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1. Introduction

The standard for option pricing models is the Black-Scholes approach,
[Black, Scholes (1973)], which assumes i.i.d. gaussian geometric stock re-
turns, continuous trading and derives an analytical formula for pricing euro-
pean calls from the arbitrage free constraints. The derivative prices and the
associated risk neutral probability basically depend on the underlying his-
torical volatility (and not on the historical mean). However it is known that
the Black-Scholes specification is misspecified both for return dynamics and
cross-sectional links between the prices of derivatives with different charac-
teristics. Typically the implied Black-Scholes volatility surfaces are not flat
and vary with the day and the environment.

Different solutions have been proposed in the literature to reduce the
misspecification errors that is to get call prices with independent variations
with respect to the strike, the maturity and the date.

A first direction consists in extending the dynamic model for the under-
lying asset price and in deriving the new corresponding valuation formulas.
For instance Merton (1973) assumes a non constant volatility, which is a de-
terministic function of time and allows to reproduce the term structure of im-
plied Black-Scholes volatilities. This approach is extended by Dupire (1994),
who considers a risk neutral® volatility, which is a deterministic function of
the time and asset price, in order to reproduce the observed smiles. Hull,
White (1987), Hull (1989) Chesney, Scott (1989), Melino, Turnbull (1990),
Stein, Stein (1991), Heston (1993), Ball, Roma (1994) introduce a stochas-
tic volatility, which depends on an additional non traded random factor. In
this incomplete market framework the model has to be completed by speci-
fying the risk premium corresponding to this unobservable risk. In the same
spirit incompleteness can also be introduced by means of jump processes [see
e.g. Merton (1976), Ball, Torous (1985), Bates (1996)]. These models are
generally written in continuous time, and provide coherent specifications for
analysing return dynamics and cross-sectional derivative pricing.

Alternatively the practitioners prefer a general to specific approach. For
each date they study how the call prices depend on the strike and the ma-
turity. They can consider directly the price surface or equivalent summary
statistics. Standard ones are 1) the state price density which provides the
Arrow-Debreu prices and is deduced from the second order derivative of the

3In the diffusion framework the historical and risk neutral volatilities coincide.



call price with respect to the strike [see Breeden, Litzenberger (1978), Banz,
Miller (1978)]; 2) the surface of Black-Scholes implied volatilities obtained
by inverting the Black-Scholes formula with respect to the volatility ; 3) the
local volatility introduced by Dupire (1994), which is deduced from partial
derivatives of the call price with respect to strike and time to maturity and
can be computed daily. Once a type of summary has been selected, they
try to smooth and structure the surfaces. Then, in a second step, they can
introduce a dynamics on the cross-sectional structures.

The surfaces are often smoothed by a nonparametric approach. For in-
stance Dumas, Fleming, Whaley (1998) consider polynomial approximations
of the local volatility surface. Ait-Sahalia (1996), Ait-Sahalia, Lo (1995)
apply kernel smoothing to observed call prices and deduce the state price
density as a by-product.* Other authors propose direct approximations of
the state price density. For instance Bahra (1996), Campa, Chang, Reider
(1997), Melick, Thomas (1997) introduce mixture of distribution whereas
Jarrow, Ruud (1982), Madan, Milne (1994), Abken, Madan, Ramamurtie
(1996) consider expansions of the underlying risk neutral density by means
of Hermite polynomials. In the latter approach, it is possible to estimate
date by date parameters measuring the weights of polynomials of degree
one, two, three, four... in this expansion. They are generally interpreted as
implied mean, volatility, skewness and kurtosis. Then in the second step,
it is possible to plot these parameters with respect to time and to analyse
their dynamics. However the polynomial approximations of the risk neutral
density can provide negative values, which is not compatible with the no
arbitrage condition.

In this paper we develop a similar approach based on spline approxi-
mations, which ensures the nonnegativity of the stochastic discount factor.
Moreover it is possible to ensure the coherency between the historical and
risk neutral distributions.

We derive new parametric and nonparametric derivative pricing formulas
in a discrete time framework. In this framework the markets are incom-
plete and there are multiple choices for the risk-neutral distribution. We re-
strict the choice by imposing an exponential-affine stochastic discount factor
[Gourieroux, Monfort (2001)]. This allows the use of the Esscher transfor-
mation to pass from the historical distribution to the risk-neutral one [see

4However their approach assumes that the call prices depend in a deterministic way of
the asset price.



e.g. Gerber, Shiu (1994), Buhlman et alii (1996), Shiryaev (1999), Darolles,
Gourieroux, Jasiak (2001)]. To simplify the computations, we consider an
approximation of the historical conditional p.d.f. by means of exponential
splines of order one. Then by writing the arbitrage free restrictions, we
derive the exponential spline representation of the conditional risk-neutral
distribution.

