ESTIMATION OF QUANTUM RELATIVE ENTROPY NONDESTRUCTIVE

Alexei Kaltchenko

Wilfrid Laurier University

Canada

Effective Density Matrix

- ρ a density matrix defined on a Hilbert space \mathcal{H} ;
- $\{|\lambda_i\rangle\}$ and $\{\lambda_i\}$ the eigenbasis and the eigenvalues of ρ

Presnell defined a so-called "effective" density matrix **Definition 1** For every ρ and orthonormal basis $\{|a_i\rangle\}$, Jozsa and

$$\tilde{\rho} \stackrel{\triangle}{=} \sum_{j} \mu_{j} |a_{j}\rangle\langle a_{j}|,$$

with respect to the basis $\{|a_i\rangle\}$, where $\mu_j \triangleq \sum_k M_{jk}\lambda_k$ and

$$M_{jk} \triangleq \langle a_j | \lambda_k \rangle \langle \lambda_k | a_j \rangle \geqslant 0.$$

Alexei Kaltchenko

Turning Classical Code to Quantum

- $\{|a_i\rangle\} \triangleq \{|a_1\rangle, |a_2\rangle, \dots, |a_{|\mathcal{A}|}\rangle\}$ an arbitrary, but fixed orthonormal basis of the Hilbert space \mathcal{H} ;
- $\{|a_i\rangle\}_{in}^{\otimes n}$ and $\{|a_i\rangle\}_{out}^{\otimes n}$ orthonormal bases in "input" Hilbert space $\mathcal{H}^{\otimes n}$ and "output" Hilbert space $\mathcal{H}_{out}^{\otimes n}$, respectively.

 $U_{\varphi}^n:\mathcal{H}^{\otimes n}\to\mathcal{H}_{out}^{\otimes n}$ by the bases vectors mapping For any classical code φ , we define an unitary operator

$$U_{\varphi}^{n}|x^{n}\rangle = |\varphi(x^{n})\rangle,$$

where $|x^n\rangle \in \{|a_i\rangle\}_{in}^{\otimes n}$ and $|\varphi(x^n)\rangle \in \{|a_i\rangle\}_{out}^{\otimes n}$ for all $x^n \in \mathcal{A}^n$.

$$\pi \to \rho^{\otimes n} \otimes \sigma^{\otimes n} \quad \text{as} \quad n \to \infty$$

 ρ and σ are unknown!

Quantum relative entropy:

$$S(\rho \parallel \sigma) \triangleq Tr\rho \log \rho - Tr\rho \log \sigma$$

Relations between Quantum and Classical Entropies

 ρ and σ Suppose we have two quantum i.i.d. sources with density matrices

Lemma 1

$$S(\rho||\sigma) = D(p_{\tilde{\rho}}||p_{\sigma}) + H(p_{\tilde{\rho}}) - S(\rho) = D(p_{\tilde{\rho}}||p_{\sigma}) + H(p_{\tilde{\rho}}) - H(p_{\rho}),$$

where $\{|\chi_i\rangle\}$ is the eigenbasis of σ

 $p_{
ho}$ stands for the probability distribution defined by eigenvalues of ho $\tilde{\rho}$ is the effective density matrix of ρ with respect to $\{|\chi_i\rangle\}$ and

$$H(q) \triangleq -\sum_{x \in A} q(x) \log q(x) \qquad D(q||p) \triangleq \sum_{x \in A} q(x) \log \frac{q(x)}{p(x)}$$

Univ. Estimation of Quantum Relative Entropy

$$S(\rho||\sigma) = D(p_{\tilde{\rho}}||p_{\sigma}) + H(p_{\tilde{\rho}}) - H(p_{\rho})$$

$$S(\rho||\sigma) = \left\langle \frac{1}{n} \left| \mathbf{C}_{H+D}(z^n, x^n) \right| \right\rangle_{p_{\tilde{\rho} \otimes \sigma}} - \left\langle \frac{1}{n} \left| \mathbf{C}_{H}(x^n) \right| \right\rangle$$

Classical Estimation of H(q) and D(q||p)

