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e \We estimate preference parameters from option prices

¢ How come?

- Preference-free formulas

- Option prices should be informative about preference pa-

rameters

- Are they? Evidence from SP 500 option prices

e Other motivations:

- Current debate on extracting preference parameters from

option prices

- Macro..nance: Are preference parameters reasonable?



e Considerable divergence between risk-neutral distributions
estimated from option prices after 1987 crash and conditional

distributions estimated from time series of returns.

— implied volatility extracted from at-the-money options

dizers substantially from realized volatility over the

lifetime of the option.

— risk neutral distributions feature a substantial negative
skewness (revealed by asymmetric implied volatility curves

when plotted against moneyness).

— shape of volatility curves change over time; skewness is

time-varying.



e One possible explanation of divergence: existence of time-

varying risk premia.

e In a jump-diausion model proposed by Bates (1996), Pan
(2000) shows that the addition of both volatility and jump
risk premia allows to ...t well the joint time series of S&P 500

spot and option price data.



e The model can explain well the changing shapes of the

implied volatility curves over time.

e The skewed patterns are largely due to investors’ aversion to

jump risks.

e But in this approach investors have dicerent risk attitudes
towards the dicusive return shocks, volatility shocks and

jump risks.



e In a nonparametric framework, Jackwerth (2000),

ATlt-Sahalia and Lo (2000) and Engle and Rosenberg (1999)
uncover the risk-aversion function implied by the comparison

between the objective and the risk-neutral distributions.

e Jackwerth (2000) ..nds that the preferences are oddly shaped,

with marginal utilities increasing in some parts.

e However, implied-tree and kernel methodologies used to

recover the risk-neutral and the subjective probabilities are

not likely to separate neatly the preferences from the

probabilities.

e Risk aversion changes with time horizon



e These results underline the potential importance of investors’

preferences for options prices

e But question of knowing if option prices are compatible with

reasonable preferences largely unanswered.

e \We propose a utility-based option pricing model with

stochastic volatility and jump features.



e The model is cast within the recursive utility framework of

Epstein and Zin (1989).

e Disentangling respective roles of discounting, risk aversion

and intertemporal substitution might be important for

option pricing

e An option contract will naturally be acected by the value of
time as well as the price of risk associated with the underlying

asset.



e WWe derive an option pricing formula which generalizes the
Black and Scholes (1973) and the Hull and White (1987) and

Heston (1993) stochastic volatility formulas.

e An essential feature of this generalized option pricing formula

Is that it is not in general preference-free.

e In so-called preference-free formulas, preference parameters

are eliminated from the option pricing formula through the

observation of the bond price and the stock price.



e In fact, preference parameters are hidden in the observed

stock and bond prices.

¢ In our model, the bond pricing formula and the stock pricing

formula provide two dynamic restrictions.

e The key assumption: presence of an unobservable state
variable driving the fundamentals (consumption and

dividends) of the economy.



e Interplay between preferences and latent factors that acect

the stochastic discount factor have been explored recently.

e Garcia, Luger and Renault (2001): the option pricing model
we estimate in this paper can reproduce the various patterns

observed in implied volatility curves as well as changing

skewness over time.

e David and Veronesi (1999): option prices are acected by

investors’ beliefs about the drift of a ..rm’s fundamentals.

¢ In particular, they emphasize how investors’ beliefs and their
degree of risk aversion acect stock returns and hence option

prices.
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e Recursive utility framework proposed by Epstein and Zin

(1989)

e Euler condition valid for any asset j:
B3 (=L DM Ry | 1] = 1

t+1

where M,;,, represents the return on the market portfolio,

R;.41 the return on any asset j, and v = %

e Coeccient or relative risk aversion is 1 — «, elasticity of

intertemporal substitution is 1/(1 — p).



e Payor of the market portfolio is the total endowment of the

economy Cj.

e Return on the market portfolio M, :

PM, 4+ Gy

M p—
t+1 PtM

. M ] iy
with )\, = %, we obtain for Euler condition for the market:

AJ) =E lm (Céj)w A Jy) + D) | =T | .

e Similarly, we will be looking for a solution ¢, =¢(.J;) = 3- to

the stock pricing equation:

C =ty +1 71 D
o) = B m( ) ( ) o) 2 g = 7 |

Ot >\t D t




e The dynamic behavior of rates of return:

A 1
LogM,;.1 = Log Qﬁ?}i; + Logcé,:1 .and
St+1 ©(Ly41) Dy
LogR;,1 = Log—— = L +1 :

is determined by the joint probability distribution of the

stochastic process (X;,Y;, J;) where: X; = Log% and

Y, = Long:jl.



