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A OUTLINE OF THE PRESENTATION

The first part: The technical-conceptual
interface in algebra and what | mean by
conceptual (theoretical) understanding of
algebraic technique.

The second part: The ways in which
students learn to draw such conceptual
aspects from their work with algebraic
techniques in a technology environment.




1. INTRODUCTION

WHAT IS COMPUTER ALGEBRA
SYSTEM (CAS) TECHNOLOGY?

A computer algebra system (CAS) is a
software program that facilitates
symbolic mathematics. The core
functionality of a CAS is manipulation
of mathematical expressions in
symbolic form (Wikipedia, Sept. 5,
2007)




1. INTRODUCTION

SOME FINDINGS FROM CAS
RESEARCH

Since the mid-1990s, in France, when
CAS started to make their appearance
iIn secondary school mathematics
classes, researchers (Artigue et al.,
1998) noticed that teachers were
emphasizing the conceptual
dimensions while neglecting the role of
the technical work in algebra learning.
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A 1. INTRODUCTION

However, this emphasis on conceptual
work was producing neither a clear
lightening of the technical aspects of the
work nor a definite enhancement of
students’ conceptual reflection
(Lagrange, 1996).

From their observations, the research
team of Artigue and her colleagues came
to think of techniques as a link between
tasks and conceptual reflection, in other
words, that the learning of techniques
was vital to related conceptual thinking.



1. INTRODUCTION

‘7 ' Our research group was intrigued by the
theoretical notion that algebra learning at the

/. high school level might be conceptualized in

W  terms of a dynamic among Task-Technique-

~ Theory (T-T-T) within technological

\environments.

And so it came to be that we began a
series of studies in 2002, which continue
to this day, that explored the relations
among task, technique, and theory in the
algebra learning (and teaching) of grade
9,10, 11, and 12 students in CAS
environments.



A 1. INTRODUCTION

In brief, we have found that:
As reported in Kieran & Drijvers, 2006:

Technique and theory emerged in mutual
iInteraction: Techniques gave rise to
theoretical thinking; and the other way
around, theoretical reflections led students
to develop and use techniques.

As reported in Kieran & Damboise, 2007

A comparative study of a CAS class and non-
CAS class revealed that the CAS class
iImproved much more than the non-CAS class
In both technique and theory, but especially
In theory -- and the sequence of lessons was
one where the technical component was
clearly in the forefront.




A 1. INTRODUCTION

This brings us to the main question to
be addressed in this talk:

How does the learning of algebraic
technique in a CAS environment lead to
the emergence of students’
theoretical/conceptual growth?

In other words, how is technique rendered
conceptual? What does it mean to have a
conceptual understanding of algebraic
technique?




A 2. The interface between
technique and theory in algebra

Note that | will be using the terms conceptual
and theoretical interchangeably.

Note also that the context of this presentation
Is related to the letter-symbolic aspects of
algebra. Why?

A great deal of research exists already with respect to the
benefits of multi-representational approaches (e.g., graphical
representations) in making algebraic objects more meaningful
to students.

However, algebra involves more than representational

activity; symbolic transformational activity lies at its core. |,




A 2. The interface between technique and theory in algebra

What is meant by a CONCEPTUAL
UNDERSTANDING OF ALGEBRAIC
TECHNIQUE?

We propose that it includes:

Being able to see a certain form in algebraic
expressions and equations, such as a linear or
quadratic form;

Being able to see relationships, such as the
equivalence between factored and expanded
expressions;

Being able to see through algebraic
transformations (the technical aspect) to the
underlying changes in form of the algebraic

object and being able to explain/justify these
changes. 11




2. The interface between technique and theory in algebra

Some classic examples of conceptual
understandings in algebra include:

The distinctions
petween variables and parameters,
petween identities and equations,

petween mathematical variables and
programming variables, ...

