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Abstract

We examine the interaction between the cavity field and a string of equidistant

three-level atoms of cascade type. The model with the intensity-dependent coupling

is proposed. The matrix elements of the dipole transitions between adjacent levels

are equal. Trapping conditions for the flying time in the cavity as well as the explicit

state of the field are found. The properties of cavity fields are examined. In various

limits, the state exhibits sub-Poissonian and super-Poissonian statistics and squeezing

properties.

1 Introduction

The creation of one-atom micromasers has prompted experimental studies of a single atom

interacting with the resonant mode of cavity fields in recent years (Rempe et al 1987, Brune

et al 1987). Much interest in quantum optics has been generated by such devices, especially,

in connection with the trapping states in the micromaser. As an example, the trapping

effect occurs (Slosser et al 1989) when a two-level atom enters the cavity in the coherent

state α|+〉 + β|−〉, where we have defined the ground and excited states of the two-level

atom as |−〉 and |+〉, respectively. The state will no longer be able to change as long as the

flying time τ in the cavity satisfies the trapping conditions
√

Ndkτ = qπ for even integer q

and
√

Nu + 1kτ = pπ for odd integer p. The cavity field is assumed to be in a pure state
∑Nu

n=Nd
sn|n〉 with Nu and Nd representing the upper and lower boundaries of the Fock states.

We consider a three-level atom of cascade type with the ground state, first and second

excited states denoted by |g〉, |i〉 and |e〉, respectively. In the case the levels are equally

spaced, the trapping condition in a cavity is already found when the dipole transition matrix

elements between adjacent levels are assumed to be the same (Enaki and Koroli 1999). The

initial state α|e〉+β|i〉+γ|g〉 differs from the final state α|e〉−β|i〉+γ|g〉 by a phase change.

The trapping conditions for the flying time τ are given by
√

2τk
√

2Nu + 3 = pπ for even

integers p and
√

2τk
√

2Nd − 1 = qπ for even integers q. It is shown that such a three-level

atom is equivalent to a pair of indistinguishable two-level atoms (Enaki and Koroli 1999,

Wehner et al 1994).
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It has been shown that under certain circumstances, a simple quantum harmonic oscillator

driven by a quantum current evolves to unique pure states even if it starts as a mixed state

(Slosser et al 1989). It has also been shown that in various limits, these states exhibit

nonclassical properties such as sub-Poissonian statistics (Short and Mandel 1983, Rempe et

al 1990), or more interestingly resemble a macroscopic superposition. Moreover, it is found

from the analysis of coherent trapping states in a lossless two-photon micromaser that the

field evolves to a pure state, which may be a superposition of even or odd photon number

states (Orszag et al 1992). These states may exhibit perfect second-order squeezing behavior

as the upper limit when the trapping increases.

The trapping-state solution is obtained in a two-channel Raman micromaser, in which

three-level atoms of Λ-type are injected through the two-mode cavity (Puri et al 1994). It

is noted that the problem is greatly simplified in paper of Puri et al 1994 by considering the

interaction of two-level atoms with a single-mode field. Some important results connecting

with the trapping states in a micromaser are also obtained (Enaki et al 2003).

We consider in this paper the interaction of the single-mode cavity with a string of three-

level atoms of equally spaced energy levels. It should be noted that we investigate the

three-level model with the intensity-dependent coupling (Buzek 1989). This model to a

marked degree differs from the ordinary three-level one (Enaki and Koroli 1999). The atoms

are supposed to have equal transition matrix elements between levels in the cascade configu-

ration. As a result, the problem is equivalent to the interaction of pairs of indistinguishable

two-level atoms with a single-mode cavity field, provided that the separation between the

pair is smaller than the wavelength of the cavity field. It is clear that the beam of pairs

of two-level atoms must satisfy super-Poissonian statistics rather than Poissonian statistics

(Wehner et al 1994, Orszag et al 1994).

In the present work, we obtain the trapping-state solution for a three-level atom in the

cavity without further simplification, and investigate the properties of the field in the trap-

ping state. The state exhibits sub-Poissonian and super-Poissonian statistics and squeezing

properties.