A pricing model conditional on latent state variables

e \WWe de...ne this dynamics through a stationary vector-process

of state variables U; so that:
Jt — \/Tﬁt[X7‘7 }/;'7 UT}
e \We want state variables to be exogenous and stationary and

to subsume all temporal links between the variables of

interest (X,,Y).

Assumption 1.: The fundamentals (X,Y’) do not cause the state

variables U in the Granger sense or equivalently, given
assumption 2 below, the conditional probability distribution
of (X,Y;) given U] = (U;)1<;<r coincides, forany ¢t = 1, ..., T, with
the conditional probability distribution given U! = (U, )1<,<;.
Assumption 2.: The pairs (X, Y;)i<i<r,t = 1,...,T are mutually

independent knowing U{ = (U;);<t<7.



Assumption 3:

2
Xit1 mxit41 Oxi+1 OXYt+l

2
Yin myt+1 OXYt+1l Oyyqq

where mxi+1 = mX(UfH), myty1 = mY(U1t+1)7 U?Xt+1 - J%((Uf+1)7

OXYt+l = O-XY(Uf+1)7 J%/t+1 - U%{(Uf+l)'

e In other words, these mean and variance covariance functions
are time-invariant and measurable functions with respect to

U, which includes both U; and U,;.



Under assumptions 1 and 2 we have:
P =XU)C:, Sy = ¢(Ur) Dy,

where \(U;) and ¢(U;) are respectively de..ned by :

s = |5 (G) 0w +1710),
and
o) =B (5 (%) (AN ) 4 1P

AUpq) +1
LogM;.1 = Log ( ;&1])) + X;41,and
t
Up1) +1
LogRy 1 LOQS[)( 1) Yi




The Pricing of Bonds

e Given the Euler condition and assumptions 1, 2 and 3, the
price of a bond delivering one unit of the good at time T,

B(t,T), is given by the following formula:

(@)

T=t

B(t,T) = E,

e Therefore, it can be written as:

~

B(t,T) = E|B(t,T)).

where:
~ T-1 1 T-1
B<t7 T) - BV(T_t)azﬂ(’Y) exp((a o 1) Z Mxry1 + 5(04 o 1)2 Z J%(T—l—l)?
T=1 T=1

T=t

. _ 1N (UTHL y—1
with: of () = [T} [%} .



e For von-Neuman preferences (y = 1) the term premium is
proportional to the square of the coe®cient of relative risk

aversion (up to a conditional stochastic volatility ecect).

e Even without any risk aversion (a = 1), preferences still acect
the term premium through the non-indicerence to the timing

of uncertainty resolution (y # 1).

e Important sub-case where the term premium will be preference-

free:
B(t,T)= B(t,T) = E, ]|} B(r,7 +1).

e Noticing that B(t,T) = []'_} B(r,7+1), this will occur as soon
as B(r,7+1) = B(r,7 + 1), that is when B(r, 7 + 1) is known at

time 7.

e If and only if the mean and variance parameters my,,.; and

ox.+1 depend on U”"! only through U..



The Pricing of Stocks

e By a recursive argument:

a—1
el (y)bf (ﬁ) &] =1,

E
! C, D,

r—1 (1+o(U7™)
(U7

with: b/ =T]

e Using the conditional log-normality assumption 3, we

obtain:

T T T
~ 1
By |B(t,T)b exp( Y my-+5 Y, *vrt(a—1) Y oxyr)| =1

T=t+1 T=t+1 T=t+1



e With the de..nitional equation:

T @(Uir) - 1 2
E[E’Ul ] — go(Uf) eXp( Z mY7'+§ Z UYT)?