Both the knowledge of the objects to which
the algebraic language refers (generally
numbers and the operations on them) and
the need, at times, to include certain
semantic aspects of the mathematical
context so as to be able to interpret the
objects being treated. ... -




A 2. The interface between technique and theory in algebra
73

But what might be some examples of that
which is intended by ‘CONCEPTUAL
UNDERSTANDING OF ALGEBRAIC TECHNIQUE’

1. Seeing through symbols to the
underlying forms, e.g.,
(a) seeing x° - 1 as ((x3)2-1)
and as ((x2)3 - 1),
and so being able to factor it in 2 ways.
(b) seeing that x°+5x+6 and x#+7x°+10
are both of the form ax¢+bx+c.
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2. The interface between technique and theory in algebra

Examples of what is intended by a CONCEPTUAL
UNDERSTANDING OF ALGEBRAIC TECHNIQUE ...

2. Conceptualizing the equivalence of the
factored and expanded forms of algebraic

expressions,

e.d., awareness that the same numerical
substitution (not a restricted value) in each
step of the transformation process of
expanding will yield the same value:

(x+1)(x+2) -- factored form --
= X(x+2) + 1(x+2)
=X +2X+X+2
= X¢ + 3x + 2 -- expanded form --
and so substituting, say 3, into all four
expressions is seen to yield 20 for each expl.
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2. The interface between technique and theory in algebra

Examples of what is intended by a CONCEPTUAL
UNDERSTANDING OF ALGEBRAIC TECHNIQUE ...

3. Coordinating the “nature” of equation solution(s)
with the equivalence relation between the two
expressions that comprise the original equation,

\ e.g., for the following task,

Given the 3 expressions
x(x¢-9), (x+3)(x?-3x)-3x-3, (x?-3x)(x+3),

(a) determine which of these three expressions are
equivalent;

(b) construct an equation using one pair of the given
expressions, which are not equivalent, and find its solution;

(c) construct an equation from another pair of the given
expressions, which are not equivalent, and by logical

reasoning only (i.e., without actually solving the equation),
determine its solution.

!
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Exp1: x(x¢-9)
Exp2: (x+3)(x?-3x)-3x-3
Exp3: (x¢-3x)(x+3)

O Which are equivalent?
Only Exp1 and Exp3 are equivalent.

O An equation using a pair of non-equivalent
expressions? And its solution?

say, Exp1=Exp2
solution: x=-1(with CAS)

O An equation from another pair of non-
equivalent expressions? And its solution?

Exp3=Exp2; the solution has to be
the same as above. Why?

(a conceptual understanding allows
. . 16
one to answer this last question)




2. The interface between technique and theory in algebra

Is it important to foster a CONCEPTUAL
UNDERSTANDING OF ALGEBRAIC
TECHNIQUE?

National and international mathematics assessments
during the 1980s and 1990s reported that secondary
school students, in order to cover their lack of
understanding, resorted to memorizing rules and
procedures and that students eventually came to believe
that this activity represented the essence of algebra (e.g.,
Brown et al., 1988).

While more recent reform movements have led to infusing
“real-world” problem-solving activities into algebra
curricula, the traditional dichotomy of skills/procedures
and concepts has tended to remain in algebraic discourse.

Although  Skemp  (1976)  described  “relational
understanding” as knowing both the rules and why they
work, there has never been much movement in the
direction of describing what this might mean for algebra. 17




A The role of tasks in the TTT triad ...

At a recent PME Research Forum on
“The Significance of Task Design in
Mathematics Education”, Ainley and
Pratt (2005) -- the organizers of
the Forum -- argued that,

“We see task design as a crucial
element of the learning environment
... [and contend that] the nature of
the task influences the activity of
students.”
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A Also, with respect to tasks:
o

Lagrange (1999) suggested that task
situations ought to be created in such a
way as to “bring about a better
comprehension of mathematical content”
(p. 63) via the progressive acquisition of
techniques in the achievement of a
solution to the task.

Guin and Trouche (1999) added that
tasks should aim at fostering
experimental work (investigation and
anticipation).