The plan of the paper is the following. In section 2, we recall the princi-
ple of exponential-affine pricing. Then this approach is applied to a skewed
Laplace conditional historical distribution of geometric return and extended
to exponential-affine splines. The example of the conditional Laplace distri-
bution is interesting as an introductory case for the exponential-splines. It is
also important, since we derive analytical pricing formulas for the european
calls. This formula is a direct competitor of the standard Black-Scholes, and
involves two types of parameters, which allows to capture location and tail
effects. The extension to the multiperiod framework is presented in section
3. We introduce a Markov chain specification for describing the dynamics
of the different spline regimes and derive the change of probability at any
maturity. Section 4 concludes.



2. The two period framework

In this subsection we consider the two period framework. We denote by r
the riskfree rate between the dates t and t+1 and by y = yi11 = log(Si+1/St)
the geometric return on the risky asset with price S;. We first recall the prin-
ciple of exponential-affine pricing [see Gourieroux-Monfort (2001)]. Then this
approach is applied to skewed a Laplace conditional historical distribution of
geometric return and extended to exponential-affine splines.

2.1 Exponential-affine pricing

Let us introduce the truncated Laplace transform (or moment generating
function) of the conditional distribution of the geometric return. It is defined
by :

Y(u,v) = E[exp(uy)]lwn,], (2.1)

where the notation means :

w(ua ’Y) = E(exp{u log(St-H/St)}]llog(st+1/5t)>”r‘It)’

I; is the information available at time ¢ for the investor and the path depen-
dence of 1 is not mentioned for notational simplicity. .

The derivative asset, whose payoff g(y)(= g(y:+1)) is written on the geo-
metric return of the underlying asset, can be priced by means of a stochas-
tic discount factor model [see e.g. Hansen, Richard (1987), Campbell, Lo,
McKinlay, (1997) chapter 8, Cochrane (2001), Gourieroux, Jasiak (2001),
chapter 13 |. The derivative price at date ¢ is :

C(g) = E[Mg(y)], (2.2)

where M denotes the stochastic discount factor. In an exponential-affine
framework the form of the stochastic discount factor is restricted to ° :

M = explay + 3. (2.3)

5As above the time index has been omitted for convenience. More explicit equations
would be : Ci(g9) = E[My1419(Ys41)|It], where : My 141 = exp(ayet+1+05¢) is the stochastic
discount factor for the period ¢,t+ 1. The coefficients ay, 8; and the derivative price Cy(g)
are I;-measurable, whereas the stochastic discount factor My ;1 is Izy1-measurable.




It is exponential-affine with respect to the geometric return y(= 1, 1).%
This special pattern of the stochastic discount factor corresponds to a val-
uation formula in a two period price exchange economy under preference
restrictions [see e.g. Breeden, Litzenberger (1978), Huang, Litzenberger
(1988)]. The exponential-affine forms correspond to power utility functions.
The arbitrage-free constraints are derived by applying the pricing formula
to the zero-coupon bond with payoff 1 and to the risky asset with payoff
expy = Syy1/S;. These constraints are :

E[Mexpr| =1,

E[Mexpy] = 1.
They provide the values of the risk correcting factors «, 8 by solving the
system below 7, which depends on the untruncated Laplace transform :

exp( + r)ih(a, —o0) = 1,
(2.4)

exp(B)i(a + 1, —00) = 1.

Then the price of an european call written on expy, with (moneyness)
strike k and maturity one, is easily deduced. It is given by® :

C(k) = E[M(expy— k)]
= Elexp(ay + B)[expy — k|Ly>i0gk],
C(k) = exp(B)[¥(a+1,logk) — ki(a,logk)], (2.5)

where «, 5 are the solutions of system (2.4).

2.2 Pricing with Laplace distributions

6The stochastic discount factor is in general not exponential-affine with respect to the
current and lagged values of the return ; indeed they influence the change of probability
by means of a and 5.

“When the time index is taken into account, the solutions o and § are generally path
dependent, like function .

8Note that a call written on Sy, ; with payoff (S;;1 — kS;)t, where k is the moneyness
strike, is a multiple of the call written on expy with payoff (Sy11/S: — k)™ = (expy —k)*.



As an illustration let us consider a geometric return, whose conditional
historical distribution is a skewed Laplace distribution denoted by L(by, b1, c).
The p.d.f is given by :

bob
ply) = b llbl explby(y — c)], ify <,
bob
b (ii—lbl exp[—b1(y — ¢)], if y > ¢,

where by and b, are strictly positive and c is a location parameter. The pa-
rameter ¢ defines the mode of the distribution, whereas by and b; characterize
the left and right exponential tails, respectively. The mean of the distribution

is: m= c—|—b—— b and the variance is : 0% = 2T Note that bg, b1, ¢ can
1 b o 01

be path dependent. This type of distribution fits the conditional distribution

of observed returns better than the gaussian distribution. It admits fatter

tails, which decrease at an exponential rate and a sharp peak at the mode,

which balances the tail effect. By applying the general approach described

in subsection 2.1, we get the pricing formulas below.