 $C_H(\cdot)$ and $C_{H+D}(\cdot,\cdot)$. For any $\delta>0$ and all sufficiently large n Ziv and Merhav introduced a pair of universal estimation codes

$$q_z\left(z^n:\left|\frac{1}{n}\left|\mathbf{C}_H(z^n)\right|-H(q)\right|>\delta\right)\leqslant \exp[-n\ cf(\delta)];$$

$$u_{zx}\left((z^n, x^n): \left|\frac{1}{n}\left|\mathbf{C}_{H+D}(z^n, x^n)\right| - H(q) - D(q||p)\right| > \delta\right)$$

$$\leqslant \exp[-n \ cf(\delta)],$$

probability measure; $f(\cdot)$ at zero neighborhood is continuous, non-decreasing, non-negative function of known order; f(0) = 0. where c is a constant; $u_{zx}(z^n, x^n) \stackrel{\Delta}{=} p_x(x^n) q_z(z^n)$ is a joint

Weak Measurements

fidelity arbitrary close to the unity, where $\langle \cdots \rangle_{p_{\tilde{\rho}}}$ denotes the average w.r.t. the measure $p_{\tilde{\rho}}$. weak measurements of $U_{\varphi}^{n}|x^{n}\rangle$, one can estimate the value of inequality below is satisfied, then, for all sufficiently large n, by one-to-one mapping. If, for any sufficiently small $\delta > 0$, the unitary transformation U_{φ}^{n} with a computational basis $\{|a_{i}\rangle\}$. quantum i.i.d. source with density matrix ρ , is subjected to a Let $\tilde{\rho}$ be the effective matrix of ρ with respect to $\{|a_i\rangle\}$. Let φ be a **Theorem 1** Suppose a product state $|x^n\rangle \in \mathcal{H}_{in}$, emitted by a $\left\langle \frac{1}{n} \left| \varphi \left(x^n \right) \right| \right\rangle_{p_{\tilde{\rho}}}$ with arbitrary high accuracy while maintaining the

$$p_{\tilde{\rho}}\left(\left|\frac{1}{n}\left|\varphi\left(x^{n}\right)\right|-\left\langle\frac{1}{n}\left|\varphi\left(x^{n}\right)\right|\right\rangle_{p_{\tilde{\rho}}}\right|>\delta\right)<\exp\left[-n\ cf(\delta)\right]$$

The Algorithm

$$S(\rho||\sigma) = \left\langle \frac{1}{n} \left| \mathbf{C}_{H+D}(z^n, x^n) \right| \right\rangle_{p_{\tilde{\rho} \otimes \sigma}} - \left\langle \frac{1}{n} \left| \mathbf{C}_{H}(x^n) \right| \right\rangle_{p_{\rho}}$$

of σ . Let $\tilde{\rho}$ be the effective density matrix of ρ with respect to $\{|\chi_i\rangle\}$. matrices ρ and σ , where $\{|\lambda_i\rangle\}$ is the eigenbasis of ρ and $\{|\chi_i\rangle\}$ is the eigenbasis Suppose we have two quantum i.i.d. sources with a priory unknown density

- 1. By weak measurements estimate $\{|\lambda_i\rangle\}$ and $\{|\chi_i\rangle\}$
- 2. for classical code \mathbf{C}_H , define $U^n_{\mathbf{C}_H} := U^n_{\varphi}\Big|_{\varphi = \mathbf{C}_H}$ with computational basis $\{|\lambda_i\rangle\}$, then get an estimate of $\langle \frac{1}{n} | \mathbf{C}_H(x^n) | \rangle_{p_\rho}$ by weak measurements.
- 3. for classical code \mathbf{C}_{H+D} , define $U_{\mathbf{C}_{H+D}}^n := U_{\varphi}^n \big|_{\varphi = \mathbf{C}_{H+D}}$ $\left\langle \frac{1}{n} \left| \mathbf{C}_{H+D}(z^n, x^n) \right| \right\rangle_{p_{\tilde{\rho} \otimes \sigma}}$ computational basis $\{|\chi_i\rangle\} \otimes \{|\chi_i\rangle\}$, then get an estimate of by weak measurements

classical entropy $H(\cdot)$ and classical relative entropy $D(\cdot||\cdot)$ As n goes to infinity, the algorithm will converge to $S(\rho||\sigma)$ by continuity of