A Completion of the Bohr and Rosenfeld’s Seminal Article on the Problem of

Measuring the Free Quantum Electromagnetic Field

Luis Gerardo Pedraza Saavedra

Faculty of Engineering, Department of Basic Sciences,
Pontificia Universidad Javeriana, A. A. 26239, Cali, Colombia.
E-mail: lugepesa@hotmail.com

Descriptors: quantum mechanics, Bohr’s interpretation of quantum mechanics, quantum
electrodynamics, quantum theory of measurement of the free electromagnetic field, vacuum

fluctuations.

PACS: 12.20; 42.50.L; 06.20.D

It has been decided by general consensus that in 1933, Bohr and Rosenfeld showed that the order of
magnitude of precision in the measurement of the free quantum electromagnetic components
imposed by their uncertainty relations could be estimated with thought experiments. The ingenious
article by Bohr and Rosenfeld describes the complicated measuring devices that would be needed,
but does not include a graphic representation of these. Neither does it show the measurement of a
magnetic component in a given space-time region, nor the measurement of two parallel magnetic
components, nor the measurement of two non-parallel magnetic components, nor the parallel
measurement of one magnetic and one electric component, nor the non-parallel measurement of
one electric and one magnetic component, nor the non-parallel measurement of one magnetic and
one electric component in two different space-time regions. This article covers these pending
matters and the graphics of cases studied by them.

Eighteen years after the publication of the fundamental work of Bohr and Rosenfeld, Corinaldesi, a
doctoral student of Rosenfeld’s, found an error in the estimation of the order of magnitude of a
critical field in a situation considered by Bohr and Rosenfeld as the significant one. They used their
estimate to conclude that it was not necessary to take into account the vacuum fluctuations in the
situation considered.

In the present paper, it will be shown through a comparative analysis between the results of Bohr
and Rosenfeld and Corinaldesi, that in the cases studied and not studied by Bohr and Rosenfeld,

the error discovered by the latter does not affect the conclusions of the former.




1. INTRODUCTION

It has been decided by general consensus that in 1933, Bohr and Rosenfeld O
demonstrated by means of thought experiments that the physical possibilities of
measurement were in accordance with what had been predicted by the formalism of free
quantum electrodynamics. That is to say, the order of magnitude of precision in the
measurement of the free quantum electromagnetic components imposed by their
uncertainty relations could be estimated by ideal experiments, distinguishing clearly
between the effects of the structure of the test bodies and the quantum-mechanical
effects which arise from their manipulation.

In the commutation relations ¥ of the free quantum electromagnetic field
components in two defined space-time points, only the constants % and c and space-
time derivatives of the Dirac & -function are required. Also, with 7 and c there is no
fundamental space-time scale association and the Dirac ¢ -function is only well-defined
when integrate over so, Bohr and Rosenfeld concluded that only the space-time
averages of the field components make sense, and that their measurement should be
carried out with charge and/or monopole distributions, and the possibility of
constructing them was studied in detail by Bohr and Rosenfeld, who opted for the
measurement of an electric component in a given space-time region. They also studied
the measurement of two parallel electric components, the measurement of two non-
parallel electric components and the parallel measurement of one electric and one
magnetic component in different space-time regions.

Bohr and Rosenfeld’s ingenious article describes in words the complicated
measuring devices that would be needed, but does not include a graphic representation
of these, nor does it show the measurement of a magnetic component in a given space-
time region, nor the measurement of two parallel magnetic components, nor the
measurement of two non-parallel magnetic components, nor the parallel measurement

of one magnetic and one electric component, nor the non-parallel measurement of one



electric and one magnetic component, nor the non-parallel measurement of one
magnetic and one electric component in two different space-time regions.

This article covers the pending cases and the illustrations of the cases already
studied. Recently Compagno and Persico @) @) (25, (27) have cast doubt on the validity of
the calculation that Bohr and Rosenfeld carried out with respect to the self-field of the
test body in the measuring of an electric component within a space-time region.

Nonetheless, Compagno and Persico’s re-analysis of Bohr and Rosenfeld’s procedure
has been criticized by Hnizdo ©) ©). ©). 26). 28), who declares that Compagno and Persico’s
results are incorrect. Bearing in mind this debate, and remembering (V) that some
eighteen years after the publication of Bohr and Rosenfeld’s original work, Corinaldesi
(16). (17), who was one of Rosenfeld’s own doctoral students, discovered a significant error
in a critical field used by them to show that it was not necessary to take into account
vacuum fluctuations in the measurement problem under discussion.

This makes it important to check the conclusions made by Bohr and Rosenfeld in the
light of Corinaldesi’s finding, so that subsequent developments can be fully justified.
This paper shows that from a conceptual point of view, Bohr and Rosenfeld have no
need to respond to Corinaldesi. Furthermore, using the calculations of order of
magnitude which arise from the comparison of the Bohr and Rosenfeld and Corinaldesi-
type of cases, we can see that the correction of the latter does not have decisive
consequences on the analysis made by the former, or on the cases of measurement

which were not analyzed by Bohr and Rosenfeld in their article.

2. UNCERTAINTY RELATIONS

Some of the uncertainty relations predicted by the formalism for the average

components of the free quantum electromagnetic field are (- (24
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is the average of E_ in the space-time region I, with volume V, and duration 7, .

Additionally, writing 7, = (x,,y,,2,), I, =(X,,¥,,2,)and r= |72 - 71| we have
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Therefore, it must be possible to take the measurement of only one field component with

arbitrary precision, the averages of all the component pairs over the same space-time

region commute and must be exactly and independently measurable. Also, the averages

of the two components of the same type over two space-time regions with equal times

commute, and similarly the averages of the components of different types commute in

two space-time regions when the spatial regions coincide.

From the above uncertainty relations, there are at least ten representative and

different cases of measurement, from which the measurement cases considered by Bohr

and Rosenfeld were



1) E",

2) E"” and E!",

(3) E\” and E{ and

@) E" and H";

and the measurement cases not considered by Bohr and Rosenfeld which will be treated
here are

() H,",
6) " and H™,

(7) H" and H\",

(8) H” and E",

9) E and ﬁ;’” and

(10) H" and E".

3. PRESUPPOSITIONS FOR ELECTROMAGNETIC FIELD MEASUREMENTS

3.1 ELECTRIC FIELD MEASUREMENTS

Taking into account that quotations from different authors have been marked with
quotations marks where they begin and end, it is reasonable to accept ®), along with
Bohr, “that to have scientific experiences it is necessary to develop a language with no
ambiguity. He maintained that there is only one language - human language - and the
only one we will ever have. In its everyday use this language is full of ambiguities but
nevertheless it can be refined, and rid of all ambiguities. For Bohr, classical physics is
only a refinement of this everyday language”.

Within Bohr’s approach G “a crucial epistemological role is imparted to the instruments
of measurement. In Bohr’s words they must be described in purely classical terms.

Concerning them it is essential to note that at the place where Bohr made a conceptual



analysis of some thought experiments involving movable diaphragms, what he
suggested in this connection is that instruments and their parts are to be considered
either as classical or as quantum systems not according to their physical properties”, for
example, be macroscopic or be microscopic, “but just according to our point of view.
They are quantum systems if we carry on observations on them by means of other
instruments. They are classical systems if we use them as instruments of observation”
so, taking into account that the measurement of electromagnetic field quantities rests by
definition on the transfer of linear momentum to suitable electric or magnetic test bodies
situated in the field, the interactions between the field which is measured and the test
body which defines the measurement must be described in classical terms. Equally, the
test body as a field source during its linear momentum measurements must also be
described in these terms in spite of the Heisenberg’s uncertainty principle restricts the
above linear momentum measurements.

“This, of course, raises some delicate problems, concerning both the notation of
object and that of instrument. What part of a phenomenon can properly be called the
(quantum) object?