Proposition 1 : If the conditional historical distribution is a skewed Laplace
distribution L(bg, b1, c) with by + b1 > 1, and if the stochastic discount factor
is exponential-affine :

i) the conditional risk-neutral distribution is unique and corresponds to the
skewed Laplace distribution £(by + o, by — v, ¢), with p.d.f.

(b() —+ Q) (b1 — a)
by + by

m(y) =

exp|(bo + @) (y — ¢)], ify < ¢,

(b() + Oz) (bl — O{)
bo + by
where « is the solution of :

exp[—(b1 —a)(y — o)}, ify > ¢,

exp(c —r)(bp + @) (by —a) = (bg + a+ 1)(by — a — 1),
such that : —bg < a < b; — 1.

The risk neutral distribution depends on by, b; through by + by, only.



ii) The price of the call written on exp y with payoff (expy — k)™ is :

bo+a+1
(bo + bl)(bl - Oé)

C(k) = Ci(k) = exp[—(b1 —a —1)(logk — ¢)], if logk > ¢,

bl—a—l

C(k) = Cy(k) = 1 — kexp(—r) + (bo + b1)(bo + @)

exp[(bo + a + 1)(logk — ¢)], if : logk < c.

iii) By the put-call parity relationship, the put prices are :

b +a+1
P(k) = Pi(k) =1—kexp(—r)+ @ _ﬁ b)) (b1 — a) exp[—(by—a—1)(log k—c)],
if logk > ¢,

bl—oz—l

Pk) = Po(k) = (bo + b)) (bo + )

exp[(bp + a+ 1)(logk — ¢)], if logk < c.

Proof : See appendix 1.

The condition —by < o < by — 1 ensures the existence of the stock price.
It is easily checked that there is a unique solution for «, which belongs to the
interval (—bg, by — 1), if and only if by + b; > 1, i.e. if the tails are in average
sufficiently thin.

Remark 1 : The price of a european call written on S;;; with strike K
is given by : C* = S;C(K/S;). Generally C*/S; is not an homogenous
function of K/S;, since the coefficients by, by, ¢ can be path dependent [see
Garcia, Renault (1998) for a discussion of the link between homogeneity and
leverage effect].

i) Value of the call and moneyness strike

We get an explicit formula for the price of the call written on expy.
It is easily checked that this price is a differentiable function of k, which
decreases from 1 to 0, is convex and such that the elasticity of the call price
[the put price, respectively| with respect to the moneyness strike is constant
for k > expc [k < expc, respectively].

Remark 2 : When the parameters by, b1, ¢ are path independent, the elas-
ticity of the call price C* with respect to S; is :



dlogC* 1+810gC’(K/St)
dlogS, dlog S,

_ dlogC 0log(K/S;)
B +810gk( /50) dlog S;

dlogC
= 1- K/S;).
(910g/€( / t)
Therefore the condition of constant elasticity of C with respect to the

moneyness strike for large k is equivalent to the condition of constant elas-
ticity of C* with respect to the current stock price.

In particular the call prices satisfy simple deterministic relationships. If
k, ki, ks are moneyness strikes larger than expc , we get :

log k — log k;

1 =1 e
og C(k) = log C(k1) + log ks —Tog by

[log C(k2) — log C(ky)].

Remark 3 : This constraint is also valid when the derivatives are written
on S;11. With obvious notations, the relation becomes :

n log K — logK;
log K5 — log K

log C*(K) = log C" (K1) {log C*(K3) — log C* (K1)}

ii) Implied Black-Scholes Volatility

The pricing formula given in Proposition 1 can be compared to the stan-
dard Black-Scholes formula. We immediately note that it depends generally
on two independent parameters, i.e. by + by and c¢, instead of only one o
in the standard Black-Scholes. Thus the Laplace pricing formula allows for
implied location or tail effects. These features are easily observed on Figures
1 and 2, which provide the Black-Scholes implied volatilities for different sets
of parameters by, by,c, and r = 0. The Laplace model is appropriate for
recovering the so-called smile, smirk and sneer effects.

[Insert Figure 1 : Black-Scholes implied volatilities with ¢ varying,
bo + bl =2 ﬁxed].



[Insert Figure 2 : Black-Scholes implied volatilities with by + b;
varying, c = 1 fixed].

It is especially important to correct for the risk in the Laplace framework.
Indeed the payoff exp y of the underlying asset may be non integrable with
respect to the conditional historical Laplace distribution °. Indeed if b; < 1,
the payoff exp y is not integrable with respect to the conditional historical
Laplace distribution, whereas it is integrable with respect to the conditional
risk-neutral Laplace distribution, since by — @ > 1. An effect of the risk
correction by « is to reduce the tails in order to ensure this integrability and
the existence of a finite stock price .

iii) Value of the call and historical parameters

The patterns of the call prices as functions of ¢ and by + b; are provided
in Figures 3 and 4.

