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Good Additive Cyclic Quantum Codes

Ai Luo and M. Reza. Soleymanni

Abstract - The paper presents all the best additive cyclic quantum codes of length up to 23
qubits, as well as a table showing the existed additive cyclic quantum codes of length up to
31 qubits.

1. Introduction
Calderbank’s paper [1] turned the problem of finding additive quantum codes to the

problem of finding self-orthogonal cods over GF(4) . In [1], many methods were

presented. In this paper, we use one of those methods in [1] to do a thorough research.

2. Some theorems
Calderbank’s paper [1] presented the following theorem about the additive cyclic codes

over GF (4)”:
Theorem 1:

a) Any (n, 2 ) additive cyclic code C has two generators which can be represented as

(wp(x)+q(x).r(x)), where p(x),q(x),r(x) are binary polynomials, p(x) and
r(x) divide x"—1 (mod 2), r(x) divides a(x)( _%x) (mod 2), and

k=2n—deg p—degr.
b) If <wp'(x) +4'(x), r'(x)> is  another  such  representation,  then

p'(x)zp(x),r'(x)zr(x) and q'(x)Eq(x) (mod r(x)).
¢) C is self-orthogonal if and only if
p(x)r(x"’l)Ep(x"’l)r(x)EO (mod x"-1)

p(x)q(x"’l)zp(x"’l)q(x) (mod x"-1)

This theorem enables us to search all of the self-orthogonal additive cyclic codes over
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GF (4)” In order to find the corresponding [[n,n—k,d ]] additive cyclic quantum

codes, we need the following theorem, which is also mentioned in [1]:

Theorem 2: If C is an (n. 2k ) additive code with weight enumerator W, (x,y) [2],
then the weight enumerator of C* is given by:
_ Ak
WCL (x, y) =2 W(x+3y,x—y)

We can find the minimum distance of C*—C by comparing the coefficients of

W, (x,y) with those of W, (x,y).

The search ranges for the polynomials p(x), g(x), r(x) are the following:
1) The arrange for p(x) is between 1 and x" —1, notincluding x"—1. p(x) can not
be 0, for if p(x) is 0, the code C will be a binary code.
2) The arrange for r(x) is between 1 and x"—1, including x"—1. When r(x) is
x" =1, r(x) can not be considered as a generator, for r(x) is actually 0 (mod x" —1).
In this case, the generator of the code is simply <wp (x)+q (x)> :
3) The arrange for g(x) is between 1 and r(x), including r(x). Note that
q(x)=r(x) is equivalent to g(x)=0, for the generators <wp(x)+ r(x),r(x)> and
<wp (x),r(x)> generate same code.
3. The search algorithm

1) Find all of the irreducible binary factors of x"—1 over GF(2). These factors will

help us in the next step — finding p(x) and r(x).

2) Consider all of the pairs of p(x) and r(x) which satisfy the equation
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p(x)r(x”’l)zp(x”’l)r(x)EO (mod x"-1)

3) For each pair of p(x) and r(x) coming from step 2), consider all of the possible
g (x) which satisfy
a) q(x)(x"-1)=0 (mod p(x)r(x))
b) p(x)q(x’”)z p(x’“)q(x) (mod x"-1)

4) For each set of qualified polynomials p(x),g(x),r(x), we calculate the weight

enumerators of the code and its dual code to find d .

4. The results
Table 1.1
Additive cyclic quantum codes with highest minimum distance

Parameters Generators
[[5.03]] |(wwo10)(11111)
[[5.13]] |(ww1o01)
[[5.41]] | (wwwiww)
[[7.0.3]] | (wwwOw00) (1011000)
[[7.13]] | (ww10001)
[[7.3.2]] | (wwoOwo011)
[[7.4.2]] |(wWlwwwo1)
[[7.61]] | (wwwwiwww)
[[9.0.4]] | (www101000)(110110110)
[[9.13]] | (ww1000001)
[[9.23]] |(wwwl01101)
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[[9.3.3]] | (w0Ow11011)

[[9.6.2]] |(wilwllwll)

[[9.7.1]] | (wwOwwO0iwwO)

[[9.8.1]] | (wwwiwwwiwww)

[[110.4]] |(ww000101000) (11111111111)
[[1LL3]] | (ww100000001)

