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Overview

• Interface Physics – Computer Science in Quantum Communication
– Physics provides correlations with a promise
– Computer Science uses correlations within complex communication task

• Classical and Quantum Correlations
– If Physics is to add something, then we need correlations with quantum features

• ‘Entanglement’ as necessary conditions for quantum communication

• Exploitation of conditions
– entanglement witnesses
– application to 6-state, 4-state and 2-state protocol (QKD)

• Conclusions



Alice:

Bob: 

Bennett Brassard Protocol

Sifting
(public discussion)

Quantum Part:
Create random key:

random signals
random measurements

Public discussion over 
faithful classical channel: 
distinguish deterministic 
from random processes

No errors:                          transmitted 
faithfully Key is secure

1 0 1 11:
0:



Quantum Communication and 
Correlations

Phase I: Physical Set-Up
Generation of correlations between Alice and Bob

possibly containing hidden correlations with Eve

Phase II: Classical Communication Protocol
Advantage distillation  (e.g. announcement of bases in BB84 protocol)
Error Correction ( Alice and Bob share the same key)
Privacy Amplification ( generates secret key shared by Alice and Bob)

Physics:
correlated data with a promise.

(Classical) Computer Science:
Solve Communication Problem with 
classically correlated data …

Which type of correlations are 
useful for Quantum Communication?

Note: classical communication for QKD can be improved:
e.g. in QKD with weak light pulses [Acín, Gisin, and Scarani, Phys. Rev. A 69, 012309 (2004) ] 

or two-way communication [Lo, Gottesman, quant-ph/0105121]



Key extraction from 
correlated classical data

IBE

IAB

IAE
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E

PABE(a,b,e) CS > max {IAB - IAE, IAB -IBE }

- Csiszar, Körner, IEEE, IT 24, 339 (1978).

Lower bound on secrecy capacity CS:
(rate of secret communication between Alice and Bob)

! Derived for classical three-party correlations
Eve: quantum system!

- I. Devetak, A. Winter, quant-ph/0307053.

- U. M. Maurer, IEEE Trans. Inf.Theo. 39, 1733 (1993);

Upper Bounds on secrecy capacity CS:
Cs ≤ I(A;B↓E)

-U. Maurer and S. Wolf, IEEE T. I. T. 45, 499 (1999).

I(A,B↓E) = minE→E I(A;B|E) with I(A;B|E) = H(A,E) + H(B,E) – H(A,B,E) – H(E)

• Intrinsic Information: I(A;B↓E)

Quantum

PF(A,B,E) = P(a,b) Tr (ρE(a,b) FE) I(A;B↓E) = infF IF(A,B|E)

‘Information’ Bob can gain about Alice’s data 
by looking at his own data, whatever Eve told him 
about Alice’s data. 



Intercept/Resend attack

Alice Measurement Signal
preparation

Bob

Eve

P(a,b,e)=p(a,e) p(b|e)  (Markov Chain)
Intrinsic information vanishes, 

no secret communication possible!

Example:
BB84 with 
•Poissonian photon number distribution
•losses in the quantum channel
•symmetric error rate in signals

implementing specific intercept/resend

 
          µ = 0.1 
          µ = 0.2 
          µ = 0.3 

µ= 0.4

[M.Curty, N.L, in preparation ]

(for vanishing error rate:
[Jahma, Dusek, NL, Phys. Rev. A 62, 022306 (2000)])



Potential for correlations

secret bits
per signal

distance
(channel model)

not secure
(proven)

protocol 
independent

not secure
(proven)

Regime of Hope

secure
(proven)
protocol

e.g. weak coherent pulse BB84
Inamori, NL, Mayers quant-ph/0107017

typically 20 km e.g about 100 km



Are these correlations useful?

0.07987   0.04516   0.00913   0.11591
0.04508   0.07986   0.11593   0.00901
0.11599   0.00909   0.08001   0.04507
0.00897   0.11593   0.04505   0.07985

Probability Distribution P(A,B)

0
1
+
-

0               1             +               -

Error Rate: 36%

Assumptions:
trusted ideal source of ideal BB84 protocol

trusted ideal detector of ideal BB84 protocol



Prepare & Measure Schemes:

Entanglement behind the scene

Entanglement based QKD:

A BE
EABρ

B
E ),( baEρ

EABρ

Entanglement based schemes and P&M schemes 
can be based on three-party entangled states!

BiAi
i

iAB
ap ϕψ ∑= A ABρ

orthonormal states

effective signal states

How to generate correlated classical data:

This scheme 
fixes       !Aρ

Bennett, Brassard, Mermin Phys. Rev. Lett. 68 557, 1992.