This question has been made the theme of some debate. Here let it simply is
noted how Roldan ®) contributed to somewhat clarify this point: he noted first that, of
course, within any well-specified phenomenon we feel it necessary to distinguish
between the instrument of observation and all the rest. But his idea is that we must be
careful not to rashly identify this rest with the object, as we might well be tempted to do.
Following him, let us just call it the inside of the phenomenon. His point is that, as we
just noted, the cut between the instrument and the inside depends on what phenomenon
is considered: in a two-slit experiment with a movable diaphragm (and of the type Bohr
considered), it leaves the diaphragm on the side of the inside; on the contrary, in the
case in which the same diaphragm is fixed, it leaves it on the instrument side. Hence it is
only in the latter case that the inside coincides with the diffracted particle and can
therefore properly be called the object. To get at, within Bohr’s views, a suitable general

definition of the object we must therefore make one more move. Rolddn suggests



defining the object as the feature of the inside that remains the same when two
complementary phenomena are considered. In the example under study the phenomena
with fixed and movable diaphragms are, in a way, complementary in Bohr’s sense and
their insides do have a common part, namely the particle. We see therefore, what was
not obvious at the start that even within Bohr’s approach the notion of a quantum object
can consistently be kept”.

In order to have a definite case in mind we consider the measurement of the
average of the electric field component in the x-direction.

Choosing the region of field measurement with volume V =L’ and time T, and
observing that that measurement remains by definition in the linear momentum transfer
to the test body situated in the field during instants Az, which occur in each individual
linear momentum measurement at the beginning ¢ and at the end ¢’ of interval T; it is
concluded that Ar must take itself as small as possible, especially if the field measured
varies quickly with time. Therefore we have that Ar << T. By also adding a large mass to
the test body, its acceleration due to the action of the field can obviously be made very
small.

Supposing that the measurements of the linear momentum of the test body are
made in the x-direction, and that its uncertainty is Ap, , which is accompanied by a loss
Ax << L in the knowledge of the position of the body in question; in spite of the fact that
a sufficiently massive test body can be chosen to reduce the acceleration acquired within

the action of the field measured, the body can nevertheless acquire a velocity v _during
At, which can be greater still if Ap. and At are small. Indeed, according to relations

AH =v Ap, and AHAt = h, where AH is the energy uncertainty of the test body during

the time of measurement Az, we obtain v _= . This velocity, as we shall see later

Ap At
can be compensated by means of a mechanical device as a lever moved by a spring,
which, after each linear momentum measurement, gives a counter-impulse to the test

body so that the velocity is reduced to zero. We can therefore consider that, with the



exception of time lapse At which each measurement takes, the test body is always at
rest, and subsequently its position practically never changes.

It is helpful to say that what Bohr and Rosenfeld had in mind here is what is now
called a quantum non-demolition measurement (0.

The description of the rigid test body is necessary to ensure that the only effect of
the field measured on the test body is the global displacement of the body. Nevertheless,
as the body has a finite extension, the effects of retardation due to the finite propagation
of the interactions must be taken into account. In particular, it is required that cT < L,
because otherwise, the field measured will have time to spread from one extreme to the
other of the test body during time T of exposure to the field. This propagation will have
the tendency of masking the temporal dependence which is also to be measured. The

opposite case c¢T > L, still in the classical domain, is of little interest, because all the
peculiarities of the undulatory fields within volume V =L *are at the end reduced by
the averaging process in the propagation during time interval T.

Now, given that the speed of propagation of the interactions is c, the time

required to give to an extensive test body of longitude L, considered as a whole, a well-

L
defined linear momentum, is in the order of magnitude o t= —> T. Therefore the
c

measurement time Az will not meet the condition A7 < < T because this would imply

that Ar << t and the body, as a whole, will not be able during the time of measurement

to acquire a well defined linear momentum by the action of the field. We must therefore
think about a test body which consists of a system of 7 individual components, each
with dimension L, and sufficiently small so that all retardation effects will not be felt,
that is L << cAt, and such that the distance between them does not change during the
measurement process.

The test bodies can be considered as uniformly charged rigid bodies, with

density p, uniformly extended over all the volume V = I’ under investigation.



Following strictly the Bohr and Rosenfeld’s () words, “we must follow the
behavior of the test body as accurately as possible during the whole measuring process.
It turns out that for this purpose it is necessary first of all to know accurately the
position of each test body at all times before and after its use in the measurement. This is
achieved most expediently by having the test body firmly attached to a rigid frame
serving as a spatial reference system, except in the time interval during which the
momentum transfer to the test body from the field is to be determined. At the beginning
of this interval the attachment must be disconnected and the momentum component of
the test body in the direction of the field component that is to be determined must be
measured. We always assume that by an immediately following counter-impulse, as
discussed above, the body is brought back to rest with accuracy inversely proportional
to its mass, at a position which is not accurately predictable. At the end of the time
interval and after renewed measurement of the momentum component in question, the
firm attachment is re-established; here it turns out to be not unessential that the test
body be brought back into exactly the same position as it had originally.

Still more far-reaching demands on idealization with respect to the construction
and handling of the test body system are obviously needed to measure field averages
over two partially overlapping space-time regions. For in this case we must have test
bodies at our disposal which can be displaced inside each other without mutual
mechanical influence. In order that the electromagnetic field to be measured is disturbed
as little as possible by the presence of the test body system, we shall imagine, moreover,
that every electric or magnetic component body is placed adjacent to a neutralization
body with exactly the opposite charge”.

So, at any attempt to construct idealized diagrams of the arrangements of the sort
that will be offered here, the positive and negative charge distributions could be
completely overlap and/or be simply adjacent to one another according as what part of
the arrangements we are considering, those in the two space-time regions of
measurement as a whole, or in each one of regions of measurement. The present paper’s

pseudo-realistic diagrams do not take into account the fact that the test bodies must be



made of a large number of independent small bodies and the implied complications in
the momentum measurement and counter-impulse processes. Presumably, this is
precisely the reason why Bohr and Rosenfeld did not use such diagrams.

Remember that according to classical electrodynamics the interaction between the

test body and the field measured E, can be written as

pl —p.=pEVT, (3.1)
where p! and p/ are the linear momenta of the charged body at the beginning and at
the end of interval T, respectively.

In 1951 Corinaldesi (19 (17) discovered that Bohr and Rosenfeld () had made a
mistake in the calculation of a critical field related to vacuum fluctuations. It has been
argued (18) () that this was surprising in their famous article they used themselves (1) in
the measurement of the charge and current quantities, and by Peres and Rosen 20,
DeWitt @D, von Borzeszkowski and Treder » and Bergmann and Smith ¥ among
others ), in the measurement of the free quantum gravitational field.

We will now show that Corinaldesi’s correction does not change the conclusions
made by Bohr and Rosenfeld in their article, neither in the cases studied by them, nor in
the cases not considered by them, and at the same time we will justify the subsequent
studies based on Bohr and Rosenfeld’s pioneering article from a very different
perspective to that used by Hnizdo ®)- ©). (6. (26), 28) in the defense of Bohr and Rosenfeld’s
work, under attack from Compagno and Persico @ ©). (5. (27),

Bohr and Rosenfeld designated the square root of any of the expressions (2.1),
(2.2), (2.3), (2.5) or (2.6) as a critical field Apohr-Rosenfeld = ABR, for every electromagnetic
field that may be considered, if the latter, being much greater than Agg, was close to the
classical description mode.

Similarly, Bohr and  Rosenfeld  defined another critical quantity
A OBohr-Rosenfeld =AOBR , as the square root of the mean quadratic fluctuation of each
quantity of electromagnetic field, when the number of photons is defined and is equal to

zero. This situation corresponds to the vacuum, in which the expected value of all the



field averages is certainly null, but not their mean quadratic fluctuations. The quantity
Aopr is critical in the sense that when field averages are considered which are much
greater than it, the vacuum fluctuations can be neglected.
Taking into account that the electrical component of the reaction field given by
Bohr and Rosenfeld @) according to the expression (4.11) of Section 4.1, has an
approximate value
E' = pAx, (3.2)
which, replacing it in (3.1), allows the calculation of the approximate linear momentum
transferred by radiation from the test body
O.p, ~ p’VAxAt . (3.3)

From the relation Ap Ax = % we obtain, based on the equation (3.1) that

= h
= : (3.4)
PAXVT
In the interesting physical case L > cT Bohr and Rosenfeld found @ that
[ h Vhe
Apg = ﬁ/ Aogy = Tzcl (35)
2
that is to say that (ABRJ ~ LT > 1, and in the limiting case L >> cT, the critical quantity
A0 gy ¢

Ar is much greater than Aopr and, therefore, after showing the consequences of the
formalism, the vacuum fluctuations can be neglected.