T=t+1 T=t+1

e A useful way of writing the stock pricing formula is:
Ei[Qxy(t,T)] =1,
where:

Qxy(t,T) = B(t,T)b"




e To understand the role of the factor Qxy(t,T), it is useful to

notice that it can be factorized:

Qxy(t,T) = HQXYTT+1)

e Important particular case where Q xy (7, 7+1) is known at time

7 and therefore equal to one.

e Neither the conditional means and variances of X, or Y, at

time ¢t nor the covariance oxy; depend on U;.



e Since we also have B(r,7+1) = B(r, 7+ 1), we can express the

conditional expected stock return as:

T

St T] 1 L o(UY)
E|\—\U; | = — exp((l — « oxYyr).
[St‘ YT B+ )b o(U)) bl )T; xv7)

e For pricing over one period (t tot+1):

> [StJrl + Dy |Ut] _ 1

S, 1 B(t, P 1) GXP[(l - Oé)UXYtHL

e \Very close to a standard conditional CAPM equation (and
unconditional in an iid world), which remains true for any

value of the preference parameters o and p.

e The stochastic setting which produces this CAPM relation-

ship will also produce most standard option pricing models.



« We arrive at the generalized Black-Scholes and

Hull and White formula for pricing options

Py 1 KELT) U
—=E tHF (d,)- F (d,)v,
S t,:\QW( 1 S 2 g
where:
éS Q)
LOQéST SR ¢ .
q e KELT) u+}( 2 52 )2
Lo ) W2 28 S0
I et



B(t,T)=b%""q (g)exp@- 1 4 My +> (a 1)? asxx)

t =+ t=t+1
with:
1
R N (ViR pM
al (9)=0]-¢ 0 (3=
£ I(Ul) ( t

é v
QutN=B(t,T) bf expa?a 1) &S uy —EéiT—\Uf (
t=t+l g €t L

with:

1+ (UY) S
bl =P T L =t



e Our equilibrium-based option pricing formula does not

preclude incompleteness.

e Points out in which cases this incompleteness will
invalidate the preference-free paradigm, i.e. when the
conditions Qyy (¢, T) = 1 and B(t,T) = [[._) B(r,7 + 1) are not

ful...lled.

e In this case preference parameters appear explicitly in the

option pricing formula through B(¢,T) and Qyy (¢, T).



A MARKOV-CHAIN PROCESS FOR THE STATE

VARIABLES

Xy =my (Up) + 0, (Up) ey,
Y, =my (Uy) + 0y (Uy) ey,
Process {U;} = 2 state discrete ..rst-order Markov Chain.
pij:Pf<Ut:j‘Ut_1:i) ’L,j:1,2

Unconditional probabilities

_ 1 — poo
2 —p11 — p2

™

7'('2:1—7'('1

my (Ut) = Q) + OﬁlUt O (Ut) = (0'() -+ UlUt)



| nfor mational Content of Option Priceson

preference parameters:

| ssue = to gauge the accuracy of estimators of
preference parameters based on option prices
and the GBS model.

— Monte Carlo experiments on data simulated
according to the GBS MODEL.:

— given values of the parameters for these

experiments:



Moments of stock returns

2 2
=323 (107
j=1

=1

+ myj)

Var|r

2, 2 +1)° i+ 1

2:1 zjlmpzj !(log J ' ) +2my; <1og ) —l—mffj + 0oy, E[rt]Q,

1=1 7= 7 7

Covlry, 1] =
2 2 2 2
p;+1 +1

Z;Z:lkz:lﬂ'ipijpjk [(108; ) +my,; [(1()% 90120' ) +mi| — Elr.
1=17=1k= i J

Moments for option prices of dicerent moneynesses and matu-

rities

E [%} = imC’t(Ut =1,K,T)
i=1



Tables I, Il and 111: Descriptive statistics for the method of moments estimator of pref-
erence parameters. The moments used in the estimation are the mean, the variance
and the autocovariance of the respective series. For options, we also used the mean of
the three options with dicerent moneyness. The true values are p = —10, a« = —5 and
G = 0.95 for the preferences and p;; = 0.9, pee = 0.6, mx; = 0.0015, mxs = —0.0009,
ox1 = ox2 = .003, my; = myy = 0, oy; = 0.02, oyo = 0.12 and px, = 0.6 for the
endowment process. The results are reported for options with maturity of one period .
The results are based on 1000 replications of the experiment.