2 Trapping-state solution

We consider, as usual, a micromaser in which a very high-Q cavity is pumped by a string of

atoms at a rate so low that there is at most one atom at a time in the cavity (Meschede et

al 1985a, Meschede et al 1985b). The incident beam consists of three-level atoms of cascade

type with equally spaced levels but different dipole transition matrix elements. Suppose

that the pumping is regular so that the time interval τp between the arrival of two successive

atoms remains unchanged (Puri et al 1994). Assume further that the cavity is lossless. Then

the evolution of the coupled atom-field system during the time interval tint for an atom flying

through the cavity is described by the unitary operator U(tint). If ρa is the density matrix

for an atom entering the cavity, then the density matrix ρ(k + 1) for the field at the instant
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when the (k + 1)th atom exits is given by (Filipowicz et al 1986a, Meystre et al 1988)

ρ(k + 1) = tra[U(tint)ρaU0(τp − tint)ρ(k)]. (1)

Here tra indicates the trace taking over atomic states and U0 is a unitary operator de-

scribing the free field evolution from the instant one atom leaves the cavity to the arrival of

the next one.

The system of the electron interacting with a cavity field in the case of the intensity-

dependent coupling is described by the following Hamiltonian in the rotating-wave approxi-

mation (h̄ = 1)

H = ω0Sz + ωa†a + λ(R†S− + RS+), (2)

where

S+ =
√

2{|e2〉〈e1| + |e1〉〈g|},
S− =

√
2{|e1〉〈e2| + |g〉〈e1|}, (3)

Sz = |e2〉〈e2| − |g〉〈g|.

The constant λ is a real number; ω and ω0 are the frequences of the atom and the field,

respectively. The oparators R and R† are

R = a
√

N, R† =
√

Na†, (4)

with the commutation relations

[R, R†] = 2N + 1, [R, N ] = R, [R†, N ] = −R†, (5)

where N = a†a is the photon number operator. It should be noted that the Hamiltonian (2)

effectively describes the intensity-dependent coupling between the atom and the single-mode

cavity field.

Taking into account that the SU(1,1) Lie algebra for a single-mode field may be realized

as

K+ = R†, K− = R, K0 = N +
1

2
, (6)

with the commutation relations for the generators K0 and K±,

[K−, K0] = 2K0, [K0, K±] = ±K±, (7)

the Hamiltonian (2) may be represented by the following:

H = ω0σ3 + ω(K0 −
1

2
) + λ(K+S− + K−S+). (8)

We emphasize that the Hamiltonian (8) has the same form (up to constant factors) as that

in Gerry’s paper (Gerry 1988). But in our model the realization of the operators K0 and

K± is fundamentally different, because Gerry has analyzed the case with

K0 = (a†a +
1

2
)/2, K+ = (a†)2/2, K− = a2/2. (9)
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The state-vector of the system at time t is given by

|Ψ(t)〉 =
Nu
∑

n=Nd

sn|n〉(α|e〉 + β|i〉 + γ|g〉), (10)

in which we have expanded the one-mode cavity field in the Fock space
∑Nu

n=Nd
sn|n〉. When

the atom enters the cavity at time t′, the state evolves according to the Schrödinger equation

ih̄
∂

∂t′
|Ψ(t′)〉 = H|Ψ(t′)〉. (11)

We consider the resonance case when ω = ω0. The detuning case results in a cumbersome

expression and is not very interesting. The state for the coupled system is

|Ψ(t + τ)〉 = exp(−iHτ/h̄)|Ψ(t)〉 = exp[−iω0(Sz + K0 − 1/2)τ ]

×
{ Nu

∑

n=Nd

sn

[

α



1 +
1

2

(n + 1)2

n2 + 1 + 3(n + 1
2
)







cos



2τk

√

n2 + 1 + 3(n +
1

2
)