Necessary condition for secure 
communication

Knowledge available to Alice and Bob:
•measurement POVM {Ai}i, {Bj}j

(may contain imperfections!)
•observed joint probability distribution P(A,B)
•[red. density matrix       (P&M schemes)]

Theorem: (converse)
• I(A;B↓E) > 0 
iff P(A,B) together with {Ai}i, {Bj}j cannot be 
interpreted as coming from a separable state.
-A. Acín and N. Gisin, quant-ph/0310054.

NOTE: does not guarantee a secret key …

Approach allows for realistic implementations!
-detection inefficiency goes into {Bj}j
-full mode description of sender and receiver

Observation of quantum correlation
excludes intercept/resend attack!

Aρ

• If P(A,B) together with {Ai}i, {Bj}j [and    for 
P&M schemes] allows interpretation as separable 
state  then I(A;B↓E) = 0,  and therefore CS = 0.

M. Curty., M. Lewenstein and N. L, quant-ph/0307151.

Theorem (Entanglement Based and P&M):
Aρ



Entanglement verification

Problem structure:
• Unknown density matrix ρAB
• constraints via observed correlations (data) P(A,B)
[for P&M schemes: fixed ρA]

• Question: any separable ρAB compatible with constraints?

Specific experiment and data:
search for entanglement proof (sufficient, not necessary)

• rule out separability e.g. via Bell inequality
• violation of local uncertainty relations [Hofmann, Takeuchi, PRA 68 032103 (2003)]

• numerical optimisation via entanglement witnesses [Eisert, Hyllus, Gühne, Curty, quant-ph/0407135]

Specific experiment:
• general efficient numerical method for any possible data?
• find analytic complete necessary and sufficient condition for any possible data

approach in following part for simple qubit protocols



Entangled States: ρAB is entangled iff ρAB ≠ Σi pi |ai〉〈ai|A⊗|bi〉〈bi|B 

Sep Entangled
• ρAB

W1W2

Optimal EW (OEW):
-M. Lewenstein, B. Kraus, J.I. Cirac and P. Horodecki, PRA 62, 052310 (2000).

Sep Entangled
• ρAB

W

Entanglement Witnesses (EW):
• ρAB is entangled iff ∃ W hermitian such that: 

-M. Horodecki, P. Horodecki and R. Horodecki, Phys. Lett. A 223, 1 (1996).

-M.B. Terhal, Phys. Lett. A 271, 319 (2000).

Tr{W⋅ρAB} < 0  
Tr{W⋅σAB} ≥ 0  ∀ σAB separable

Entanglement Witnesses



Local Measurement of 
Entanglement Witnesses

-A. Sanpera, R. Tarrach and G. Vidal, PRA 58, 826 (1997).
-O. Gühne, P. Hyllus, D. Bruss, A. Ekert, M. Lewenstein, C. Macchiavello and A. Sanpera, PRA 66, 062305 (2002).
-O. Gühne, P. Hyllus, D. Bruss, A. Ekert, M. Lewenstein, C. Macchiavello and A. Sanpera, J. Mod. Opt. 50 (6-7), 1079 (2003).

Then: Tr{W⋅ρAB} = Σij cij Tr{Ai⊗Bj ρAB} = Σij cij P(ai,bj )

Evaluation:

Decomposition of Witnesses in Local Measurements:

Any bipartite hermitian operator W can be decomposed as a pseudo-mixture:

W = Σij cij Ai⊗Bj with cij ∈ ℜ, Σij cij = 1
where Ai⊗Bj forms a POVM operator basis. 

{Ai}i, {Bj}j describe measurements  (positive, add up to identiy)



Necessary condition based on 
entanglement witnesses

Theorem:

• Given a set of local operations with POVM elements Ai ⊗Bj together with the probability 
distribution of their ocurrence, P(A,B), then the correlations P(A,B) cannot lead to a secret 
key via public communication unless one can prove the presence of entenglement in the 
(effectively) distributed state via an entanglement witnesses W = ∑ij cij Ai ⊗Bj with cij real 
such that Tr{WσAB} ≥ 0 for all separable states σAB and ∑ij cij P(i,j) < 0. 
-M. Curty, M. Lewenstein and N. L.,  Phys. Rev. Lett. 92, 217903 (2004).

Important point:
entanglement witness criterion is necessary and sufficient 
even for restricted knowledge about the shared quantum state!

Idea:
states with verifiable entanglement form a convex set

restricted class of witnesses can testify the verifiable 
entanglement

compatible
with sep.

verifyable
entangled

• ρAB



Use three mutually unbiased bases:
e.g. X,Y,Z direction in Bloch sphere

- Bruß, Phys. Rev. 81, 3018 (1998);

- Bechmann-Pasquinucci et al, PRA 59, 4238 (1999) .

|0〉

|00〉

|1〉
|1〉

|0〉

|11〉
6-State (EBS and P&M) EW:

W6 = ∑ij cij σi⊗σj

with i,j = {0,x,z,y}, and σ0 = 1.