19




A 2. The interface between technique and theory in algebra

So, to sum up, before moving on:

With recent advances in
a) the development of theoretical frameworks,
such as that of Task-Technique-Theory,

b) the increasing use of technology in schools,
fordexample, CAS at the secondary school level,
an

c) the attention being paid to the role that the
nature of the task/situation plays in student
learning,

we are well poised to make headway in
reflecting upon the ways in which technique
can be viewed from a conceptual angle in
the teaching and learning of algebra and, in
fact, how technology can enhance such
conceptualizing of technique.
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3. How Year 10 students in our project drew
conceptual aspects from their work with
algebraic techniques in a CAS environment

Concerning the tasks:

The tasks went beyond merely asking
technique-oriented questions;

The tasks also called upon general
mathematical processes that included:
observing/focusing, predicting, reflecting, verifying,
explaining, conjecturing, justifying.
Concerning the technologies:

Both CAS and paper-and-pencil were used,
often with requests to coordinate the two;

The CAS provided the data upon which
students formulated conjectures and arrived at
provisional conclusions. 21




3. How Year 10 students in our project drew conceptual aspects
from their work with algebraic techniques in CAS environment ...

CONCEPTUALIZING THAT EMERGED WHILE
LEARNING NEW TECHNIQUES WITH THE AID
OF CAS TECHNOLOGY:

(an example from Kieran & Drijvers, 2006)

The task involved factoring polynomials
(adapted from Mounier & Aldon, 1996).

The family of expressions: x7 - 1

Aim: to arrive at a general form of factorization
for x? - 7 and then to relate this to the
complete factorization of particular cases for
iInteger values of n from 2 to 13. Proving one
of these cases was part of the two-lesson
sequence, but is not included today.
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One of the initial tasks of the activity

. Perform the mdicated operations: (x - Dix+ 1), k= (@ +x+ 1),
. Without domng any algebraic mantpulation, anticipate the result of the followng product

(x-1) o x2+x+l)=

. Venfy the above result vsing paper and pencil, and then using the caloulator,
4. What do the following three expressions have n common? And, also, how do they differ?

(-1t 1), G- DG x+ D), and (x-1) (417

. How do you explatn the fact that when you multiply: 1) the two binotmials above, 11) the binomial
with the trinormtal above, and 111) the bmormsal with the quadnnommial above, you always obtain a
binotmial as the product?

- Is your explanation valid for the followng equaltty:

(x- 1)(2{134 T SR )= =10 Explain

+x+1 )
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After students had worked on these questions,
either in groups or individually, the teacher opened
up a whole-class discussion and asked students to
state their responses to one particular question.

What do the following three expressions

have in common? And also, how do they
differ?

(Xx-1)(x+1), (x1)(x2+x+1), (x-1)(XC+x2+x+1)

The teacher’s aim in having the whole-
class discussion was to encourage
students to learn from what some of
their peers had noticed.
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Different pupils noticed different things in
the expression patterns.
(Xx-1)(x+1), (x-1)(x2+x+1), (x-1)(XP+x2+x+1)

One student noticed that the exponents were
different in the second brackets.

One pair of students focused on the “x+1” that
was present at the end of each of the second
brackets.

However, one student’s contribution to the
whole-class discussion, presented just below,
helped others to “refine their noticing”:

“They are all multiplied by (x-1), but each of them adds
on an x with a higher exponent in the second expression:

(x+1)>(x+x+1)>(F+x+x+1)"

25




After arriving at a general form of factorization for
x"-1 based on a few examples,
x1-1 =(x-1)(x"T+x< + ... x+1), the students
worked on the following task for n being the integers
. from 2 to 6, where they were confronted with the
A completely factored forms produced by the CAS.