Table |
Options Prices p ) 3
(time series)
Mean -10.1585 -4.6162 0.9445

Median -10.2131 -4.7979 0.9445
Std Err 1.0524 1.8975 0.0093
RMSE 1.0638 1.9350 0.0108

Options Prices p o 3

(across moneyness)
Mean -10.1421 -4.6770 0.9504
Median -10.2171 -4.7927 0.9500
Std Err 1.0117 1.2921 0.0159
RMSE 1.0212 1.3312 0.0159

Table 11

Stock Returns 0 o 5

Mean -11.0711 -2.4557 0.9950

Median -10.9812 -1.8966 0.9955
Std Err 1.0457 1.6153 0.0035
RMSE 1.4965 3.0134 0.0451

Table 111
Price-dividend ratio 0 o g
Mean -10.5537 -3.5051 0.9501
Median -10.0003 -4.9861 0.9497
Std Err 1.2742 2.1530 0.0017
RMSE 1.3887 2.6202 0.0017




2nd Experiment: Joint estimation of the
structural parameters

12 unknown structural parameters

|
I
'I I:)11’|322 ’mxl’mx2 S x1 S X2 S yl S y2 2 Xy
i\m ( m,, =0 "known")
|
: )
.I a g
1
12 moments:

Er.Varr, ,Cov(r,,r._q)

éGBS(x; )u .
Eé e 0 for:
e | u

v 3 moneynesses

™ maturities 1, 2, 3



Is there evidence of preference parameters in

S&P 500 Option Prices?

e WWe estimate the model every day with a 3-month window

lag and the moment conditions used in the simulation study

e Based on estimates, we forecast each day the pricing error

for all options the next day.

e \WWe report results by maturity categories:

Short, Medium, and long
Categories:

(r < 60) (60 <7 < 180) (+ > 180)

for three models: GBS, EU, SV.



Table IV: Descriptive statistics for the joint estimation of the structural pa-
rameters by the method of moments. The true values are p = —10, aa = —5
and 5 = 0.95 for the preferences and p;; = 0.9, py» = 0.6, mx; = 0.0015,
mxo = —0.0009, Ox1 —0x9 — .003, my1 = My = 0, Oy1 — 0.02, Oy9o — 0.12
and pyy = 0.6 for the endowment process. The results are based on 1000
replications of the experiment.

Table IV

g

(87

P11

P22

Pxy

Mean
Median
Std Err
RMSE

p
0.9164 -10.0517

0.9504
0.1119
0.1168

-9.9903
1.4381
1.4383

-4.9728
-5.0177
1.3672
1.3667

0.8983
0.9010
0.0507
0.0507

0.5916
0.5983
0.0749
0.0753

0.5954
0.5997
0.0980
0.0981

mxi

mx2

0X1

myi1

%%

Oy?2

Mean
Median
Std Err
RMSE

0.0520
0.0013
1.0176
1.0183

0.0500
-0.0052
0.8822
0.8832

0.0068
0.0031
0.0267
0.0269

-0.0780
-0.0088
0.5529
0.5581

0.0462
0.0193
0.3704
0.3711

0.1849
0.1249
0.2028
0.2128




Table V: Yearly Means and Standard Errors of Weekly Estimated Preference

Parameters from S&P 500 Option Price Data over the Period 1991-1995

Table V

GBS Model

P

v

g

CRRA

EIS

1991

-0.2048 (0.0904)

-1.6637 (0.9144)

0.9397 (0.0372)

0.6885 (0.0987)

0.8342 (0.0564)

1992

-0.0936 (0.0400)

-1.9975 (0.4171)

0.9783 (0.0180)

0.8201 (0.0646)

0.9156 (0.0321)

1993

-0.2007 (0.0737)

-2.4294 (1.1218)