[Insert Figure 3 : Call price as a function of (]

It is always difficult to understand how the call price depends on a location
parameter, that is the mean in the standard Black-Scholes model and the
mode ¢ in the Laplace framework. This feature is clearly observed, when
we consider the underlying stock with cash-flow expy. When the location
parameter tends to +oo (resp. —oo), the cash-flow tends to +o0o (resp.
0), but the price remains constant equal to one. In fact when the location
parameter tends to infinity the historical distribution tends to a point mass
at infinity, whereas the risk neutral distribution may tend to a limit which
does not correspond to this point mass. Typically for y = —o0,expy = 0 and
we expect a price for exp y equal to zero, whereas it is equal to one. Contrary
to the Black-Scholes case in which the call price is independent of the mean,
we observe a dependence in the Laplace framework. The symmetric pattern
observed in figure 3 is due to the special choice £ = 1,r = 0, which implies
1 — kexp —r = 0 and identical call and put prices.?

9Note that expy is conditionally not integrable, if and only if the conditional expecta-
tion E;(Si4+1) does not exist. In such a framework, the standard mean-variance manage-
ment cannot be applied.

10Tt is easily checked that the correcting factor a = a[by + b1, exp(c — r)] satisfies :
afbo + b1, exp(r — ¢)] = b1 —bo + 1 — afbo + b1,exp(c —1)].



[Insert Figure 4 : Call price as a function of b, + b;]

When by + b; = 1, we get by + a = 0,b; — a = 1 and the call price is
equal to one. When by + by — 400, there exists an underlying historical
distribution such that the variance tends to zero and the stock geometric
return is constant equal to the riskfree rate. Then C(k) = exp —r(expr —
k)T =[1 — kexp —r]*, where exp —r is introduced for discounting.

iv) A particular case

Finally let us consider the case ¢ = r, where the mode of the historical
distribution corresponds to the riskfree return. The risk correcting factor «
is the solution of :

(b +a)(by —a)=(bg +a+1)(by —a—1)

b —by 1
o= - -

2 2
By replacing in the expression of the call-prices, we get :

—

1 _
Ci(k) = 2—Bexp[—(b —1/2)(logk — )], if logk > r,

1 _
Co(k) = 1—kexp(-r)+ 3 exp[(b+ 1/2)(logk — r)], if logk < r.

As mentioned above, the pricing formula depends on the single parameter

- by+b . . . . 7
b= — 1, which measures the average tail magnitude. This parameter b

has the same role than the volatility ¢ in the Black-Scholes model. When b
increases, the average tail decreases. The derivatives of the call prices with
respect to b, that is the analogues of the standard Black-Scholes vega, are :

%(lﬂ) = —2%2 exp[—(b — 1/2)(logk — r)][1 + b(logk — r)], if logk > r,
%(lﬁ) = —% exp[(b+ 1/2)(logk — 7)][1 — b(log k — 7)], if logk <.

These derivatives are negative, which implies a decreasing relationship
between the average tail magnitude b and the call price. By inverting the

10



pricing formula, we can define the implied tail magnitude associated with any
observed call price. The surface of implied Laplace tail magnitude contains
the same information as the call-price surface.

It is interesting to consider the admissible call prices when the historical

variance 02 = 0 + w2 is known. Since the price is a monotonous function of
_ 0 1
b, we get an interval of admissible prices, whose bounds are obtained for the

1 1

values of by, by, which optimize by + b; submitted to o2 = P + Tk We easily
o 0

deduce this interval, for instance when logk > r. We get :

Cy(k) €0, % exp(—[g - %](1og/f — )], if o < 2v2,

Ci(k) € [0,1], if 0 > 2V/2.

The interval increases with o, and is equal to [0, 1] in the limiting case
0 = 2v/2. The latter interval is the largest one compatible with the free
arbitrage inequalities, since the constraints 0 < (expy — k)" < expy, V&,
imply 0 < C(k) <1.

2.3 Pricing with splines

We extend the Laplace distribution by considering a conditional p.d.f.,
which is specified as an exponential-affine spline :

J
p(y) = expla+ybo + > b;(y — ¢;) 7], (2.6)
j=1
where « is fixed by the unit mass restriction, ¢; < ... < ¢; defines a partition
J
of IR,by > 0,) b; < 0. With the convention ¢y = —00,c;41 = 400, this
3=0

conditional p.d.f. can also be written as :

p(y) = expla — A; + Byyl, ify € (¢j,¢jy1) for j=0,...,J, (2.7)

where :

11



J
Aj = Zblcl (With AO = 0),
=1

I
Il
M“'

bl7

~

.Mk‘ Iy

-1

exp(—4;)

0 J

expa = (exp Bjcj11 —exp Bjcj)| . (2.8)

J

Thus the conditional historical distribution is a mixture of truncated ex-
ponential distributions :

exp By

bj (y) = Bj ]l(cj:CH—l)(y)’ (2'9)

exp Bjcj11 — exp Bjc;

with weights :

exp(—A;
T = %(exp Bjcjt1 — exp Bjc;)
j
exp(—A _
[Zl%[exp Bicii1 — exp Bie))| ™. (2.10)