In this activity each line of the table below must be filled in completely (all three cells), one
row at a time. Start from the top row (the cells of the three columns) and wotk your way
down. If, for a given row, the results in the left and middle columns differ, reconcile the two
by using algebraic manipulations in the right hand column,

Factorization using | Result produced by the ! Calculation to reconcile the two,
paper and pencil i FACTOR command | if necessary

xt-1= i

x-1= E

xt-1= i
|

x-1= ;

26

X-1= i



An example of a student’s work -- first with
p/p (in 1st column), then with CAS (in 2nd
column), and then involving a reconciliation
of the two (in 3rd column) for x*-1.
This example shows reconciliation by
multiplying the 2nd and 3rd CAS factors:

"F-actor_mnon using paper and pencil Result produced by FACTOR command | Calculation to reconcile the two, if necessary

X -l= h-ﬂ(nf\\ (\x-l}b\ﬂ) \\,/r'v

Pol= (?‘_.’)bt - \\) (1\'0 l“lﬁ\ . \3

——
‘ Y "L'W‘"k*j .\'-—..\}
x'-1= (\ _0 (,\3 P |> k_)\‘\)\l_‘_mb&l + \w é -\\\\\x“’\f’k*i v\)




After completing the factorization task for
n=21to6in x?"- 1, students were presented
with the following Conjecture task.

Conjecture, tn general, for what numbers » wil the factortzation of 2= 1
{) contain exactly two factors?

i) contatn more than two factors?
i) include (x+1) as afactor?
Please explam.
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A At first, many students incorrectly

" | conjectured that, for all odd n’s, the
complete factorization of x*-1 would contain
exactly two factors.

The CAS played a pivotal role in allowing them not
only to test their conjecture, but also to
successively refine it.

One group of two pupils, whom we videotaped,
stated -- after trying a few examples of their own:
“There seem to be some exceptions to our rule.”
They then tested with the CAS for n= 15, 21, 27,
99 to arrive at the conclusion that n could not be a
multiple of 3. They followed a similar pathway to
eliminate, in turn, both the multiples of 5 and 7.
Finally the Eureka moment: x”-1 has exactly two
factors when nis a prime number.
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Here, we see the final revision of their
conjecture regarding the numbers n (i.e.,
prime numbers) that yield exactly two
factors for the factorization of x"-1:

I1.(B).2. On the basis of patterns you observe in the table I1.B above, revise (if necessary)
your conjecture from Part A. That is, for what numbers » will the factorization of x" —1:
i) contain exactly two factors?
i1) contain more than two factors?
ii) include (x + 1) as a factor?

Please explain:

("\ m-wé-wn--ﬂu..,.,,.uP et ) At Vs ek obliun skl
‘f’ﬁ&i-aw&}“ SR ol P’\"M Awmbrs
l \ %’h,\'o/ﬁ sk V\V\,LMBQIS\

1) evtm mumbers




With the aid of the CAS technology
-- and different sorts of questions
within the task set -- the students
were able to focus their trials on
certain multiples of the exponent, to
try out extreme cases, ... in short,
to arrive at a new conceptualization
of the factors for expressions from
a certain family of polynomials.
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Further evidence for the emergence of
theoretical/conceptual ideas arising from
work with CAS techniques was gathered
from a study we carried out with two

classes of weak algebra students.
(Kieran & Damboise, 2007)

TASK AND TEST DESIGN:

A set of parallel activities was developed -- on
factoring and expanding.

Tasks were identical except that where one class was
to use p/p only, the other class was to use CAS or a
combination of CAS and p/p.

Some tasks were technique-oriented; others were
theory-oriented.

A pretest and posttest were also created with some
guestions being technical and others theoretical.

32



SOME OF THE TASKS:
from Activity 3 (CAS version)

Activity 3 (CAS): Trinomials with positive coefficients and a =1 (ax” + bx +¢)
I. Use the calculator in completing the table below.