0.9413 (0.0380)

0.5509 (0.1269)

0.8358 (0.0494)

1994

-0.2110 (0.1211)

-1.7369 (0.6011)

0.9142 (0.0437)

0.6706 (0.1366)

0.8334 (0.0778)

1995

-0.1963 (0.1504)

-1.8744 (0.7700)

0.9029 (0.0377)

0.6884 (0.1559)

0.8466 (0.0870)

1991-1995

-0.1812 (0.1114)

-1.9406 (0.8458)

0.9353 (0.0444)

0.6838 (0.1478)

0.8532 (0.0710)

Expected Utility Model

P

g

CRRA

1991

-8.7505 (1.7685)

0.9513 (0.0229)

9.7505 (1.7685)

1992

-6.2337 (3.7156)

0.8401 (0.1259)

7.2337 (3.7156)

1993

-4.9742 (1.8897)

0.9710 (0.0275)

5.9742 (1.8897)

1994

-5.1044 (7.0187)

0.8321 (0.1026)

6.1044 (7.0187)

1995

-5.7259 (6.1479)

0.8172 (0.1230)

6.7259 (6.1479)

1991-1995

-6.1590 (4.8260)

0.8824 (0.1130)

7.1590 (4.8260)




Table VI: Yearly Relative Pricing Errors for Short, Medium and Long-Term
Call Options Averaged Over Moneyness. GBS refers to the generalized Black-
Scholes formula in (3.5);EU to the same formula special case where the pa-
rameter ~ is equal to 1; SV to the stochastic volatility formula (special case
of (35) with QXy(t, T) = 1)

Table VI

Relative Errors

Absolute Errors

Short-Term

GBS

EU

SV

Short-Term

GBS

EU

SV

1091 (3132)

0.8588

1.4995

1.5798

1991(3132)

3.1444

4.4779

4.8473

1992 (2928)

1.3303

1.8417

1.9287

1992(2928)

3.6726

4.2741

5.2431

1993 (2921)

1.7720

1.7636

1.7769

1993(2921)

4.2028

3.8674

4.2968

1994 (3365)

1.4821

1.9350

2.3282

1994(3365)

3.1141

3.8733

4.4483

1995 (4022)

1.4664

1.3508

2.1910

1995(4022)

4.0907

4.2658

5.6873

Relative Errors

Absolute Errors

Medium-Term

GBS

EU

SV

Medium-Term

GBS

EU

SV

1991 (2187)

0.3436

0.7731

0.7669

1991 (2187)

2.8921

3.9251

4.4258

1992 (2379)

0.7215

1.1348

1.2831

1992 (2379)

3.3759

4.6117

5.4437

1993 (2163)

1.2042

1.3287

1.3471

1993 (2163)

4.4210

4.4138

4.9754

1994 (2897)

1.2097

1.5967

1.9032

1994 (2897)

3.6488

4.4388

49771

1995 (2991)

0.8658

0.9799

1.4150

1995 (2991)

4.5432

5.2378

6.4743

Relative Errors

Absolute Errors

Long-Term

GBS

EU

SV

Long-Term

GBS

EU

SV

1991 (694)

0.0036

0.1946

0.2374

1991 (694)

2.5882

3.0367

3.4266

1992 (538)

-0.0170

0.2246

0.2128

1992 (538)

3.0306

3.9870

3.3401

1993 (492)

0.2138

0.2969

0.2278

1993 (492)

2.9911

2.9982

2.8856

1994 (910)

-0.0006

0.0864

0.2543

1994 (910)

3.5838

4.4165

3.9591

1995 (1053)

0.1212

0.2417

0.5201

1995 (1053)

3.3501

4.4264

4.4793




Calibrating the Model for Practical Option Pricing

New speci...cation for dividend volatility

oy (Ur = j) = boj + 61500/ (T — 1),

for j =1,2.

Estimation method: for a given maturity (T — t), we minimized

t

! > [E [GBS (Ut,%,(T—t),a;‘)] — T, (%,(T—t))r,

M
St/ K T=t—h

We impose constraints:

B [Qxy(t,T)] =1

E; [B(t,T)] = exp(—r(T —t))



Table VII: Yearly Means and Standard Errors of Daily Estimated Parameters

for the Fundamentals and State Variable Processes from S&P 500 Option
Price Data over the Period 1991-1995.