Proposition 2 : If the conditional historical distribution is specified as an
exponential-affine spline and if the stochastic discount factor is exponential-
affine :

i) the conditional risk neutral distribution is unique and is an exponential-
affine spline :

a(y) = expla?+y(bo+ )+ D b;j(y —c;)"]

=1

J
= > {expla? — 4; + (B; + )yl ;) (W)},
=0

where a? is fixed by the unit mass restriction and « is solution of :

12



expr Z {‘”‘p A e pl(By+ a)ei] — expl(B, + a)cln}

B+«

B +a+1

lz { exp(—Ay) [exp[(B; + a + 1)ers1] — expl(Bi + a + 1)0,]]}

ii) The price of the call is given by :

C(k)

C;(k)

[z ;Xz 4 ) {expl(Bi+ @+ era] — expl(B + o+ e}

[eXp(( )

{exp[(B; + a+ 1)¢;+1] — exp[(B; + o + 1) log k]}

Bj+a+1

E expl(B, + )y = exol(5 + o))

| _él %{exp[(Bl +at D] — exp[(Br + a+1)ed}
g % 1 ‘”‘p SPCA) foxpl(Bi + i) - expl(B, + e,

for expc; <k < expejii.

Proof : See appendix 2.

In statistical theory the approximations by splines are usually introduced

to estimate nonparametrically regression functions.

The result of Proposi-

tion 2 can be used in a similar way for nonparametric pricing. ' Indeed any
conditional p.d.f. can be approximated as close as possible by an exponential

1 Other nonparametric pricing methods are discussed in Gourieroux, Monfort (2001),
Darolles, Gourieroux, Jasiak (2001).

13



affine spline, when the partition is increased. The proposition says that this
approximation is appropriate for derivative pricing, since it provides compat-
ible approximations for both the historical and risk neutral distributions.!?
These approximations can be used for cross-sectional pricing, that is for pric-
ing at a given date and a given maturity, k£ varying. [see Ait-Sahalia (1996)
for a similar approach]. The implementation is along the following lines :

i) Fix a partition ¢y, ..., cy;

ii) Estimate the parameters b;,j7 = 0,...,J from either the historical dis-
tribution, or observed derivative prices [see Gourieroux, Jasiak (2001), for a
discussion of these alternative estimation methods].

iii) Reconstitute the estimated historical and risk neutral distributions by
replacing b;,7 = 0, ..., J by their estimates.

3. The multiperiod framework

The aim of this section is to link the pricing formulas for different dates
and various maturities. The dynamics is introduced in the conditional Laplace
distributions [resp. exponential-affine splines|] by means of the different types
of parameters, by, b; and ¢ [resp. b; and ¢], which can be path dependent. It is
easily checked that the Laplace family of distributions is generally not stable
by time aggregation '3.1* In the subsections below, we introduce a simple
dynamics, where the effect of the past is assumed to be well summarized by
the regime indicator giving the interval (—oo,c) or (¢, 00), [resp. (¢, ¢j41)]
which contains the lagged value. We first describe the extension in the spe-
cial case of the conditional Laplace distribution considered in subsection 2.2

12Clearly the conditional historical distribution can also be approximated by exponential
spline of larger degree such as quadratic, or cubic spline. However for degree striclty larger
than one, the corresponding approximation of the risk neutral distribution no more belongs
to the class. Similarly the Hermite polynomial approximation proposed by Madan, Milne
(1994) cannot be used in a coherent way for both the historical and risk neutral densities.

13A similar remark applies to the conditionally gaussian model, which underlies the
Black-Scholes formula. The gaussian family of distributions is stable by time aggregation,
if the conditional mean is affine and the conditional variance is constant. For more general
gaussian specification in discrete time with path dependent mean and volatility, the com-
putation of derivative prices at large maturities require intensive simulation techniques.

14See However Dewald, Lewis (1985) for an autoregressive model, which involves Laplace
distributions.

14



before considering more general affine-exponential splines.
3.1 Dynamic Laplace model

Let us consider the framework of subsection 2.2 and introduce the dy-
namics. We assume a path independent location parameter ¢ and define the
regime indicator by :

]-7 if Yt Z ¢,
0, otherwise.

Moreover we assume that the conditional distribution of the geometric
return y;,1 given the past y;, 1, ... is a skewed Laplace distribution, whose
parameters depend on the past through the regime only. If we denote by
P(Ys+1|ye) the conditional p.d.f of 411, and p(y;c, bo, b1) a Laplace p.d.f. with
parameters c, by, b1, we get :

p(yt+1|ﬂ) = p(yt+1;0, boo,bw), if z; =0,

P(Ye+1; € bor, bir), if 2, = 1.