Darrigol (18 has obtained the following simple values for Corinaldesi’s (16 (17)
critical fields, if L > cT
Ve

AT
A Corinaldesi = Ac = ¢ — A OCorinaldesi = AOC = 5 (36)
L L

2
from which {AC J = % <1, and in the limiting case L >> cT, Ac is much less than Aoc,
Ao

and the vacuum fluctuations cannot be neglected.
In the case of cT > L, Bohr and Rosenfeld and Corinaldesi obtained similar values,

that is



ABR= AOBR =AcC = AocC = ’ (3.7)

obtaining that (ABR Jz (AC J = 1, without being able to neglect the vacuum fluctuations
Aoy Ao

either.

Note that in the case L > cT the critical fields Agr and Ac do not coincide. This
was the big flaw in the calculations of Bohr and Rosenfeld which led them to conclude
that the vacuum fluctuations A opr in comparison with Apr could be neglected.

In reality, as Corinaldesi (19 17), demonstrated, the vacuum fluctuations Aoc =
Aopr could not be neglected and are greater than the true critical field Ac.

Nor in the case cT > L can the vacuum fluctuations be neglected, resulting in an
impediment in the measurement which is inherent in the formalism.

The vacuum fluctuations of the field are equal or larger than the non-
commutation effects that we would look for to verify the predictions of the free
quantum electrodynamics formalism. Therefore, it seems that Bohr and Rosenfeld may
have been wrong to claim that their ideal measurements could reveal the quantum
nature of the field.

It could be thought that no measurement is therefore possible, and besides, the
results obtained by Bohr and Rosenfeld and those obtained by other authors based on
these, have no justification, or should be changed, taking into account the true value Ac
and not Apr.

Although it is possible that the exact value A falls typically in the middle

Exact

between the Corinaldesi and Bohr and Rosenfeld estimates (A, <A, <A ) for

Exact

purposes of comparison, they would respectively play the role of minimum limit and
maximum limit and so, the Corinaldesi and Bohr and Rosenfeld estimates seem very
useful when one is speaking about the typical extreme magnitude orders.

In the following paragraphs aspects corresponding to the possible modification of
Bohr and Rosenfeld’s calculations will be analyzed, followed later by the conceptual

analysis.



Beginning now with a process of comparison (1 and returning to the interesting

physical case L>cT, we arrive at {AC J ~ (§)2< 1, obtaining Ac = (cT /L) Asr
Agr L
and therefore
Ac < Asr. (3.8)

Following the own definitions of Apr and Ac, equation (3.8) suggests that it is easier to
arrive at the classical description mode in Corinaldesi's case than in Bohr and

Rosenfeld’s case.

We have seen that AEX = " but as Apg = /4 therefore AE, ~
BR PVTAX L'T BR
ALy _( Agg )

= A, - Itis also required by the own definition of Apr that AEX << Apr so that
pAX LPAXJ BR BR

the quantum domain is tackled in the AE, .. measurement. The latter is the same as

A, Must satisfies 4,,<< 1, or that Apr =

AE

XBR

X'BR

A BRABR.

is a value of certainty in the measurement. We finally conclude that AE =

From the demands with which Apr<<1,L>cT, Ax<Land a = \/}: <1, being a the
C

fine-structure constant, Bohr and Rosenfeld ) showed that the number of elemental

charges Npr of which the total charge of the test body is composed must be very

big. Thatistosay Ner=( p V /e )= AV \F \/% >> 1. Note that the expression
eXBRAX AprAx \ cT

for N, does not directly depend on the value that A,, could have, and therefore its

order of magnitude will not change when the quantity A is replaced for comparison.

The intention is to clarify with calculations the extent to which some of the
expressions used by Bohr and Rosenfeld will be affected, in particular those which

contain in one way or another quantity Apr and not A..

Corinaldesi’s correction implies similar results to those obtained above, that is:



AE, . A . ( L ) AACx = AE, , from which
D

AE, ~AE, . (3.9)
That is to say, there is equal uncertainty in the measurement in Corinaldesi’s case
compared with Bohr and Rosenfeld’s case.
In analogy with the above argument, we can have, for the quantity defined by

. AE, _
.= Ac [Lj =~ =~ , that AEXC ~ Z,CAC. Another immediate result is that
PAx\ cT C

lic— AC (sz =~
Age  Ape \ T

l

2
(CTJ[LJ _ L _,, thatisto say
L N\cT cT

A > . (3.10)
C BR
We conclude from (3.10) that it is easier to tackle the quantum domain in the Bohr and

Rosenfeld’s measurement case than in Corinaldesi’s.

The value of the number of elemental charges that the total charge of the test

body should have in Corinaldesi’s case willbe Nc = (p V /e) = iCV(LJZ- Comparing
ed.Ax\ cT

2 2 2
expressions Npr and Nc we obtain Ne _ ’1BR[L) Ac = (L) (CT) = 1, that is to say
Ny Ae \cT) Ay cT L

Nc = Npr. (3.11)
Equation (3.11) indicates that the test body, electrically speaking remains the same or
that approximately the number of elemental charges of the test body is almost the same
in Corinaldesi’s and Bohr and Rosenfeld’s cases.

The fact that p must make itself very large in order to reduce quantity (3.4), and
likewise for the field of the test body (E. = p Ax) to be very big, does not imply that E
is classical. What is required is an estimation of the frequency involved in its magnitude.
The region to be averaged has linear dimension of order L and temporal extension of
order T < (L /c). Thatis, (1 / T) > (c / L) and the minimum photon frequency will be

v __ = (c / L), with minimum photon energy #v _ , from which the maximum



E)v .

v

number of photons according to Bohr and Rosenfeld @ is

n BR
min

pzAXZVLZ x;fR(L). This indicates that the more precise the measurement is (4,, <<1), the
fic

cT

more classical the test body field becomes. In Corinaldesi's case nc =

L

2
) =1, from which
cT

3 2_2
pzszvL:iz(CT) and, on comparing, (nc / ner) =| —5- [
e AL Fa

NC = NBR . (3.12)
Therefore the number of photons in the test body field, according to (3.12) would not
vary when making the comparison between Corinaldesi’s and Bohr and Rosenfeld’s
cases.

For equation (3.3) Bohr and Rosenfeld () also obtained the expression 8.p, =
p’AxVAt = Apr;R% , which implies that for any desired accuracy of the field

measurement (A, <<1), the influence of the electromagnetic reaction on the momentum

measurement of the test body can be neglected if only At is chosen sufficiently small in

comparison with T (Ar <<T').

2
In Corinaldesi’s case it is concluded that J,p . z(l}j Ap ,QZH and
c R

comparing once again we conclude that (8,p, / 8,p,, ) =1, fromwhich

T (3.13)
provided the linear momentum transferred by radiation from the test body is the same
in the two cases.

Remember that these results are obvious, based on expressions that depend on
neitherA,,, A.,A,, nor A., but the fact that Bohr and Rosenfeld themselves transformed
the above results according to the previous quantities, could suggest that these results
could be amended by Corinaldesi’s correction.

We can therefore conclude that all the preceding results which depend on one or

another way of A, A.,A,, or A., remain with the same status attributed by Bohr and



Rosenfeld, after taking into account Corinaldesi’s correction in both cases L > cT and
L<cT.

“Certainly (18 Bohr and Rosenfeld fail to provide the agreement between the
possibilities of field definition and the possibilities of field transformation which is the
essence of complementary mode of description, because the methods of field
preparation of which Bohr and Rosenfeld are aware, as we will see later, exclude
quantum states that fluctuate less than the vacuum state. This lack of agreement occurs
even without the Corinaldesi’s correction. However, that agreement can be
reestablished by allowing more general field preparations which are now possible in the

laboratory, the called squeezed light (32 “.
3.2 MAGNETIC FIELD MEASUREMENTS

In the measurement of H, not studied © by Bohr and Rosenfeld we would have the
following linear momentum balance if we use a current density j instead of a
monopole distribution

pl —p,=j.VIH,, (3.14)
in complete analogy with (3.1).