Table VII
A1 A2 ©1 ©9 P11 P22 PxY
8.1182 10.6924 125700 18.8356 0.9758 0.8078 -0.3178
(0.6675) (0.8453) (0.7349) (1.5631) (0.0243) (0.1266) (0.5120)
mxi mxo2 0Xx my Oyl 0y?2
-0.3216 0.0623 0.0202 -0.0688 0.0365 0.1139
(0.1654) (0.2270) (0.0427) (0.0076) (0.0176) (0.0802)




Table VIII: Conditional Pricing with Implied Volatility. Yearly Relative and
Absolute Errors for Short-Term Call Options Averaged Over Moneyness.
GBS refers to the generalized Black-Scholes formula in (3.5); EU to the same
formula special case where the parameter - is equal to 1; SV to the stochastic
volatility formula (special case of (3.5) with Qxy(t,T) = 1); BS refers to the
ad hoc BS model.

Table VIIIA (one-day ahead forecast)

Relative Errors

Short-Term

GBS

EU

SV

BS

1991 (3132)

0.0068

0.0078

0.0573

-0.0065

1992 (2928)

0.0212

0.0214

0.0728

0.0022

1993 (2921)

0.0221

0.0216

0.0775

-0.0034

1994 (3365)

0.0886

0.0888

0.1914

0.0473

1995 (4022)

0.0626

0.0611

0.1619

0.0092

Absolute Errors

Short-Term

GBS

EU

SV

BS

1991 (3132)

0.9223

0.9214

1.0630

0.8019

1992 (2928)

0.7828

0.7829

0.8834

0.6899

1993 (2921)

0.7441

0.7456

0.8540

0.6616

1994 (3365)

0.6991

0.6987

0.8763

0.5959

1995 (4022)

0.9637

0.9656

1.2545

0.6802

Table VIIIB (..ve-day ahead forecast)

Relative Errors

Absolute Errors

Short-Term

GBS

BS

Short-Term

GBS

BS

1991 (3085)

0.032

0.015

1991 (3085)

1.0432

0.9335

1992 (2861)

0.017

0.002

1992 (2861)

0.8226

0.7438

1993 (2871)

0.017

0.009

1993 (2871)

0.8151

0.7259

1094 (3329)

0.087

0.044

1094 (3329)

0.8642

0.7370

1995 (3969)

0.068

0.0085

1995 (3969)

1.1004

0.7635




Table 1X: Yearly Means and Standard Errors of Weekly Estimated Preference
Parameters from S&P 500 Option Price Data over the Period 1991-1995

Table IX

GBS Model

P

g

p

1991

-0.9010 (0.3821)

-0.8324 (0.3887)

0.9150 (0.0135)

1992

-0.9522 (0.5600)

-0.4948 (0.4557)

0.8704 (0.0512)

1993

-0.3631 (0.2426)

-2.9782 (1.2942)

0.9448 (0.0082)

1994

-0.6221 (0.4469)

-1.8325 (0.8712)

0.9471 (1.0620)

1995

-0.3040 (0.0941)

-1.2201 (0.3075)

0.9526 (0.0086)

Expected Utility Model

P

&

1991

-1.5242 (2.5058)

0.9804 (0.0198)

1992

0.1664 (1.3060)

0.9620 (1.5749)

1993

-1.1387 (1.1143)

0.9458 (0.0140)

1994

-2.0040 (1.3927)

0.9871 (0.0066)

1995

-2.2802 (1.7051)

0.9681 (0.0008)




Conclusion

e Preferences matter for option pricing

e Option prices help distinguish between the expected and the

non-expected utility models.

e The estimates we obtain for the preference parameters are

quite reasonable.

e Out-sample performance of equilibrium-based models is in

line with the ad-hoc BS model.

e In our method preference parameters enter consistently in

the equilibrium pricing of all assets.

e Possible extensions: other speci..cations for preferences or

dicerent distributions for the state variable