Given trinomial (in Factored form using Expanded form using
“dissected” form) FACTOR EXPAND

(2) X +(3+4)x 4304

(b) x*+(3+5)x+35

¢) X +(4+6)x+446

d) 1 +(3+5)x+3%3

e) X+ (3+4)x+306

(

(

(

2(a) Why did the calculator not factor the trinomial expressions of 1(d) and 1(¢) above?

2(b) How can you tell by looking at the “dissected” form (left-hand column) if a trinomial is factorable?

2(c) If atrinomial 1s not in its “dissected”” form but is in its expanded form, how can you tell if it is factorable? Explain
and give an example.

2(d) How would you describe the relation between the factored form and the expanded form of the above trinomials in
1(a)-1(c)?
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And the non-CAS version of the same task:

Activity 3 (non-CAS): Trinomials with positive coefficients and a =1 (ax’ + bx +¢)
1. Complete the table below by following the example at the beginning of the table.

Given trinomial (in Factored form Expanded form
“dissected” form)
Example: X +(B+4)x+34
x4 (3+4)x+3%4 = 1" +3x+4x+3%4 ¥+ Tx+12
= x(x+3)+4(x+3)
= (x+3)(x+4)
(a) x2+(5+6)x+5 6
(b) x*+(3+5)x+3°5
©) x*+(4+6)x+446
(d) x 2+ (3+5)x+3%3
(€) x*+(3+4)x+ 396
2(a) Why could you not factor the trinomial expressions in 1(d) and 1(e) above?
2(b) How can you tell by looking at the “dissected” form (left-hand column) if a trinomual 1s

factorable?

2(c) If a trinomial is not in its “dissected” form but is in its expanded form, how can you tell if
it 1s factorable? Explain and give an example.

2(d) How would you describe the relation between the factored form and the expanded form

of the above trinomials in 1(a) — 1(c)? 34



IN THIS STUDY, THE TECHNOLOGY
WAS FOUND TO PLAY SEVERAL
ROLES IN THE CAS CLASS:

it provoked discussion;

it generated exact answers that could be
scrutinized for structure and form;

it helped students to verify their
conjectures, as well as their paper-and-
pencil responses;

it motivated the checking of answers; and

it created a sense of confidence and thus
led to increased interest in algebraic
activity.
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! THE FINDING THAT:
| CAS generated exact answers that could
be scrutinized for structure and form

Of all the roles that the CAS played in
this study, this was found to be the most
crucial to the success of these weak
algebra students.

It proved to be the main mechanism
underlying the evolution in the CAS
students’ algebraic thinking.

Ironically, the crucial nature of this role
was first made apparent to us by the
voicing of frustration by one of the
students in the non-CAS class:
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One of the students of the non-CAS class
remarked when faced with these two
guestions of the task just seen:

2(c) If a trinomial is not in its “dissected” form but is in its expanded

form, how can you tell if it is factorable? Explain and give an example.

2(d) How would you describe the relation between the factored form
and the expanded form of the above trinomials in 1(a) — 1(c)?

“How can we describe the relation between the
factored form and the expanded form of these

trinomials? — we don’t even know if our paper-
and-pencil factorizations and expansions from

Question 1 are right.”
37



This study analyzed the improvements of two
classes of weak algebra students in both
technique (being able to do) and theory (i.e.,
being able to explain why and to note some
structural aspects), in the context of tasks that
invited technical and theoretical development.

At the outset, both the CAS class and the non-
CAS class scored at the same levels in a pretest
that included technical and theoretical
components.

However, the CAS class improved more than the
non-CAS class on both components, but
especially on the theoretical component.
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We see this finding as being of some
Interest

Being able to generate exact answers with the
CAS allowed students to examine their CAS work
and to see patterns among answers that they
were sure were correct. This kind of assurance,
which led the CAS students to theorize, was
found to be lacking in the uniquely paper-and-
pencil environment where students made few
theoretical observations. The  theoretical
observations made by CAS students worked
hand-in-hand with improving their technical
ability.

In other words, their technique had become
theorized, which in turn led to further

iImprovement in technique. .




Thank you
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