[[1L10.0]] | (wwwiwwwwiww w i)

[[13.0.5]] | (ww00101110100) (1111111111111)
[[13.15]] |(ww10011011001)

[[13.12.1]] | (wwwiwwwiwwwiwww )

[[15.0.6]] | (wlwww1w00000000) (101100110100000)
[[15.1.5]] | (ww1001100011001)

[[15.2.5]] |(www110110011011)

[[15.3.5]] | (w00w01101010110)

[[15.4.4]] | (ww10w1001110111)

[[15.5.4]] | (WOwlw®w001111001)

[[15.6.4]] | (wW00wwwiw10101001)

[[15.7.3]] | (wwOwO001wO101111)

[[15.83]] |(w111wOwww001101)

[[15.9.3]] | (wwOOwWww11wl10111)
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[[15.10.2]] | (w1111wll11wl111)

[[15.11.2]] | (Ww101ww101wwl01)

[[15.12.2]] | (wilwllwllwlliwll)

[[15.13.1]] | (wwOwwO0ww0wwO0iwiwO0)

[[15.140]] | (Wwwwwwiwwwwwwwww)

[[17.0.7]] | (ww001101111101100) (111111111111 11111)
[[17..7]] | (®w101110101011101)

[[17.8.4]] | (w10www01w11100111)

[[17.9.4]] |(ww1wllwlww0010100)

[[17.16.1]] | (Wwwwwwiwwwiwwwwwwww)

[[19.0.7]] | (ww00000101110100000) (111111111 1111111111)
[[19.1.7]] | (ww10000101010100001)

[[19.18.1]] | (Wwwiwwwiwwwiwwwiwwwiwww i)

[[21.0.8]] | (ww 010w 001110110000000),(100011001010111110000)
[[21.17]] |(ww1000010110110100001)

[[21.2.6]] | (www101111110011111101)

[[21.3.6]] | (wwOW00001000011111011)

[[21.4.6]] | (WOwww1010010010101101)

[[21.5.6]] |(w110ww110011110000101)

[[21.6.5]] | (WwwOw1w00010111010011)
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[[21.7.5]]

[21.8.4]]

[21,9.4]]

[21.10,4]]
[21.11,4]]
[21.12,3]]
[21,13,3]]
[21,14,3]]
[21.15,3]]
[21.16,2]]
[21,17.2]]
[21.18,2]]

[21.19.1]]

(WOOwwwww0001101010101)
wOw1l0wOww011100111001)
w00011wl1lw00100000111)
wOwlwOww0lw0100110111)
wOlwwOl11lwOw110000011)

szlvazllev_VOOww00110001>
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[[23.12.4]]

[[23.22.1]]

ww000011100010001110000),
I1T1111 1111111111111ty

(Wwwwww00w00wOw0000000000),
(11111001001010000000000)

(wwwww00w01wOwl1110000000),
(1111111111111t

WWWWW10W01w0W1001000000>
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Table 1.2
All of the valid [[25 <n<3l, k]] for additive cyclic quantum codes

(“E” means exist)

k\n |25 27 29 31
0 E E E E
1 E E E E
2 E

3 E

4 E

5 E E
6 E E
7 E

8 E

9 E

10 E
11 E
12

13

14

15 E
16 E
17

18 E

19 E

20 E E E
21 E E E
22

23

24 E E

25 E E
26 E E
27

28 E

29

30 E
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Table 1.3
Some additive cyclic code with highest minimum distance for n =31
Parameters Generators
(Wwww0O0wIlwwlwOwllw00wlIw000000000),
[[31.15.5]]
(1100101101111010100010011100000)
(wwwwlOwlwwlwlwlOwlOwlIw100000000),
[[31.16.5]]
(1010111011000111110011010010000)
[[31.20.4]] (W1001wwOlwOwwOlwwwOww0001101001)
[[31.21,4]] (Ww001lwO0wlwwwlwlwOlwwlwl0ol1111111)

5. Conclusion

All of the codes listed in table 1.1, except the codes [[1 1,0,4]] [[1 1,1, 3]] , meet the lower

bounds in the table of [1], which are the best additive quantum codes we can achieve now.
Thus, to a great degree, searching the best quantum codes can be replaced by searching the
best additive cyclic quantum codes. The search complexity will therefore be greatly
reduced.
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