 − 1









 |n〉

− iβ√
2

n
√

n2 + n + 1
2

sin



2τk

√

n2 + n +
1

2



 |n − 1〉

+
γ

2

n(n − 1)

n2 + 1 − (n + 1
2
)







cos



2τk

√

n2 + 1 − (n +
1

2
)



 − 1







|n − 2〉
]

|e2〉

+
Nu
∑

n=Nd

sn

[

β cos



2τk

√

n2 + n +
1

2



 |n〉

− iα√
2

n + 1
√

n2 + 1 + 3(n + 1
2
)

sin



2τk

√

n2 + 1 + 3(n +
1

2
)



 |n + 1〉

− iγ√
2

n
√

n2 + 1 − (n + 1
2
)

sin



2τk

√

n2 + 1 − (n +
1

2
)



 |n − 1〉
]

|e1〉

+
Nu
∑

n=Nd

sn

[



γ +
1

2

γn2

n2 + 1 − (n + 1
2
)







cos



2τk

√

n2 + 1 − (n +
1

2
)



 − 1









 |n〉

+
α

2

(n + 1)(n + 2)

n2 + 1 + 3(n + 1
2
)







cos



2τk

√

n2 + 1 + 3(n +
1

2
)



 − 1







|n + 2〉

− iβ√
2

n + 1
√

n2 + n + 1
2

sin



2τk

√

n2 + n +
1

2



 |n + 1〉
]

|g〉
}

. (12)

The expansion coefficients sn of the cavity field in the Fock space satisfy the recursion

relation

sn = −i

√
2β

γ
cot



τk

√

n2 − n +
1

2





√

n2 − n + 1
2

n
sn−1 −

α

γ

n − 1

n
sn−2 (13)

and the trapping conditions for the flying time τ are given by

2τk

√

N2
d − Nd +

1

2
= qπ, for even q (14)
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and

2τk

√

N2
u + 3Nu +

5

2
= pπ, for even p. (15)

It is clear that Eq. (13) cannot be expressed as a cotangent or tangent function for the

two-level atom (Slosser et al 1989, Li and Lin 1997, Hillery and Skvarcek 1998). Hence the

atom or the pair remains in the coherent state and the state-vector of the coupled atom-field

system will be

|Ψ(t + τ)〉 = exp[−iω0(Sz + K0 −
1

2
)τ ]

Nu
∑

n=Nd

sn|n〉(α|e〉 − β|i〉 + γ|g〉) (16)

when the atom or the pair leaves the cavity at instant t + τ . Equation (16) indicates that

after a free evolution, the system has returned to its initial state before the atom enters

the cavity. The atomic and cavity field states become separable if sn satisfies the recursion

relation (13).

Further we consider the most practical case, Nd = 0, in which τ satisfies the condition

(15) only. The relevant initial conditions typically include the vacuum state |0〉 with the

recursion relation given by Eq. (13).

3 The state-vector of the cavity field

The state-vector of the cavity field can be found analytically by using the recursion formula

(13). It is observed from Eq. (13) that sNd+1 = PNd+1sNd
with

PNd+1 = − i
√

2β

γ
cot



τk

√

(Nd + 1)2 − (Nd + 1) +
1

2





√

(Nd + 1)2 − (Nd + 1) + 1
2

Nd + 1
.

In a similar fashion, we find that sNd+2 = PNd+2sNd+1. Here

PNd+2 = − i
√

2β

γ
cot



τk

√

(Nd + 2)2 − (Nd + 2) +
1

2





√

(Nd + 2)2 − (Nd + 2) + 1
2

Nd + 2

−

α

γ

Nd + 1

Nd + 2

− i
√

2β

γ
cot



τk

√

(Nd + 1)2 − (Nd + 1) +
1

2





√

(Nd + 1)2 − (Nd + 1) + 1
2

Nd + 1

.