Perhaps Bohr and Rosenfeld did not consider it necessary to give an explicit
treatment of the measurements of magnetic field components for the simple reason that,
using the traditional concept of magnetic poles (or monopoles), magnetic field
measurements are entirely analogous to the electric field measurements. It is true that,
until now, isolated magnetic poles do not exists in nature, and for this reason the
formalism of monopoles is not given anymore in modern text on electricity and
magnetism.

An alternative, more physical, treatment of the magnetic field case would be the
use of a test body with a given density of magnetic dipoles, but then the field must be
measured in terms of the torque it exerts on the test body, and the nice parallel with the

electric case would not be possible. Our treatment in terms of the force on a current



density component j, seems flawed because the currents cannot run in just one
direction, they must form loops, and therefore the force of the magnetic field on the test
body cannot be due to a current running only in one direction.

Nevertheless, it can be assumed without loss of generality that inside the
measurement region is a distribution of current sufficiently large for being straight
there, and although closed outside the region too.

Due to expression (4.33) of Section 4.2, the order of magnitude of the magnetic
component in the x-direction of the reaction field of the test body is

H; = jAy, (3.15)
which, replacing it in (3.14) allows us to find the order of magnitude of the linear
momentum transferred by radiation from the test body

3, p,= JjIVAAy. (3.16)
From the equationAp Ay = % and using equation (3.14) it is possible to obtain

— h

AT (3.17)

From equation (3.17) and in analogy with Bohr and Rosenfeld’s treatment, it can be

— . h = A, A
concluded that AH =~ , but since A, = ‘/ﬁ therefore AH ,, = —2& =( B jA e 1t

is also required by the own definition of A, that AH _ << A, so that the quantum

domain is tackled in the H ,, measurement.

. . . LA
The latter is the same as saying that the inequality _f =1, << 1 must be
JBY
AH
satisfied, or that &,, = A 2% is a value of certainty in the measurement. We finally
BR

conclude that AH __, = 8,,A,, .

A relation for obtaining the number of elemental currents that a magnetic test
body must have cannot be found because there are no experimental tests of magnetic

monopoles. What is noted is that, as has already been proved, N,, and N_. being the



numbers of elemental charges of which the total charges of the very large electric test

bodies are composed, the current densities j_, and j . must also be very large and of

the same order of magnitude because of equation (3.11).

N P A _
Now, AH ,, = — o~ (ij ,AC =AH ., from which
T JAY T) jAY

AF ,~AH ;. (3.18)
That is to say, there is equal uncertainty in the measurement in the untreated

Corinaldesi’s case compared with the untreated Bohr and Rosenfeld’s case.

In analogy with the above argument, we can have, for the quantity defined by

U = .AC
J.Ay

,
AH _
(Lj ~ —< that AH . = J.A,.
cT A

2 2
Another immediate result is thatﬁ—c = Ac (L = cryL = L > 1, that is
e Age \cT L \cT cT
B > Uy (3.19)
We conclude from (3.19) that it is easier to tackle the quantum domain in the untreated
Bohr and Rosenfeld’s measurement case than in Corinaldesi’s.

The fact that j_ must make itself very large in order to reduce quantity (3.17), and

likewise for the field of the test body (H; = j Ay) to be very big, does not imply that
H; is classical. What is required is an estimation of the frequency involved in its

magnitude. The region to be averaged is of linear dimension of order L and temporal

extension of order T< L . That is, 7{> % and the minimum photon frequency will be
c

win» from which the maximum number of
min

c
Vi ™ L with minimum photon energy #v

T, 2
photons according to the untreated Bohr and Rosenfeld’s case is ng; =(thﬁ =
AY

min



L —of L C g . .
ijyZVh—:ﬂBRz(—Tj. This indicates that the more precise the measurement is
c c

(U <<1), the more classical the test body field becomes.

2 3
. . H'; JV . -
In the untreated Corinaldesi’s case n. =¢ = ]fAy2V£= o’ L and,
v _. ' hc cT

min

n
. C .
on comparing, — = 1, from which
BR

Ne= Ngg. (3.20)
Therefore the number of photons in the test body field, according to (3.20) would not
vary when making the comparison between Corinaldesi’s and Bohr and Rosenfeld’s

untreated cases.
. . . 5 ) -2 At . . .
Using equation (3.16) we obtain O; Pz = j:VAtAy = Ap Uy, T which implies

that for any desired accuracy of the field measurement (%,, <<1), the influence of the
electromagnetic reaction on the momentum measurement of the test body can be
neglected if only Ar is chosen sufficiently small in comparison with T (A << T").

In the untreated Corinaldesi’'s case it is concluded that 5j Dyc

2
(l}] Ap ¥, 2% and comparing once again we conclude that (51 Dy / 5j Pur ) =1,
c ' : :

from which 5] Py = 5] Pygr, (3.21)

provided the linear momentum transferred by radiation from the test body is the same
in the two untreated cases.
We can therefore conclude that all the preceding results which depend on one or

another way of A,,, A.,%, or ¥., remain with the same status that could had been

attributed by Bohr and Rosenfeld, after taking into account the untreated Corinaldesi’s

correction in both cases L > cT and L<cT.



3.3 INTERPRETATION OF VACUUM FLUCTUATIONS

The problem of vacuum fluctuations can be divided in four topics which are:
(1) treatment of Corinaldesi’s correction on Bohr and Rosenfeld’s treated cases,
(2) treatment of Corinaldesi’s untreated correction on Bohr and Rosenfeld’s untreated
cases,
(3) lack of Bohr and Rosenfeld’s answer to Corinaldesi’s finding and
(4) preparation of equal, larger or lesser fluctuating field states than vacuum and last
Bohr and Rosenfeld’s stand.

In this paper the topic (1) has been studied in the Section 3.1. Similarly the topic
(2) has been considered in the Section 3.2. Now (), as for the topic (3) and as was said
before, Bohr and Rosenfeld made a calculation mistake in the case L > cT. That error led
them to the erroneous conclusion that in the situation considered, the vacuum
fluctuations could be neglected. Given that in the case L<cT the vacuum fluctuations
could also not be neglected, it would seem that the effect predicted by the formalism
would always remain hidden. However, notwithstanding that it was not judged as
physically interesting, Bohr and Rosenfeld made a profound analysis of the
interpretation of the vacuum fluctuations for the case L<cT . That analysis was also
necessary for the case of double measurements of field components in space-time
regions that almost overlap, where, as can be seen from equations like (2.1), (2.2), (2.3),
(2.5) or (2.6), the vacuum fluctuations would hide the measurement independently of
the relation between L and cT. It is possible to consider as a deficiency of the Bohr and
Rosenfeld work the fact that they never responded to the mistake found by Corinaldesi
but in fact, as has been said above, Bohr and Rosenfeld studied a measurement
situations, the problem of which was equal to the one that would be originated if the
correction of Corinaldesi were taken into account.

Finally with respect to the topic (4), remember that the equation n. =

== ~ pzszvh£ is the maximum number of photons in the reaction field
V. C



p ZA.XZ ,0 ZAxZ
produced by the test body, and from the above it can be seen that =

ne Mg

hc
I is an estimate of the square of the fluctuations of its own classical electromagnetic

field, which only depends on the linear dimensions of the measurement domain and

always remains finite without varying with p. Looking at equations (3.5), (3.6) and

(3.7) it can be seen that for L > cT or cT > L, the vacuum fluctuations of the free quantum
electromagnetic field which is to be measured, be it in the case of Bohr and Rosenfeld or
Corinaldesi, coincide therefore with the fluctuations of the classical electromagnetic field
of the test body; that is to say, the fluctuations in the classical field produced by the test
body are the same as the vacuum fluctuations.

