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Abstract
We will obtain a lower bound for the estimation of the phaseϕ of the eigenvalue

of an eigenvector|q〉 of a unitary matrixQ:

Q|q〉= e2π iϕ |q〉 .

Our analysis generalizes existing lower bounds to the case whereQ is given by con-
trolled powersQp of Q, as it is for example in Shor’s order finding algorithm [5].

In this most general setting where we are given controlled arbitrary powersQp1,
Qp2, . . . of Q, we will prove aΩ(logε−1) lower bound. This bound is derived by a
variation of the polynomial approach, see [1], where we use trigonometric polynomi-
als, see [2]. The bounds are not derived from the degree of the polynomial, though,
but from a frequency analysis argument.

1 The Phase Estimation Problem

Goal: determine ϕ up to ε

We are given a unitary transformationQ as a black-box. We are guaran-
teed that|q〉 is an eigenvector ofQ, i.e. Q|q〉= e2π iϕ |q〉 . Our problem is to
determineϕ up to precisionε.

Phase estimation algorithm: computeQ, Q2, Q3, . . .
The phase estimation algorithm computesϕ when given|q〉 and is the

main building block of Shor’s factoring algorithm, see [4], [5]. The algo-
rithm requires the computation of all the powersQ, Q2, Q3, . . ., Q2t−1 of
Q.

Exponential savings through repeated squaring
Under certain circumstances, though, it is possible to use some knowl-

edge aboutQ to use controlledQ2, Q22
, Q23

, . . ., Q2t−1
queries. In this case

we can obtain all powers ofQ up to 2t −1 with only t applications ofQ2 j
.

Power QueriesWp
l

Let Q be at qubit unitary transformation. Define the controlledpower
query Wp

l (Q)(= Wp
l ) acting onc+ t qubits as

Wp
l (Q) |x1〉 . . . |xc〉 |ψ〉=

{
|x1〉 . . . |xc〉 |ψ〉 for xl = 0
|x1〉 . . . |xc〉Qp |ψ〉 for xl = 1

.

The phase estimation algorithm

• Input: a transformationQ, which has a fixed eigenvector|q〉
• Output: an approximatioñϕ of thephaseϕ of |q〉, i.e.

Q|q〉= e2π iϕ |q〉 .

• Algorithm: compute

|0〉 H ��������• |ϕ̃T〉

|0〉 H ��������• |ϕ̃T−1〉
... F−1

2T
...

|0〉 H ��������• |ϕ̃2〉

|0〉 H ��������• |ϕ̃1〉

|q〉 6 Q20
Q21

Q2T−2
Q2T−1 6 |q〉

whereF−1
2T is the inverse QFT onT qubits. In power query notation:

|0〉 |q〉 6 H⊗T W20

T W21

T−1 W2T−2

2 W2T−1

1
F−1

2T 6 |ϕ̃〉 |q〉

What is the minimal number of queries?
The phase estimation algorithm needsT = O(log1/ε) queries to

W20

l1
,W21

l2
,W22

l3
, . . . for anε approximation toϕ. Can we do better than that?

2 Quantum Query Algorithms

Quantum algorithm with power queries
A general framework for algorithms with power queries:

• Input: a querytransformationQ (gives the algorithm information about
the problem), withQ from the set of all possible inputsQ.

• Output: a solution S(Q) depending onQ (an ε approximation toS(Q)
with probability greater than34 is actually enough)

• Algorithm: Let U0, U1, . . ., UT be fixed unitary transformations and∣∣ψ (0)
〉

a fixed state. LetW
p j

l j
(Q) be the power query for allQ. An quan-

tum algorithm is a sequence∣∣ψ (T)(Q)
〉

= UTWpT
lT

(Q)UT−1 . . .U1W
p1

l1
(Q)U0

∣∣ψ (0)〉. (1)

Output of the algorithm
A measurement of the state

∣∣ψ (T)(Q)
〉

yields a state|χ〉 with probability
pχ,Q. If for everyQ∈Q

∑
χ:‖S(Q)−χ‖<ε

pχ,Q ≥
3
4
,

the algorithm (1) is said to solve the problem for all inputsQ∈Q.
This combines ideas from [1], [6], and [3].
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Figure 1: The probability distribution of the Phase Estimation Algorithm for
each state, depending on the phaseϕ

In our analysis we will focus on the dependence of the probability for one
state with varyingϕ.