It is easily checked that the qualitative process (z;) defines a Markov chain
with transition matrix :

bio boo
Tgo o boo + D10 boo + bio
H10 H11 bll bOl

bor + 011 bo1 + b1y
where : Hij = P[ZH—I = ]‘Zt = Z]

Moreover the conditional historical distribution h steps ahead is :

15



P(Y+nlye)
= P(Yetn; € boo, b10)H8}571) + P(Ye+1; € bor, b11)H(()}f71), if 2, =0,
p(yt+h@)
= P(Yetn; ¢ boo, b10)H§g_1) + P(Yt+5 €, bor, b11)H%_1)a if 2 =1,

where I1 is the element (i,j) of the matrix IT"*~!.

(h=1)
1]

The exponential-affine stochastic discount factor for the period ¢,1+1 is :
M1 = exp(By + auyiv1), where oy, B, depend on the regime prevailing at
date ¢. Thus we get different corrections (v, 59) and (a1, 1) according to
the regime. The conditional risk neutral distribution % steps ahead is :

Q(yt+h|&)

(h=1) (h-1) |
= p(Yt+n; ¢ boo + a0, b10 — @)y + P(Wetn; ¢ bor + a1, b1y — o), if 2, =0,

(h=1) (h-1) |
= p(Ys+h; ¢ boo + 0, b10 — @)y~ + P(Ys4n; ¢ bo1 + a1, b1y — )Y, 7, if 2z =1,

where :

bio —ag by + g
boo + b0 boo + bio

g
b1 —a; by + oy
bor + 011 bo1 + b1y

We immediately deduce the price of a derivative whose payoff at t + h is
(exp yrn — k)T Tt is given by :

(h—1)

(h=1)
Ci(k,h) = exp[—r(h —1)][C(k;c,boo + ag,bro — ao)IIE,

+ C(k,¢,bo1 + a1,b11 —on)II 7], if 25 = 0,

1)

(h— (h-1)_ |
Ci(k,h) exp[—r(h — 1)][C(k; ¢, boo + @0, b10 — o)} + C(k,c,bo1 + a1,b11 — a1)IT%, l, ifzg =1,

16



where C(k;c, by, b1) is the call price at maturity one associated with the
Laplace distribution p(y;c, b, by). *°

As an illustration, let us consider the special case ¢ = r and denote :

_ b bio - b b
By = 00 + 10,61: o1 + 11.Weget:
2 2
1+ 1 1 1
2 4by 2 4b
7 =

1 1 1 1

2T 2
and, for logk > r,y; > r for instance :

Cy(k,h) = expl—r(h— 1)][2170 exp|—(Bo — 1/2)(logk — r)]IT& "
+ 4 exp[— (b1 — 1/2)(logk — r)|I1% .

2b,

This example shows that this special dynamic model may capture differ-
ent tail magnitudes in the different regimes, which is the analogue of stochas-
tic volatility models.

3.2 Dynamic exponential-affine splines

The approach extends the dynamic Laplace model by introducing a larger
number of regimes. The regimes are defined by means of a partition c¢;, j =
0,...,J, which is assumed path independent. Then the multiregime indicator
at date ¢ is :

2z =7, ify € [¢j,¢j11], 5 =0,...,J. (3.3)

If ¢ = (c1,-.-,¢5),b = (bo,-..,bs) denote the two types of parameters,
we assume that the conditional distribution of the geometric return is a an

5Note that a call written on S, with moneyness strike k is proportional to a call
with cash-flow (Siyn/St — k)t = (exp(ys+1 + - .. + ye+n) — k). Due to the aggregation of
geometric returns, the associated price has no simple expression and has to be computed
by simulation.
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exponential spline affine distribution, which depends on the past by means
of the most recent regime :

P(Yr411ye) = P(Yr41l20)- (3.4)

These conditional distributions differ by the value of parameter b which
is not the same in each regime. b denotes the value of b, when z = j :

P(Yer1l2e) = p(Yer1; ¢, bj), if z; = j. (3.5)
As in the previous subsection, the qualitative process (z;) defines a Markov
chain, with a transition matrix II, with elements m;; = Plziy1 = jlzr = 1]
functions of the basic parameters ¢, ¥, =0,..., J.
Then the conditional historical distribution A steps ahead is :

J

p(eralye) = 3 p(gerni e ¥)mly D, if 2 =1, (3.6)
§=0
whereas the conditional risk-neutral density is :
4 73\ ~(h—1)
q(Yernlye) = Zp(ytJrh; ¢, b])ﬁ-z’j if z; =1, (3.7)
§=0

where : l;ﬁ =by + aj,j){ = b{, ifl=1,...,J, and 7 is deduced from 7 after
replacement of ¥/ by .

This dynamic approach is the basis for dynamic nonparametric pricing
under the assumption of a Markov process for geometric return. Indeed when
the partition ¢;,j =0, ..., J increases, the exponential-affine spline approx-
imation with multiregime will tend to the conditional p.d.f. p(y;.1|y;) itself.
It provides numerical approximations for call-prices in the Markov frame-
work, which mix a standard multinomial tree with a spline smoothing. The
numerical advantage of the additional smoothing is to diminish the erratic
evolutions of the approximated derivative prices, which are usually observed
when the number of nodes in the tree increases.