“According to Bohr and Rosenfeld, it is possible to have three different types of
field to measure (19:

(a) classical description of field sources,
(b) quantum or photon composition of the field to be measured and
(c) measurement of the field with Bohr and Rosenfeld’s devices”.

After analyzing every preparation situation, they arrived at the conclusion that it
is not possible to separate the measured field’s fluctuations from those of disturbing
fields, that is, those of the classical measuring device, which includes the test body.

“The three kinds of field preparation that Bohr and Rosenfeld could imagine all
lead to quantum states that fluctuate at least as much as the vacuum state. If the Hilbert
space of field states is restricted to such states, the formalism predicts, for the product of
the variances in a double field measurement, a value always higher or equal to the
square of vacuum fluctuations. Then the Bohr and Rosenfeld disregard of vacuum
fluctuations of the compensating fields in the measurement process leads to a smaller
value of the same quantity. And there is no agreement between formalism and
possibilities of measurement.

What Bohr and Rosenfeld overlooked (8 is that by non-classical means field

states can be prepared that fluctuate less than vacuum 2 (squeezed light of modern



quantum optics). This reestablishes the agreement between formalism and measuring
possibilities, as long as it is true that the vacuum fluctuations of compensating fields
should be disregarded”.

According to Bohr and Rosenfeld vacuum fluctuations are therefore an integral
part of the measured field, and the results obtained by means of the Bohr and Rosenfeld
experimental devices are the desired field averages. They reinforced this point of view
arguing that, by definition, the measurement of all physical quantities must be based on
the application of the classical concepts. As a consequence, any consideration of a
limitation on the strict applicability of classical electrodynamics in the measurement of
quantum fields would contradict the very concept of measurement.

To make observations, one has to interact with the system to be observed, which
is then perturbed. Classical physics allows one to suppose that, in principle, the
interaction between the measurement instrument and the observed system can be so
well known that it is possible to consider the observed and the observer as separated.
This aspect is what one can call the divisibility of the classical phenomena.

“Quantum mechanics is based on the quantization of action, / being the minimal
action. Every quantum phenomenon is for Bohr ®) an indivisible whole, which includes
the instrument of observation. The existence of & does not make it possible to define
with precision, in a quantum phenomenon, the interaction between the system and the
instrument of observation”.

In the situations that have been considered in this paper, it would not be possible
then to distinguish operationally between the fluctuations of the measured field and
those belonging to the field produced by the test body that is a part of the measurement
instrument. The field produced by the test body fluctuates in the same manner as the
measured field.

The interpretation given by Bohr and Rosenfeld to the vacuum fluctuations
allows them to conclude than in no case will those fluctuations hide the effect predicted

by the formalism.



“The Bohr and Rosenfeld handling 8 of vacuum fluctuations requires further
justification. Bohr himself had doubt on this handling, even after the Bohr and

Rosenfeld’s paper was published”.

4. REACTION FIELD OF THE TEST BODY

4.1 CASE STUDIED BY BOHR AND ROSENFELD

We will follow strictly the Bohr and Rosenfeld’s (D treatment so, let us consider two
space-time regions with volumes V, = L) and V, = L, and durations 7, and T, and let
us ask for the electromagnetic field which is produced at a point P, =(x,,y,,2,.t,) of
region II by a measurement of the E ’s average over the region I. Thus, we assume that
in volume V, there are originally two electric charge distributions with the constant

densities + p and —p , that of the test body, and that of its neutralizing body. In the

interval from t, to t,+Az, the first charge distribution experiences a simple non-

uniform translation in the x-direction through a distance D!"’ with uncertainty Ax,; in
the interval from t,+ Az, to t it remains at rest at the displaced position; finally, in the

interval from t; to ¢, +At, (At, = At,") it moves non-uniformly parallel to the x-axis back
to its original position, which coincides with that of the neutralization distribution. We
assume according to Section 3.1 that Az, <<T, =1, —t, and Ax,<<D!"<L,.

The neutralizing body is fixed to the reference system by means of screws, and
remains there during the complete measurement process.

The test body itself, before the first measurement of the linear momentum is
taken, is fixed to the reference system by a mechanical arm set in such a way that it fits
between a bolt secured with screws to the reference system, and another bolt fixed to the
test body. All of these devices are neutral of charge and current, including the device

which measures the linear momentum of the test body, and make no contribution to any



electromagnetic field which could interfere with the field to be measured. The
mechanical arm is controlled by a clock whose design allows it to secure or release both
bolts, when required (see Figures 1 and 2).

In the interval between t, to t,+Ar, the test body is detached from the reference
frame, experiencing a simple non-uniform displacement caused by the first linear
momentum measurement in the x-direction. The graduated ruler, fixed by screws to the

reference system could serve respectively to compare the lengths of the experimental
set-up and the spatial region of measurement. In the time from t,+Ar, to t;, the test

body remains at rest in the displaced position.
The test body is chosen as a heavy test body which has to satisfy the uncertainty

relation @YD" Ap'"'= 7, where Ap"' is the uncertainty in the first linear momentum

(I

X

measurement p

Furthermore, if we measure the momentum at the time t, within a short interval

)

X

At, (At, <<T,) a certain velocity v\""' will be transferred to the test body according to

the well-known relation (H'=energy) AH'At, =v\"'Ap'"'At, =#. Just then v{"' is the
velocity which is necessary to displace the test body by D" within the time At,, that is,

h Y L :
D ~—2—_ In contrast to the uncertainties D" and Ap'"" the velocity v!""

~ =~ is
* Ap'"'At, At

a known quantity since the intervals D" and Az, can be chosen (disregarding an
uncertainty A v\”' which is small if the mass of the test body is large). In a similar way

we measure the momentum at t, within a short interval Az, and then bring the test

body back to its original position so that it again covers the region V, exactly.

For the body to stop a counterstroke is given during time Ar, by means of a lever
triggered by a spring (whose elastic constant it is not necessary to specify here); it is also
connected to the clock, which records measurement times. The stroke is effected on the
test body on a rigid bar embedded in it, that is, on the inverted U-shaped protrusion on

top of the test body.



The figures in this article were designed bordering on the grotesque and in a
similar way to those constructed by Bohr (1) during his famous debate with Einstein,
such that their role is merely to be a pseudo-realistic illustration of the measurement

situations that these represent.

Certainly Bohr and Rosenfeld’s argument require that D!” be much smaller
thanL,, which is not the case in the diagrams, but it is necessary to exaggerate the
dimensions involved to make the diagrams clear.

Also, the placement of the V,, for example, in the diagrams makes it seem that the
entire volume of the laboratory is the volume under consideration, but this volume
should be filled by the test body and its neutralizing body.

It might also be a good idea to include a depiction of the momentum-measuring
device in the diagrams, but they do not have enough space for including it.

In the time interval from t; to 7, + Az, the second linear momentum measurement

p"'" is carried out with uncertainty Ap'"’". The test body experiences another simple

non-uniform displacement D'" (unknown but constant) with uncertainty Ax, = Ax, so, a

)
D X
M =

certain velocity v will be transferred to it. A second counterstroke is given

I
during time Ar, to the test body for returning it to its original position.

In Figures 1 and 2 a hypothetical division has been made, and not a gap, between
regions I and II with some pointed tiles situated down the apparatus, making a floor to
lean it on. Regions I and II show a possible experimental set-up’s configuration of the
whole measurement process.

One further issue lies at a deeper foundational level. The question of precisely

what is represented by D" is conceptually problematic and should at least be handled

with some caution. Presumably this cannot represent an actual displacement of the test
body, for this would imply that the body has a precise (though unknown) actual
position as well a precise (known) momentum. This, of course, would commit us to a

hidden variables interpretation of quantum mechanics and the perhaps unpalatable



non-locality that such interpretation is committed to. Thus D!"” presumably is a

measure of the potential displacement of the test body or the degree to which our
classical concept of position fails to apply to the test body.

At any attempt to construct idealized diagrams of the arrangements of the sort
that will be here, the positive and negative charge distributions could be completely
overlap and/or be simply adjacent to one another according as what part of the
arrangements we are considering, those in the two space-time regions V, and V, as a
whole or in each one of regions (see Figures 4 and 5).