In order to observe the dependence of the coefficients Pm on m, which enter in the relation

sm = Pmsm−1, we give below the expression for PNd+3

PNd+3 = − i
√

2β

γ
cot



τk

√

(Nd + 3)2 − (Nd + 3) +
1

2





√

(Nd + 3)2 − (Nd + 3) + 1
2

Nd + 3

−

α

γ

Nd + 2

Nd + 3

− i
√

2β

γ
cot



τk

√

(Nd + 2)2 − (Nd + 2) +
1

2





√

(Nd + 2)2 − (Nd + 2) + 1
2

Nd + 2
−

α

γ

Nd + 1

Nd + 2
PNd+1

.
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From these results, it is not difficult to write down the product

sn =
n

∏

m=Nd+1

PmsNd
. (17)

Here the coefficient Pm can be expressed through continued fraction of the form

Pm = − i
√

2β

γ
cot



τk

√

m2 − m +
1

2





√

m2 − m + 1
2

m
(18)

−

α

γ

m − 1

m

b(τ) −

α

γ

m − 2

m − 1
c(τ) − . . . − d(τ)

,

where

b(τ) = − i
√

2β

γ
cot



τk

√

(m − 1)2 − (m − 1) +
1

2





√

(m − 1)2 − (m − 1) + 1
2

m − 1
,

c(τ) = − i
√

2β

γ
cot



τk

√

(m − 2)2 − (m − 2) +
1

2





√

(m − 2)2 − (m − 2) + 1
2

m − 2

and

d(τ) =
i
√

2β

γ
cot



τk

√

(Nd + 1)2 − (Nd + 1) +
1

2





√

(Nd + 1)2 − (Nd + 1) + 1
2

Nd + 1
.

In this situation three-level atom (or pair of two-level atoms) entering the cavity in the

coherent state α|e〉+ β|i〉+ γ|g〉 will no longer be able to change it provided that the flying

time τ satisfies the conditions (14) and (15). That’s why we call this state as trapping state.

As the coefficients sn are related by the cotangent we also call this state as the cotangent

state for the proposed systems. The constant sNd
in equation (17) is determined by the

normalization.

To obtain the analytical expression for the coefficient sn through sNu
, we observe that

sNu−1 can be represented through sNu
in the form sNu−1 = QNu−1sNu

, where

QNu−1 = −i

√
2β

α
cot



τk

√

(Nu + 1)2 − (Nu + 1) +
1

2





√

(Nu + 1)2 − (Nu + 1) + 1
2

Nu

.

In the same way one can find that sNu−2 = QNu−2sNu−1. Here

QNu−2 = −i

√
2β

α
cot



τk

√

N2
u − Nu +

1

2





√

N2
u − Nu + 1

2

Nu − 1

−

γ

α

Nu

Nu − 1

− i

√
2β

α
cot



τk

√

(Nu + 1)2 − (Nu + 1) +
1

2





√

(Nu + 1)2 − (Nu + 1) + 1
2

Nu

.
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In order to observe the dependence of the coefficients Qm on m, which appear in the

relation sm = Qmsm+1, we represent the expression for QNu−3

QNu−3 = −i

√
2β

α
cot



τk

√

(Nu − 1)2 − (Nu − 1) +
1

2





√

(Nu − 1)2 − (Nu − 1) + 1
2

Nu − 2

−

γ

α

Nu − 1

Nu − 2

− i

√
2β

α
cot



τk

√

N2
u − Nu +

1

2





√

N2
u − Nu + 1

2

Nu − 1
−

γ

α

Nu

Nu − 1
QNu−1

.

Now one can observe that sn can be represented through sNu
in the following manner

sn =
Nu−1
∏

m=n

QmsNu
, (19)

where the coefficient Qm can be expressed through continued fraction by the following

Qm = −i

√
2β

α
cot



τk

√

(m + 2)2 − (m + 2) +
1

2





√

(m + 2)2 − (m + 2) + 1
2

m + 1
(20)

−
γ

α

m + 2

m + 1

bQ(τ) −
γ

α

m + 3

m + 2
cQ(τ) − . . . − dQ(τ)

,

where

bQ(τ) = −i

√
2β

α
cot



τk

√

(m + 3)2 − (m + 3) +
1

2





√

(m + 3)2 − (m + 3) + 1
2

m + 2
,

cQ(τ) = −i

√
2β

α
cot



τk

√

(m + 4)2 − (m + 4) +
1

2





√

(m + 4)2 − (m + 4) + 1
2

m + 3

and

dQ(τ) = i

√
2β

α
cot



τk

√

(Nu + 1)2 − (Nu + 1) +
1

2





√

(Nu + 1)2 − (Nu + 1) + 1
2

Nu

.