• Include all Optimal DEW: W = |ψe〉〈ψe|TB

• All entangled states can be detected. 

6-State QKD protocol

A ABρ
max. ent. 2x2 state

Simplified thought experiment:
use two-qubit state:

X, Y or Z 
measurement

Searching for quantum correlations:
• parametrize |ψe〉
• evaluate locally Tr[ρ |ψe〉〈ψe|TB]
• search for negative expectation values



-C.H. Bennett and G. Brassard, Proc. IEEE Int. Conf. 
On Computers, System and Signal Processing, 175 
(1984).

Use two mutually unbiased bases:
e.g. X,Z direction in Bloch sphere

|0〉|1〉
|1〉

|0〉

4-State (EBS) EW:

with i,j = {0,x,z}, and σ0 = 1.

W4
EBS = ∑ij cij σi⊗σj

restricted class of witnesses

W ∈ W4
EBS iff  W = WT = WTBObservation:

• Alice and Bob cannot evaluate Optimal DEW.
• Not all entangled states can be detected. 

4-State QKD protocol



Observation:
Given W ∈ W4

EBS

necessary to detect entanglement in state ρAB is 
that the operator 

Ω = ρAB+ρAB
T+ρAB

TB+ρAB
TA  

is a non-positive operator.

compatible
with sep.

verifiable
entangled

• ρAB

W ∈ OEW4
EBS

Optimal W4
EBS (OEW4)

Theorem: The EW that are optimal within the four-state protocol are given by

OEW4
EBS = ½(Q+QTB) with Q = |ψe〉〈ψe| such that Q = QT

-M. Curty., M. Lewenstein and N. L., quant-ph/0307151.

• OEW4
EBS provides necessary and sufficient conditions for detection of quantum 

correlations in P(A,B).
• For P&M schemes we find OEW4

P&M = OEW4
EBS

4-State QKD protocol



(only parameter combinations
leading to negative expection 
values are marked)

0.07987   0.04516   0.00913   0.11591
0.04508   0.07986   0.11593   0.00901
0.11599   0.00909   0.08001   0.04507
0.00897   0.11593   0.04505   0.07985

Probability Distribution P(A,B)

0
1
+
-

0               1             +               -A\B

Error Rate: 36 %

| ψ e,=cos(X)|00, +sin(X)(cos(Y)|01, +sin(Y)(cos(Z)|10, +sin(Z)|11,))

Quantum Correlations? (II)

Assumptions: (BB84 setup)
trusted ideal source
trusted ideal detector

OEW4
EBS = ½(|ψe〉〈ψe| + |ψe〉〈ψe| TB)

Witness Class:



-C.H. Bennett, Phys. Rev. Lett. 68, 3121 (1992). 

Use two non-orthogonal states, 
e.g., |φ0〉 and |φ1〉

|φ0〉

|φ1〉

2-State EW:

with i,j = {x,z}, k = {0,x,z,y}, and σ0 = 1.

W2 = ∑i ci σ0⊗σi + ∑j cj σz⊗σj +     
∑k ck σk⊗σ0

restricted class of witnesses

2-State QKD protocol

Theorem: The family 

-M. Curty., O. Gühne, M. Lewenstein and N. L, (in preparation).

is sufficient to detect all entangled states 
that are detectable in the 2-state protocol.

W2 = |0〉〈0|⊗A + |1〉〈1|⊗B + x C(θ)

with A = AT, B = BT, A ≥ 0, B ≥ 0, rank(A) = rank(B) =2, θ ∈ [ 0, 2π ), and 

x = min|φ〉 (〈φ|A|φ〉〈φ|B|φ〉)1/2



Conclusion
Interface Physics – Computer Science:

Classical Correlated Data with a Promise

Necessary condition for secure QKD is the proof of presence of quantum correlations

Quantum correlations: for entanglement based and prepare&measure schemes.

For experiments: show the presence of such entanglement 
•no need to enter details of classical communication protocols
•prevents oversights in preliminary analyses
•one properly constructed entanglement proof (e.g entanglement witness) suffices

For theory:
• show in which situation quantum correlations are sufficient to generate secret key
• develop figure of merit (secrecy capacity) to measure secrecy potential of correlations.
• develop proper entanglement proofs for realistic experiments ( for given measurements)
• develop compact description for restricted class of entanglement witnesses

(allows effective search of quantum correlations)
• include detection inefficiencies into the witness construction