Finally, the sources of the reaction field are the following: (a) as we have seen

above, during the whole time 7, the test body is displaced by an unknown quantity D" .
This gives rise to the field of an electric dipole with its moment p, V, D" in the x-

direction. This dipole moment is distributed uniformly over V, with a

()

density P"’ = p, D\". Using Dirac ¢ -function properties that is
P =p, D[ "8 (t—1))dr, . (4.1)
I
The scalar potential at a space-time point P, is

0 |1
¢ il)(Pz) = ,OIDiI)j v dvlj . dt, {;5 (t, -1, _5)}’ (4-2)

o,

Withr:|’72_7‘1 ;1 =(x,y5.2)and K =(x,,,2))-

(b) At the time t; of interval T, the test body has a velocity v\"’' for a short time Az,

(v{"" is afterwards compensated). At the time t, (the end of the interval T,) the test

X

(I)yn

(IH)n
x x

body again has a velocity v\"""" for a short time Az, (v"" is afterwards compensated).

Assuming that Az, and Ar, are infinitely small we can transform the current

density J = p,fo{% - AL} into 7\ = p,DP[8(t—1,)-5(t 1)), that is
tl tl

i d
J = ‘/’IDi')f,;$§ (t—t)dt, . 4.3)
1



This current density gives rise to a vector potential y i” at a space-time point P,

0 |1 r

) )

P,)=-p,D dv | dtj——3=0 (t,—t,——)¢. 4.4

v ( »)==p, D, IVI Vl.[Tl lcatl{r (1, =1, C)} (44)

- - oy " _ -
Based on the relations E" =-V,¢" - t and H" =V,xy " the following
col,

components are obtained
ED(P)=p, D[ dn[ dvAL?, (4.5)
E;I)(Pz) :'OID)(‘I)J.T, dt‘J.v, dle;;Z) ’ (4.6)
EP(P)=p, D[ dn[ dvAl?, (4.7)

H"(P,)=0, (4.8)

H(P)=p, D[ di] dvB.”, (4.9)
H"(P)=p,D"[ dy[ dvBl?. (4.10)

The averages of these field components over the region II are obtained by simple space-

time integration

E;I,II) :D;((I)pIVITIZ)foJI)’ (4.11)

I 2 D0y 7 A @12
y x FPr¥ilQy s ’

EZ(I’”) _ D)((I)pIVITIZ;ZI,II), (4_13)

"M =0, (4.14)

H;‘I’H) = D)(cl)pIVITIEx(yI’H) ’ (4'15)

H'" =-D" p V.T,B

Z

. (4.16)

XZ

4.2 CASE NOT STUDIED BY BOHR AND ROSENFELD

Now ©), let us consider two space-time regions with volumes V, =L, and V, = L}, and

durations 7, and 7, and let us ask for the electromagnetic field which is produced at a



point P, =(x,,y,,2,,t,) of region Il by a measurement of the H ’s average over the
region I. Thus, we assume that in volume V, there are originally two distributions of
current + j” and — j”, that of the test body, and that of its neutralizing body. In the
interval from t, to t,+Ar, the first current distribution experiences a simple non-

uniform translation in the y-direction through a distance D}” with uncertainty Ay,; in

the interval from t,+ Az, to t it remains at rest at the displaced position; finally, in the

interval from t; to t,+At, (At, = At,’) it moves non-uniformly parallel to the y-axis back
to its original position, which coincides with that of the neutralization distribution of

current. We assume according to Section 3.1 that Ar, <<T, =t, —t, and Ay, <<D{"<L, .

The neutralizing current is fixed to the reference system by means of screws, and
remains there during the complete measurement process.

The test body itself, before the first measurement of the linear momentum is
taken, is fixed to the reference system by a mechanical arm set in such a way that it fits
between a bolt secured with screws to the reference system, and another bolt fixed to the
test body. All of these devices are neutral of charge and current, including the device
which measures the linear momentum of the test body, and make no contribution to any
electromagnetic field which could interfere with the field to be measured. The
mechanical arm is controlled by a clock whose design allows it to secure or release both

bolts, when required.

In the interval between t, to t,+Ar, the test body is detached from the reference
frame, experiencing a simple non-uniform displacement caused by the first linear
momentum measurement in the y-direction. In the time from t,+ Az, to t,, the test body

remains at rest in the displaced position.

The test body is chosen as a heavy test body which has to satisfy the uncertainty

)
y

(I
y

relation D;’ "Ap"'=1, where Ap'!"' is the uncertainty in the first linear momentum

)

measurement p, .



Furthermore, if we measure the momentum at the time t, within a short interval

)

At, (At, <<T,) a certain velocity vy

will be transferred to the test body according to
the well-known relation (H'=energy)AH'Ar, =v\"'Ap\"'At; =h. Just then v{"' is the
velocity which is necessary to displace the test body by D" within the time At, , that is,

%
D ~——_ In contrast to the uncertainties D" and Ap|"' the velocity v\""

oAy A

is

a known quantity since the intervals D" and At, can be chosen (disregarding an
uncertainty A v{"" which is small if the mass of the test body is large). In a similar way

we measure the momentum at t; within a short interval Az, and then bring the test

body back to its original position so that it again covers the region V, exactly.

For the body to stop a counterstroke is given during time A¢, by means of a lever

triggered by a spring (whose elastic constant it is not necessary to specify here); it is also
connected to the clock, which records measurement times. The stroke is effected on the
test body on a rigid bar embedded in it, that is, on the inverted U-shaped protrusion on

top of the test body.

In the time interval from t; to 7, +At, the second linear momentum measurement

pi" is carried out with uncertainty Ap\"". The test body experiences another simple

non-uniform displacement D|” (unknown but constant) with uncertainty Ay, = Ay, so, a

()

"= — — will be transferred to it. A second counterstroke is given

certain velocity v
At

during time Ar, to the test body for returning it to its original position.

Finally, the source of the reaction field is a magnetization M which causes a
magnetic moment nﬁzij [Fxf (F)]dv, from whichM =d—m=ifxf(f). Taking in the
2c°V dv  2c

case under examination the following approximation valid only in the measurement

region, that 7 = D;’)} and J(F) = j;l)lg we have



m=—D"j"v,i, (4.17)
from which

T (RN
M =D (4.18)

The expression (4.18) can also be written as

M:%D”) (] J' §(t 1,)dt, . (4.19)
C

The vectorial potential obtained is

PP =.[ cﬁlx(ﬂjdvl , (4.20)
v, r

, B=(%,,Y,2,), T =(x,y,z)and M =M " ,0,0).

with r= |r2 r
The measurement situation under consideration does not produce scalar potential

¢ " (P,), thus possessing the following vectorial potential components

¥ (P)=0, (4.21)
J (M
Oepy_ [ -9 | M
(P = V:Cazl( v, (4.22)
3 (M
YOP)=—| c—|—|av,. 4.23
z (2) -[V, ayl( r 1 ( )
— A(I) — — —
Based on the relations E' =- 2 and H"” =V, x¥" the following components are
cor,
obtained
E{"(P)=0, (4.24)
EVP)=LDD O an{ dv,Be" 4.25
V(B)=o D, J,an], avnBs", (4.25)
E"(P)= D<” i j di j dv,B>", (4.26)

H“)(P)——ZD“) 0 j dt j dv,G2V, (4.27)



1

H(B)==2D [ an ], anagl”, (4.28)
() 1 ) =) (2,h
H ()==_D\] | dt | L AnALY, (4.29)

2 2
where GV =( J + J ) 1s (tz ~t, —Lj is a new function which does not appear
dy, 0y, 92,0z, |r ¢

in Bohr and Rosenfeld’s analysis.

0
Writing —Ty =D!" as a new variable and averaging the above components

over the space-time region 1], it is possible to obtain

E/" =0, (4.30)

E"" =-D"j"V,T,B"", (431)
EM =D VT B, (4.32)
H!" =D j"V TG, (4.33)
H" =D j"V,T, A", (434)
H!" =D "V T,A. (4.35)

5. MEASURABILITY OF ELECTROMAGNETIC FIELD QUANTITIES

5.1 CASES CONSIDERED BY BOHR AND ROSENFELD

5.1.1 MEASUREMENT OF E "

Considering the measurement of the average value of E_ in a space-time region I and
following to Bohr and Rosenfeld (@), the linear momentum balance will therefore be

p:c w— p;(l) =p Vi1, (E;I) +E;”))/ (5.1)



E" being the average of E, in the space-time region I if no measurement were made

)

on the test body at the instant ¢, where the initial linear momentum p."" is measured.