The next section is devoted to the statistical properties of the single-mode cavity field for

the trapping-state solution.

4 Numerical results

Let us now consider the statistical properties of the cavity field for the trapping-state solution.

It should be noted that our results for the coefficients of the decomposition of a cavity field
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on the Fock space block (13) and (18) differ from those for a two-level atom, interacting

with the one-mode cavity field (Slosser et al 1989, Li and Lin 1997) and it is necessary to

emphasize that in our case these coefficients depend on the three parameters α, β and γ,

which satisfy the relation |α|2 + |β|2 + |γ|2 = 1. In this case the electromagnetic field

fluctuations depend on the two independent parameters α and γ. In the case of a single

two-level atom this dependence was described by one parameter (Slosser et al 1989, Li and

Lin 1997) α (|α|2 + |β|2 = 1). As a function of these two parameters α and γ the photon

statistics in a cavity drastically changes in comparison with the two-level atom (Slosser et al

1989). Further we calculate the mean number of photons and their fluctuations for various

values of Nu = 3, 20 for two different atomic inversions |γ|2 = 0.25, 0.65 in the case when

α, β and γ are real by using the following formulae

〈n〉 =
Nu
∑

n,n′=0

s∗nsn′〈n|a†a|n′〉

=
Nu
∑

n=0

|sn|2n,

〈n2〉 =
Nu
∑

n=0

|sn|2n2, (21)

σ =
〈n2〉 − 〈n〉2

〈n〉 .

In figures 1-4 we represent our numerical results for Nu = 3 and 20. In the case of Nu = 3

we observe that the mean photon number 〈n〉 mainly decreases with the increasing of the

atomic inversion |α|2, while the fluctuations in the mean photon number σ increase with

the increasing of |α|2. It should be noted that in the case of small inversion |γ|2 = 0.65

takes place mainly super-Poissonian statistics. With the increasing of the atomic inversion

|γ|2 = 0.25 occurs mainly sub-Poissonian statistics.

With the increasing of Nu (Nu = 20) the mean number of photons and fluctuations σ

exhibit more interesting behavior. For Nu = 20, |γ|2 = 0.25 in contrast with the case

Nu = 20 and |γ|2 = 0.65 both 〈n〉 and σ oscillate beginning from the region |α|2 ≈ 0.22. In

this case 〈n〉 has some sharp decreases, which are simultaneously accompanied with sharp

jumps of σ. For example, in the closed region |α|2 ≈ 0.33 the fluctuations take their maximal

value σ ≈ 5.0. These points describe the strong energy exchange between the atomic and

photon subsystems. One can see that in these points takes place the quick collapses and

revivals of the mean photon number.

In the points of sharp jumps we observe the super-Poissonian statistics σ > 1. It should

be noted that such sharp jumps where also observed in the paper of Enaki and Koroli 1999

devoted to the three-level equidistant model with the two ordinary cascade transitions. One

can see that the photon statistics for the three-level model with the intensity-dependent

coupling to a marked degree differs from the ordinary three-level model (Enaki and Koroli

1999).
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Below we will study the second-order and amplitude-squared squeezing. The phase com-

ponents of the field amplitude in two quadrants are defined by

d1 = (A + A†)/2, (22)

d2 = (A − A†)/2i, (23)

where A = a exp(iω0t), A† = a† exp(−iω0t). Whenever the condition

〈(∆di)
N〉 < (N − 1)!!/2N (24)

is satisfied, the corresponding state is called the Nth-order squeezing state (Hong and Mandel

1985a, Hong and Mandel 1985b). The degree of squeezing is measured by the parameter

D
(N)
i =

2N〈(∆di)
N〉

(N − 1)!!
− 1, i = 1, 2. (25)

It is clear that squeezing appears when −1 < D
(N)
i < 0 according to the definition in Eq.

