurs

Cash Flow Distribution

- Interest Proceeds
 - Pass OC and IC test payment each tranche consecutively
 - Fail OC and IC test Retire principal
- Principal Proceeds
 - Pass OC and IC test
 - During the reinvestment period buy additional high yield
 - After the reinvestment period retire principal from the top to bottom
 - Fail OC and IC test
 - During the reinvestment period flow through each tranche until tests are passed, remaining one is used to buy additional collateral assets
 - After the reinvestment period flow through each

Flow Chart of Cash Flow Distribution

Simple cashflow CBO

- Collateral pool -- total value of \$100M
 - 80 identical assets, face value of \$1.25M
 - one year maturity
 - annual coupon of L+180bp
 - in default, recover 40% of face value
- Securitization
 - Senior tranche -- \$90M of one year notes paying L+80bp
 - Equity -- \$10M held as loss reserve

What is the probability that the Senior notes pay their coupon?
What is the return for the equity investors?
How to characterize risk in general?

Collateral guidelines and ratio tests

- Overcollateralization
 - ratio of performing collateral to par value of Senior notes
 - here, 100/90= **1.11**
- Interest coverage
 - ratio of collateral interest to interest on Senior notes
 - here, 100*(L+180bp)/90*(L+80bp)= 1.29 (assume L=5.5%)
- Other guidelines on average rating, maturity, diversification
- Typically, minimum ratio levels must be maintained throughout the life of the structure

Ratios characterize risk generally, but for more information, we must look at default scenarios.

The best scenario -- no defaults

- Assume LIBOR is 5.5%
- Interest
 - receive 80*\$1.25M*(L+180bp)=\$7.30M
 - pay to Senior \$90M*(L+80bp)=\$5.67M
 - pay remainder (\$1.63M) to Equity
- Principal
 - receive 80*\$1.25M=\$100M
 - pay \$90M to Senior notes, \$10M to Equity
- Yield
 - Senior receives the contracted L+80bp
 - Equity appreciates by 16.3%, or L+1080bp

90+5.67

L+80bp

A moderate scenario -- two defaults

Interest

- receive 78*\$1.25M*(L+180bp)=\$7.12M
- pay to Senior \$90M*(L+80bp)=\$5.67M
- pay remainder (\$1.45M) to Equity

Principal

- receive 78*\$1.25M+2*40%*\$1.25M=\$98.5M
- pay \$90M to Senior notes, \$8.5M to Equity

Yield

- Senior receives the contracted L+80bp
- Equity depreciates by 0.5%

90+5.67

L+80bp

At fifteen defaults, Senior investors get hit

Receive

- Interest -- 65*\$1.25M*(L+180bp)=\$5.93M
- Principal -- 65*\$2M+15*40%*\$2M=\$88.75M

Pay

- All receipts (\$94.68M) to Senior
- Equity receives nothing

Yield

- Senior only appreciates 5.2%, or L-30bp
- Equity is worthless

L-30bp

Use CreditMetrics to evaluate the likelihood of each scenario

- Individual default probabilities
 - 1.2% for each asset, consistent with Ba rating
- Correlations
 - assume a homogeneous portfolio; all pairs are the same
 - what level of correlation?

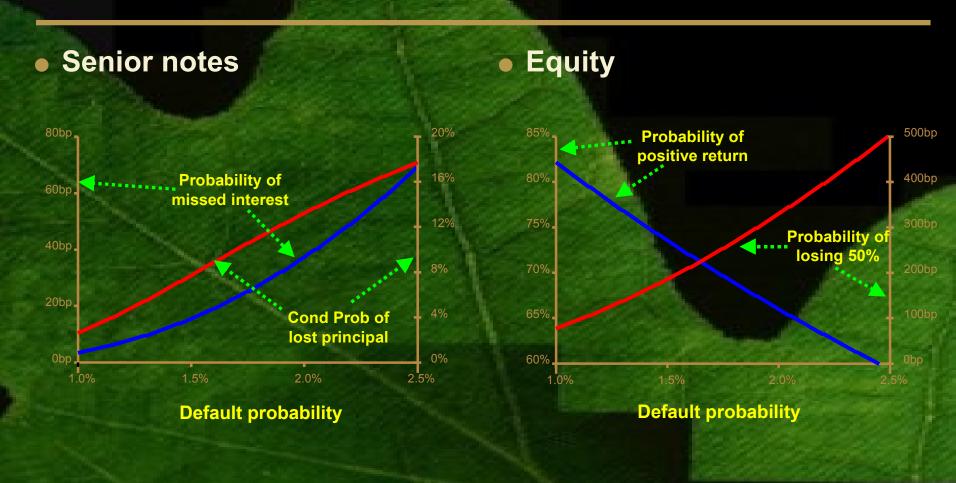
```
Low Med Hi
Asset corr. 0% 20% 50%
```

Simulation gives probabilities for scenarios

# defaults	0	1	 14	15
probability	57.0%	21.6%	 3.8bp	2.6bp
cum prob	57.0%	78.6%	 99.93%	99.95%

Putting the probabilities together with cashflows gives risk and return information

- Senior
 - probability that L+80bp is not paid -- 7.2bp
 - conditional probability that some principal is not repaid,
 given that some interest is missed -- 4.5%


Equity

- mean return -- L+280bp
- standard deviation -- 14.0%
- probability of positive (L+1080bp or L+239bp) return -- 78.6%

Not very meaningful!

probability of losing more than 50% -- 78bp

Can now examine losses under stressed default rates