At t, we similarly measure the final linear momentum p; " and E"" is the field
average which arises from these measurements as described above in Section 4.1
according to formula (4.11) when the space-time region I is equal to the space-time
region II.

The average E” can be determined with arbitrary precision by choosing the
value of p, sufficiently large. However, this makes E" very large also, and then the

achievable precision in the measurement of E'” has the value
NSO SN 52)
' pIVITI i
which, assuming that the displacement of test body D" is of order Ax,, has the

following value, limited by Heisenberg’s uncertainty principle

) o h

——+ p,Ax, VT,
x P, AV T, piAX V1

Al (5.3)

Finding a minimum value of (5.3) with a variation of p,, we obtain the following critical

1 h
= / = , 54
P A-XIVITI ‘AX(X[I)‘ ( )

which, on replacing it in (5.3) allows us to find the minimum uncertainty

AE", ~ 2], 55

If (5.5) were an inevitable limit in the precision of the measurement of E"’, we would

value

reach the conclusion that it is not possible to compensate for the effect of the field of the
test body and the measurement would only make sense when 7 was neglected, that is

to say, at the classical limit (12) (13), (14), (15),



Nevertheless, the coefficient of the displacement D' in E{” only depends on
geometrical relations, enabling it to organize things, so that the effects of E{” would be

completely compensated. The measuring device is modified, fixing the test body,

previously completely free during time7,, to a rigid system by means of a nut, and with
a spring whose tension will be proportional to the displacement D'” . So, we would have
P = = VT B + B -k, D, 56
which suggests that
k, =p;V/]T,

A (5.7)

is the constant of the spring.

The spring will have no problems with its application because, by having the test

body a large mass m, the test body’s oscillation period T =27 /kﬁ is much greater than
1

T, and its displacement in this period of time will be small compared with D" and

with D{"’s own powers from order two onwards.

Observe that the mass and charge of the test body are parameters independent of
each other in their adjustment.

Finally, we can write that

AE!" S — , (5.8)
pI A')CI‘/IY}
which may be substantially reduced, by choosing p, sufficiently large, in complete

agreement with the prediction of the formalism (10 (see Figures 1, 2 and 3).
Apart from detailed description of Figures 1, 2 and 3 given above, we can say that
there is not a special reason why the clocks on our devices not are synchronized.

The absolute value of A" has been written in (5.7) because according to Hnizdo

4) “the geometric factor A" with fully coinciding space-time regions can turns out to

have negative values. He noted that Bohr and Rosenfeld did not consider it necessary to

make a comment on this rather unusual specification that their measurement procedure



would place on the spring mechanism. In any case, despite its inherent instability, a
spring mechanism with negative spring constant should present no difficulty of
principle for a Bohr and Rosenfeld measurement procedure because a Bohr and
Rosenfeld spring, together with the test body to which it is attached; is supposed to be
release only for the exact duration of the field measurement, and the spring force is
designed so that its effect is compensated by the test body’s self-force.

A hint that Bohr and Rosenfeld were aware of the possibility of the geometric
factor A" being negative is given by their careful writing of its square root in

equations (5.4) and (5.5)".

5.1.2 MEASUREMENT OF E” AND E"

In this case for the momentum balance of the two test bodies we have )
p. " =p"=p VT (EN+E +EM), (5.9)
P = 5 = p VT (B + B+ B0, (5.10)
where E"" is defined by expression (4.11), and E!"" is obtained from this equation by
simple interchange of the indices I and II. It would seem from the previous section that
the appearance of fields E/"” and E"™ implies in itself limited precision in the

() ) . (.1 T (11,1)
measurements of E.’ andE."’. The reactions p,V,T,E" and p,V,T,E, can be

cancelled by means of springs with elastic constants k, given by (5.7) and k, given by

k, ZPIZIV;TH‘ZSI’”)" (5.11)
Therefore we obtain

p V= p D= p VT (ED +EUDY, (5.12)

p M p = p v T (EM 4+ ECD)Y, (5.13)

and bearing in mind that D!” and D"’ are respectively known in values Ax, and Ax,,,

these uncertainties arise



AED ~— AR, (5.14)

AEW ~— T AFum. (5.15)
pll A)CII VII TII

By replacing in (5.14) and (5.15) the expressions corresponding to (4.11) and correctly
choosing p,Ax, and p,Ax, either one of the quantities AE"” or AE!"’ can obviously be
arbitrarily diminished, but only at the expense of an increase of the other.

By multiplying (5.14) by (5.15) and finding its minimum by a variation of

P =p,p,, we obtain the following critical value

i Z(I 1) Z(II,I)‘
P=PPy= G N | 16
AXIAXIIV[V”TIT” AX(XI,”) AX(X”'I)‘
Replacing (5.16) in the above product, we get the minimum value
AEDAED ~ hqzﬁ,m‘ +‘Z<11,1)‘)2 h‘ZUJI) n Z(n,n‘ . 617

In spite of the great similarity of relation (5.17) to the uncertainty relation (2.1) required
by the formalism, there is, nevertheless, a fundamental difference in that the latter
contains not the sum of the magnitudes of the quantities A"’ and A{"" but their
algebraic difference.

The equation (5.17) is in full contradiction with the previous study of measurement
of a simple field component. The minus sign (-) instead of plus sign (+) in the formula
(2.1) for example, when regions I and II overlap completely, causes the cancellation of
the product of the uncertainties, a situation which does not occur, according to (5.17).

In general, the two expressions (5.17) and (2.1) agree exactly only when at least one

of the quantities AY" or A" vanishes which in general requires that one of the
: r r : . o
expressions t, —t, —— or t, —t, ——, appearing as argument of the Dirac ¢ -function in
c c

the integrals (2.8), remain different from zero for every pair of points (x,,y,,z,.¢,) and

(x,,¥,.2,,1,) of regions I and Il respectively.



It is true that there appears here, in comparison with the compensation procedure
needed already for measuring a single field quantity, the further complication that the
displacements of the two test bodies not only must remain unknown but are also
completely independent of each other. A somewhat more complicated procedure is
necessary in order to compensate as much as possible the influence of the relative
displacement of the test bodies on the field measurements. We select two bodies &, and
£,, one from each test body system I and II, for which the expression r—c(t, —t,)
vanishes for two times ¢, and 7, lying in the time intervals 7, and 7,,, respectively; that
is, the two bodies are light-like related. To establish the necessary correlation between
the test bodies one might at first think of a spring which should connect the bodies &,
and ¢, directly with each other; however, due to the retardation of the forces one
would thereby run into difficulties. But we can manage with a short spring much
smaller than c7,, if we add to the second test body system a neutral component body
&,; which is situated in the immediate vicinity of ¢,, and connected with it by a spring
whose elastic constant is k.

The body ¢, is initially to be bound to the rigid frame by means of a device
previously described and after removing this device, at time ¢,, its momentum is to be

measured with the same accuracy as that of the test body system II. It thereby undergoes

19/78)
X

an unknown displacement D™’ in the x-direction which is of the same order of

magnitude as Ax,, (see Figure 4).
The force exerted by the spring on the first test body system is therefore

F=-k(D" -—D") and so the linear momentum P transferred from ¢,, to ¢, during T,

is P =FT,, from which
P= %pIpIIVIVIITITII (Zx(xl,n) + Zx(xn’l) )(D)(cl) - D;M) )I (5'18)
where

k :%pIpIIVIVIITII (Z;ixl’”) +Z)§xH’1))' (5.19)



Similarly, £, undergoes a change of linear momentum - P during the same period of
time. At time ¢, the linear momentum of &,, is measured again with the same accuracy.
However, before this measurement, and in fact at time ¢, a short light signal is to be
sent from €, to €,,, by which the relative displacement (D" — D) of these bodies can

be measured with arbitrary accuracy by means of a suitable device described in detail by
Bohr and Rosenfeld @). At the emission and absorption of the signal the two test bodies
undergo momentum changes which indeed remain completely unknown, but cancel
each other exactly in the sum of the momentum changes measured on the bodies. The
above implies that ct;, = D" — D" and for doing this, body ¢, carries a small mirror
on itself and body ¢, a light-emitting device, which can rotate on a fixed support and
therefore point in any direction in which ¢, is found with respect to &,. The whole
purpose of the compensating spring is to compensate automatically the effects that are
proportional to the displacements D!” and D! without any need of measuring the
latter.