4. Concluding remarks

The success of the Black-Scholes approach is due to a simple analytical
formula for european call prices. However this formula is based on restrictive
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assumptions and may induce various mispricing. For instance the implied
volatility has to be constant with the moneyness strike, whereas smile effects
are often observed ; it has to be independent of the time to maturity, whereas
an increasing dependence may be observed. Moreover it is varying with
time and environment, since it neglects time dependency. The aim of this
paper was to introduce alternative analytical formulas, which can be used to
approximate the derivative prices for given date and residual maturity. We
first derive a pricing formula for the skewed conditional Laplace distribution,
before extending the analysis to exponential-affine splines. This leads to a
nonparametric pricing approach. Finally, we introduce underlying Markov
regimes in order to link the derivative prices for different dates and residual
maturities.
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Appendix 1 :
Pricing with Laplace distribution

i)The truncated Laplace transform

Let us assume v > c and u < by; we get :
Y(u,y) = Elexp(uy)lys,]

— exp(uc) E{expluly — )]1,5,}

boby /oo
= — (b — —c)ld
expue) 2 [ expl—(br = w)(y = o)y
. bob1 exp[—(b1 — u)(y — ¢)]
N eXp(UC) bo + bl bl —Uu ’
If v < ¢, we get :
boby

v(w,y) = exp(uc) 2 [ expl— (b~ w)(y — o)ldy

bo + by

bob,
by + by

+ exp(uc) /y " exp[(bo + u)(y — o)]dy

boby 1
b() + bl bl — U

= exp(uc)

boby 1

{1~ expl(by + ) (y — )]}

+ exp(uc)

Note that the truncated Laplace transform is defined for u € (—b, b1).
ii) The arbitrage free conditions

If —by < u < by the Laplace transform is given by :
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bob: 1 + exp(uc) boby 1
b0+b1b1—u P b0+blbo+u

¥(u, —o0) = exp(uc)

b0b1

exp(uc)

Thus the arbitrage free conditions become :
exp(8 + r)¢(a, —oo) =1,
exp(B)i(a+1,—00) = 1,

bob
exp(8 + 1 + ac) o Oé())(llh ) =1,

bob1

Gotat)bi—a=1) -

exp[f + (a + 1)

In particular the risk correcting factor is the solution of the second degree

equation, satisfying —by < a <b; —1:

exp(c —7)(bg + a)(by —a) = (bg + a+ 1)(by — a — 1).

It is easily checked that this equation has a unique solution in the interval
(—bg, by — 1), where the Laplace transforms ¢(a, —00) and ¢ (a+1, —o0) are

both defined.
iii) The price of the call.

For logk > c, we get :
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C(k) = exppBlY(a+1,logk) - ky(a,logk)]

boby exp[— (b1 — a — 1)(logk — ¢)]
bo + b1 by —a—1

- eXPﬁ{exp[(aH)C]

—k exp(ac)

boby exp[— (b1 — a)(logk — ¢)]
bo + b1 b —«

bob1 1
bo + b1 (b1 —Oé)(bl e 1)

= expfexp[(a+ 1)c]exp[— (b1 — a — 1)(logk — ¢)]

- (%Tzﬁgiafm**h—a—nﬂ%k—@L

by the arbitrage free condition.

The computation is similar for logk < ¢ and provides :

1 by—a-—

1
1 —c)l.
+ TS exp|(by + a + 1)(logk — ¢)]

C(k) =1—kexp(—r)

iv) Continuity of the pricing function.

The value of the call is a continuous function of k. Indeed we get :

bo+a+1
Cl(eXpC) - (b0+b1)(b1—a)’
1 bh—a-—1
Csy(expc) = 1—exp(c—7‘)+bo+b1 1b0+a
(bp+a+1)(by —a—1) 1 b—a-1
= 1- +
(bo+&)(b1—&) b0+b1 bo+&
bo+0&+1

(b() =+ bl)(bl — a)

The continuity property is still satisfied for the derivative of the value of
the call with respect to k. Indeed the first order derivative of the pricing
function is :
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dCl(k) _ (bl — o — 1)(b0 + o+ 1)
dk (b +b)(b — )

exp(—c) exp[—(b — a)(logk — ¢},

dC,y (k)
dk

(by —a—1)(bp +a+1)
(bo + b1)(b0 —+ a)

= —exp(—r)+

exp(—c) exp[(by + ) (logk — ¢)].

At the limiting point k£ = exp ¢, we get :

dCi(expc) = (hh—a—1)(bo+a+1)
kT Getb)b—a) P
dCs(exp c) (b —a—1)(bg + a+1)

= —exp(—r)+

dk (bo + 1) (bo + ) exp(—c).