3 Lower Bounds

Trigonometric polynomial approach
We can use trigonometric polynomials to describe the output of a quantum

query algorithm (1) for the phase estimation problem.

Proposition 1.A quantum algorithm of form (1) for the phase estimation
problem can be written as∣∣ψ (T)〉 = ∑

j∈Jϕ

α
(T)
k, j e2π i j ϕ |k〉 .

with α
(T)
k, j ∈ C. The set Jϕ is given by

Jϕ =
{

∑
k∈K

pk,
∣∣∣K ⊆ {1, . . . ,T}

}
. (2)

The setJϕ is the set of all possible sums of thepi:

Jϕ = {0, p1, . . . , pT, p1+ p2, . . . , p1+ pT, . . . , p1+ . . .+ pT} .

and it has at most 2T elements.

Analysis of the probability dependence onϕ
Let us consider an arbitrary algorithm of the form (1). We can show that

for every outcomem, pm(ϕ) is a trigonometric polynomial

pm(ϕ) = ∑
l∈Lϕ

ηm,le
2π il ϕ,

whereLϕ is given byLϕ =
{

j − j ′ | j, j ′ ∈ Jϕ

}
.

Proposition 2.Lϕ cannot have more than22T elements. I.e.,with T queries
we can only get22T frequencies.
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Figure 2: The probabilities for|1〉 in a perturbed phase estimation algorithm,
depending onϕ

The sharper the spike in theprobability distribution, the more frequen-
cies must be present

Proposition 3.To get a sharp probability peak of widthε, all frequencies
up to order1/ε have to be present.
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Figure 3: The Discrete Fourier Transform of the probability function for|1〉,
sampled at 16 points

Proof sketch:A Discrete Fourier Transform ofpm(ϕ) at N = 1
2ε

points
yields

DFTN[pm(ϕ)](k) =
√

N ∑
l∈Lϕ

l≡k modN

ηm,l .

We know that if the statem is “correct” for a certain phaseϕm = m/N, the
success probability has to be high:pm(m/N)≥ 3

4.

We can therefore bound

|DFTN[pm(ϕ)](k)| ≥
∣∣∣pm(

m
N

)e2π imk/N
∣∣∣− ∣∣∣N−1

∑
n=0
n6=m

pm(
n
N

)e2π ink/N
∣∣∣ > 0.

Since this holds for allk = 0, . . . ,N−1, at leastN of the coefficientsηm,l

must be non-zero. In other words: the probability function must have more
thanN present frequencies.

Theorem 4.Every quantum algorithm that computes anε approximation to
the phase estimation problem has to use at leastΩ(log1

ε
) power queries.

Proof.Combining proposition 2 and 3 we get 22T ≥ c1
ε

and therefore

T ≥ c′ log
1
ε
.

4 Conclusion

The use of controlled queries in the phase estimation algorithm yielded ex-
ponential speed-up compared to standard quantum queries. In this paper
we could show that the proposed repeated squaring pattern is optimal in the
number of power queries, i.e., it uses the powers in the optimal way.

Interesting future research includes the application of these techniques to
the problems of eigenvalue estimation and order-finding to find query lower
bounds for these problems.
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ful discussions. This research was supported in part by the National Sci-
ence Foundation (NSF) and by the Defense Advanced Research Agency
(DARPA) and Air Force Research Laboratory under agreement F30602-01-
2-0523.

References

[1] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum
lower bounds by polynomials. InProceedings of the 39th IEEE Con-
ference on Foundations of Computer Science (FOCS), pages 352–361,
1998. quant-ph/9802049.

[2] Arvid J. Bessen. The power of various real-values quantum queries.
Journal of Complexity, 2004. to be published, quant-ph/0308140.

[3] S. Heinrich. Quantum summation with an application to integration.
Journal of Complexity, 18(1):1–50, 2002. quant-ph/0105116.

[4] M. A. Nielsen and I. L. Chuang.Quantum Computation and Quantum
Information. Cambridge University Press, 2000.

[5] P. W. Shor. Algorithms for quantum computation: Discrete logarithms
and factoring. InProceedings of the 35th Annual Symposium on Foun-
dations of Computer Science (FOCS), pages 124–134, 1994. quant-
ph/9508027.

[6] J. F. Traub and A.G. Werschulz.Complexity and Information. Cambridge
University Press, 1998.


