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Abstract
We will obtain a lower bound for the estimation of the phasef the eigenvalue

of an eigenvectory) of a unitary matrixQ:

Qlay =e"?|q).

Our analysis generalizes existing lower bounds to the case Whergiven by con-
trolled powerQP of Q, as it is for example in Shor’s order finding algorithm [5].

In this most general setting where we are given controlled arbitrary pd@rers
QP, ... of Q, we will prove aQ(loge™?) lower bound. This bound is derived by a
variation of the polynomial approach, see [1], where we use trigonometric polynomi-
als, see [2]. The bounds are not derived from the degree of the polynomial, though,
but from a frequency analysis argument.

1 The Phase Estimation Problem

Goal: determine up to €

We are given a unitary transformati@has a black-box. We are guaran-
teed thatq) is an eigenvector o, i.e. Q|q) = €™¢|q). Our problem is to
determinep up to precisiore.

Phase estimation algorithm: computeQ, Q?, Q3, ...

The phase estimation algorithm computesvhen given|q) and is the
main building block of Shor’s factoring algorithm, see [4], [5]. The algo-
rithm requires the computation of all the poweds Q2, Q3, ..., Q21 of

Q.

Exponential savings through repeated squaring

Under certain circumstances, though, it is possible to use some knowl-

edge abouf) to use controlled?, Q%°, Q%, ..., Q* " queries. In this case
we can obtain all powers @ up to 2 — 1 with onlyt applications ofQ?’.

Power Queriesw
Let Q be at gqubit unitary transformation. Define the controllpdwer
query W’(Q)(= WP) acting onc+t qubits as

X1) ... %) | W) forx =0

\NID(Q)’X1>‘XC>W/> — { ‘X1>|XC>Qp’1//> forx =1

The phase estimation algorithm

e Input: a transformatior®, which has a fixed eigenvect()
« Output: an approximatiorp of thephasep of |q), i.e.

Qlg) =e?|q).
e Algorithm: compute
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wheregé’z}1 IS the inverse QFT oil qubits. In power query notation:

WEWE W W A 19) ()

What is the minimal number of queries?
The phase estimation algorithm needs= &'(logl/e) queries to

vvlfo,vvlgl,vvlgz, ... for ane approximation tap. Can we do better than that?

0) |a) ~ H®T

2 Quantum Query Algorithms

Quantum algorithm with power queries
A general framework for algorithms with power queries:

 Input: aquerytransformatiorQ (gives the algorithm information about
the problem), withQ from the set of all possible input%.

* OQutput: asolution $Q) depending or) (an & approximation td5 Q)
with probability greater thaé IS actually enough)

* Algorithm:  Let Ug, Uy, ..., Uy be fixed unitary transformations and
\1//(0)> a fixed state. LeWI;O‘(Q) be the power query for alD. An quan-
tum algorithm Is a sequence

Y T(Q)) = UrWET (QUr 1. UW(Q)Uo| y'?). (1)
Output of the algorithm

A measurement of the stahpr(”(Q)} yields a statey) with probability
Py.o. IfforeveryQ e £

PrQ =
2 1S(Q)—x|l<e

the algorithm (1) is said to solve the problem for all inpQts 2.
This combines ideas from [1], [6], and [3].
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Figure 1: The probabillity distribution of the Phase Estimation Algorithm for

each state, depending on the phase

In our analysis we will focus on the dependence of the probabillity for on
state with varyingp.

3 Lower Bounds

Trigonometric polynomial approach
We can use trigonometric polynomials to describe the output of a quantL
guery algorithm (1) for the phase estimation problem.

Proposition 1.A quantum algorithm of form (1) for the phase estimation
problem can be written as

1) = j; o e |K).
()

with oqg) c C. The set J Iis given by
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I(g{L.“J}}.
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The set), is the set of all possible sums of tipe

Jo=10,p1,...,PT, P1+P2,-..., P1+Pr,.... P1+...+Pr}-
and it has at most™2elements.

Analysis of the probability dependence onp
Let us consider an arbitrary algorithm of the form (1). We can show thza
for every outcomen, pm(¢) is a trigonometric polynomial

Pm(@) = 5 €™,

€Ly

whereL, is given byL, = {j—j'| . ]’ € Jp} .
Proposition 2.L,, cannot have more tha2f' elements. l.ewith T queries
we can only geR?’ frequencies.
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Figure 2: The probabilities fgd) in a perturbed phase estimation algorithm,
depending orp

The sharper the spike in theprobability distribution, the more frequen-
cies must be present

Proposition 3.To get a sharp probability peak of width, all frequencies
up to orderl/e have to be present.
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Figure 3: The Discrete Fourier Transform of the probability functionIpr
sampled at 16 points

Proof sketch:A Discrete Fourier Transform opm(¢) at N = & points
yields

€Ly

DFTn[Pm(@)](k) = VN M) -

A

=k modN

We know that if the statenis “correct” for a certain phase, = m/N, the
success probability has to be highy(m/N) > 2.
We can therefore bound

M, >rimk/N =t oon ink/N
DFTN[Pn(9)) ()] = | ()€™ | - ;pm<ﬁ>e2”'“/ > 0.

Ns£m

Since this holds for alk=0,...,N — 1, at leasN of the coefficient)y,
must be non-zero. In other words: the probabllity function must have mo
thanN present frequencies. []

Theorem 4.Every guantum algorithm that computesa@aapproximation to
the phase estimation problem has to use at Iéza(sibg%) power queries.

Proof. Combining proposition 2 and 3 we get'2> c% and therefore

1
T > cdlog-.
> 98

4 Conclusion

The use of controlled queries in the phase estimation algorithm yielded ¢
ponential speed-up compared to standard gquantum queries. In this pa
we could show that the proposed repeated squaring pattern is optimal in.
number of power queries, i.e., it uses the powers in the optimal way.

Interesting future research includes the application of these techniques
the problems of eigenvalue estimation and order-finding to find query low
bounds for these problems.
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