We get :

dC (expc) dCy(exp c)
dk dk

(b —a—1)(bo + a+1) +(b1—a—1)(b0+a+1)
(bo+b1 (bo‘{’&) (b0+b1)(bl —a)

— exp(c—r) =

)

)
(b —a—1)(by +a+1)
(b — ) (by + ) ’

which is exactly the equation defining o

v) Risk neutral distribution

The p.d.f. of the risk neutral distribution is still a Laplace distribution.
Indeed this p.d.f. is given by :

(W) = exp(r) 2 exp(8+ ac) expl(bo + @) (y — o)), ify < ¢,

by + by

! : exp(f + ac) exp|—(by — a)(y — ¢)], if y > c.
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By using the arbitrage free condition, we get :

(bo + O!)(bl — a)
by + by

aly) = exp[(bo + a)(y — ¢)], ify <¢,
(b + ) (b — )
by + b1
Finally it is easily checked that the risk neutral distribution depends on
by, by through by + b, and c only. This property is satisfied if both oy = by 4+«
and a1 = by — o depend on by + b; and c only. It is easily seen that oy and
a1 are solutions of the equations :

exp[—(by —a)(y — ¢)], if y > c.

exp(c—r)ag(bo + b1 — ) = (g + 1) (bg + by — ap — 1),

exp(c —r)ag(bo + by — 1) = (g — 1)(by + by — g + 1),

and the result follows.
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Appendix 2 :
Pricing with exponential-affine splines
i) The historical distribution

The distribution is given by :

J
p(y) = expla+boy + > bi(y — ¢;) 7],
j=1

where the constant a is fixed by the constraint of unit mass. This p.d.f. can
also be written as :

p(y) = exp(a — A; + Byy), if y € (¢j, ¢j41),

where :

J
Aj = Zblcl (Wlth) AO = 0),

=1

J
Bj = Z bl-
=1

Then the integral of the p.d.f. is :

+o0 J Cj+1
/ p(y)dy = > / exp(a — A; + Bjy)dy
3=0

J
exp By,
= eXP(G)Z(eXP(—Aj)T_]]cj.“)
§=0 i
T exp—A;
= exp(a) Z Tj[exp BjCj+1 — exXp BJC]]
§=0 j

We deduce the expression of the p.d.f:
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-1
J J
exp —A;
ply) = > {expl—A; + Bjyllic; ;1) (®)} {Z pT(eXpB Cjt1 — eXPBjCj)}

=0 =0 J

Bjexp By

1(05,05+1) (y)

J
exp A]
= B; — B;
{JE (exp Bjcj1 — exp c])exp Bjcj41 — exp Bjc;

=0

; -1
A;
{E %(expB Cjt1 — exijcj)} .

=0 !
ii) The truncated Laplace transform :

Let us assume 7y € (¢;, ¢jy1); we get :

Y(u,y) = Elexp(uy)lys,]

Ci+1
= / exp(a — A; + By + uy)dy
8!

Cl41
+ 2/+6Xpa—Az+Bzy+uy)dy

%{expm + u)cjn] = expl(B; + uyl}
+ Z—Z+1 exiéli){exl)[(Bl + u)c1] — exp[(By + u)cll }.

iii) The arbitrage free conditions
The (untruncated) Laplace transform is given by :

Y(u, —o0) = Z & (a ){GXP[(BZ + u)ciq1] — exp[(By + u)cil},

and the correcting factor « is solution of the equation :
eXP(T)1/)(04a —OO) = 1ﬁ(0¢ + 1a _OO)
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or equivalently :
exp(0) 3" { B expl B+ ] — e (B + )}

= Z {M(exp[(& +a+1)eq] — exp[(B + o+ 1)61])} :

iv) The risk-neutral distribution

By multiplying the historical p.d.f by the exponential stochastic discount
factor, we get a risk-neutral density with an exponential-affine spline repre-
sentation. The limiting points of the partition ¢;, 7 = 1,..., J are unchanged,
whereas the parameters of the truncated exponential distributions become :

j
B} = B; + «. Since : B} =) b/, we immediately deduce that :
1=0
b8:b0+a,b;1:b],j: 1,...,J,

Al=A;,j=0,...,J.
Thus the risk-neutral p.d.f. is :

00) = elat + o+ ) + 3 by~ o)
= ;)[GXP[Gq — A+ (Bj + )yl ;) (v)]

v) The price of a call

Let us assume 7y € (c;, ¢j41) ; the price of a call is given by :
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L (et 1,logk) — ki(a,logk)]

d(a+1,-00)

[lz;‘) g‘i(;‘i’)l {exp(Bi + & + Veis] — expl(Bi + o + D} !
[ ;’;Ijr(:f)l {exp[(B; + a + 1)¢;41] — exp[(B; + a + 1) log k]}
Fp e, + )zl = expl(By + o) o]

| _jiﬂ ;Ti(;il)l {exp[(Bi + @ + 1)cisa] — expl(Bi + o + 1)er]}
3 Z A fexpl (B + )] — expl(B + )]
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