(24).

A state of the field is said to be amplitude-squared squeezed whenever one of the two

operators Y1 and Y2 satisfies the relation (Hillery 1987a, Hillery 1987b)

〈(∆Yi)
2〉 < 〈N̂ +

1

2
〉, i = 1 or 2, (26)

where

Y1 = (A2 + A†2)/2, Y2 = (A2 − A†2)/2i. (27)

In this equation N̂ = a†a represents the photon number operator. Let

Q1 =
〈(∆Y1)

2〉 − 〈N̂ + 1
2
〉

〈N̂ + 1
2
〉

(28)

and

Q2 =
〈(∆Y2)

2〉 − 〈N̂ + 1
2
〉

〈N̂ + 1
2
〉

. (29)

From (26) one can see that the field is in an amplitude-squared squeezed state when −1 <

Qi < 0. The smaller Qi is, the stronger the amplitude-squared squeezing is.

In figs 5-8 we represent our numerical calculations for real values of α, β and γ in the case

of Nu = 3 and 20 performed for the second-order and amplitude-squared squeezing. One

can see that with the increase of Nu both the second-order and amplitude-squared squeezing

increase. In the case of Nu = 20 we observe that with the increasing of the population of the

ground state |γ|2 the second-order and amplitude-squared squeezing increase. The maximal

value of the second-order squeezing takes place in the case |γ|2 = 0.65 and D
(2)
1 can reach

almost 36% in the region |α|2 ≈ 0.06. From figures 7 and 8 one can see that for Nu = 20 the

maximal value of the amplitude-squared squeezing is Q1 ≈ 45% for |γ|2 = 0.65 in the region

|α|2 ≈ 0.14.
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5 SUMMARY

In this paper we have proposed the model, which exhibits the trapping effect and obtained

the cotangent state of the electromagnetic field in a microcavity. Such trapping effect can be

obtained for higher excited Rydberg states of atoms, for which the energy distance between

the states |n, s〉 → |n−1, p〉 and |n−1, p〉 → |n−1, s〉 is approximately equal. The dependence

of the detuning ω32−ω21 on the excitation number for Rydberg atoms is described in papers

(Goy et al 1982, Brune et al 1987) and tends to zero value in the region of n ≈ 60 and 40.

For trapping state we investigated the features of the one-mode cavity field. It should

be noted that in the case when Nu = 3, 20 we observed both sub-Poissonian and super-

Poissonian statistics for given |γ|2 = 0.25, 0.65. It should be noted that with the increasing

of Nu the properties of the single-mode cavity field become more interesting. For example,

for Nu = 20 and |γ|2 = 0.25 with the increasing of the atomic inversion |α|2 takes place

sub-Poissonian statistics σ < 1 and beginning from the region |α|2 ≈ 0.2 in the points of

sharp jumps super-Poissonian statistics occurs σ > 1. Such sharp jumps are not observed in

the case of Nu = 3.

We have also investigated the second-order and amplitude-squared squeezing of the field

in a cotangent state. It is found that optimal squeezing can be achieved by properly choosing

the atomic inversion and upper boundary of the Fock space block Nu.

In conclusion, it should be noted that although a model with a lossless cavity might seem

academic, actual experiments in micromasers have been performed with extremely high Q

values, and so this model might not be unrealistic (Rempe et al 1987).

An experimental verification of results requires an extremely low temperature, such that

the number of thermal photons is much less than 1, which can be achieved experimentally

(Rempe et al 1987, Meschede et al 1985). On the other hand, one would except these states

to be robust to cavity dumping (Slosser and Meystre 1990). In any event, with present-day

technology, very-high-Q cavities are available (Rempe et al 1987) (Q ' 1011). The existence

of the trapping states does not seem to be very sensitive to small velocity fluctuations in the

beam (Orszag et al 1992).
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