In the Figure 4 the mirror on the neutral third body seems to be facing the wrong
way. It appears to be impossible for it to be struck by a beam from the light-emitting
device, and all the more, because it is apparently hidden behind a corner of the
laboratory but, we can suppose that the above does not happen.

In addition to the above, it is necessary to clarify that we are not allowed to

measure the displacements D and D, but the relative distance (D" - D), and
thus it might seems that having the light-emitting device know the position of ¢,, might
disturb the momentum measurement that is essential for the determination of the field
values.

Thus the position of ¢, presumably is a potential position if it were to be

measured, or the degree to which our classical concept of position fails to apply to the

body.



Also, the spring connecting bodies &, and ¢,, in the Figure 4 really is along the
x-direction, even though in the Figure 4 it apparently is along the y-direction so that the
test body ¢,, after its release can move in the x-direction too. Alternatively, a rigid rod
could be extended along the y-direction from one of the bodies, and the spring could be
connected in the x-direction between the free end of the rod and the other body.

As you can see from the Figure 4, the clocks are not synchronized but, there is not
a special reason for that. Also, the division in the laboratory floor is indicating a
potentially large distance falls between bodies ¢, and¢,, but these two bodies are
supposed to be very near each other. The gap should instead presumably lie between
body ¢, and body ¢, but, remember that bodies £, and &, belong to the space-time
region I and body &, belongs to the space-time region L.

Instants ¢, and ¢, are measurement times for the linear momentum of body ¢, at
the beginning and at the end respectively in region I and similarly for €, in times 1,
and ¢, inregion II.

Note (see Figure 4) that the times of measurements of body ¢, are recorded with
the same clock that controls the measurements of ¢,. Also, the lever which is connected
to this clock to counterstroke &, and &, simultaneously, now has two springs which
drive it, whose elastic constants is not necessary to specify here provided that the stroke
is considerable on the two bodies. The lever with two spring connected to it can deliver
the correct counterstrokes to bodies £, and ¢, on the inverted U-shaped protrusions on
the top of the test bodies.

The relevant point is that after the momentum measurements the bodies are
returned approximately to rest, that is, any momentum imparted to the test bodies by
the fields to be measured is removed by the counterstrokes.

The measurement process in space-time region II is governed by the clock which
is located inside it and which works in the manner previously described. There are also

some rulers which are fixed by screws to the reference system, which could serve



respectively to compare the lengths of the experimental set-ups and the spatial regions
p y p g p p p g

of measurement.

Thus, for the momentum balance of the two test body systems during the

measurement we have, if we include body ¢, in system II is

p,"=p. " =p VT (ED +E" )+ P, (5-20)
p; an p;(”) n p; i p;(lll) =p,V,T, (Ex(ll) + EX(I,II))_ P. (5.21)
Transforming the formula (5.20) the following is obtained

. , _ 1 _ 1 _
Py " me = pIVITIEJfI) +EIOIIOIIVIVHTITHA;;I'I)Dﬁ(r”) +5p1p11V1V11T1T11Ax(xI”)Di”)
1 — 1 —
+Ep1p11V1V11T1T11Ax(xI'”)Dil) +5p1p11V1V11T1T11Ax(xI”)Di”
- % plpIIVIVIITITIIKxgcl,H)DiHl) - % plpIIVIVIITITIIZ)éxII,I)DiIH)

+% 2,0,V.V,TT,A!" D" —% 2,0,V V,T,T, A" D', where, reorganizing the elements,
we obtain
DOy ED 4L VV.TT (=D (A0 _
Py P, =PVl E, +2p,p,,,,,,,,{ o (A

Z(ll,l))_i_ (D(II) _D(III) )(Z(I,II) + Z(”J))+ D(I)(Z(I,Il) + Z(II,I))} . (522)
Similarly, transforming the equation (5.21) the following is obtained
") C/p] " () ") = 1 e
p -p. tp -P =p VT, E + EpIpIIVIVII T,T,A" D"

X X X X

1 — 1 —
+5p1p11V1V11 T,T,A;" D" _EpIpIIVIVII T,T,A;" D"

1 — 1 —
+5p,p”V,V” T,T,A;" D™ _EpIpIIVIVII T,T,Al" D"
+%p1p11V1V11 TITIIZXI’I)D)(:M) +%p1/)11V1V11 TITHZXI’I)D;H)

1 — 1 —
_EpIpIIVIVII TITIIAx(xH,I)D;H) _EpIpIIVIVII TITIIA)éxI,H)D)(cH)



+%IoIIOIIVIVII TITIIK)éxI,H)DiH) 4

where, reorganizing the elements, we obtain

" () N0/3) " (D) )
X - X + pX - p)(

— 1 -
= PuViTy Ex(”) +5,01,0”V1V” 1T, {D;”(Ax(x’ﬂ) _
ZX(XII,I)) _ (Di”) _ D)((III))(ZX(XI,II) + ZX(X”J))'F D)((II)(ZX(XIJI) " ZX(X”’I))} . (523)

In equations (5.22) and (5.23) the quantities D! and D!"’ multiply terms in the curly

brackets which, exactly as the simple reactions of each test body on itself, be cancelled
by means of a suitable spring connections with the rigid frame and the test bodies by
screws and nuts respectively.

The elastic constant of the spring for body &,, would be

k1,11 = p12V12T1

AL+ oV VA Ty LD+ A0, 5.24

acting on the elimination of the effect of the test body field in region I, E/", and of one
part or factor which, after the transformation of the formula (5.20) in (5.22), depends on

the displacement D" . In analog form for body ¢, it can be determined that

k11,1 = pIZIVIIZTII

AL+ o VYT AL+ A0, (5.25

with a similar function to that of k, ,.

Furthermore, as was described by Bohr and Rosenfeld (), the terms proportional
to the relative displacement (D — D) are known with arbitrary accuracy and can
therefore easily be taken into account in the field measurements.

)
.=

Based on equations (5.22) and (5.23), and bearing in mind that Ap and

Ap'™" = Ap'D = N , the following uncertainties can be obtained
/s
AED ~— T +l,0 V,Ax,T,|A"™" — A" (5.26)
X nrin = 1|" “xx XX 4 N
pAx VT, 2
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1 _ _
— 4 pV,AX,T[ATD AU (5.27)
pIIA'xIIVIITII e ! I‘ ‘

AE

Taking the product of the uncertainties (5.26) and (5.27) and finding their minimum
value by variation of p = p, p,,, we obtain the critical value

2h
Ax,Ax,V,V, T,T,

P=PiPu= ! (5-28)

ALY UL
AXX - AXX

which, when replacing it in the product above mentioned allows the following
uncertainty to be found

T AU _ A (1D AULD| A (LD Ne/))
AEAE™ =~ 2n[A" — AU | = HAL AL, (5.29)

in agreement with the formalism.

5.1.3 MEASUREMENT OF E\” AND E"

Bohr and Rosenfeld said that they had measured E\” and E{" and, E{” and H " but
really, they did not consider the last case.
Following their study of the first case we have

p. " =p =p VT (ED +E R, (5:30)

" )

p, =p, " =p VT, (E"" + R + R, (5.31)
where R""=D"p v, T,AY", R""=D"p v,T,A"" and R"" =D"pV,T, A"
(see Figure 5).
After compensating the effects of E” and R"" in equations (5.30) and (5.31)
respectively, we obtain
p." =" =p VT (E" +R""), (5:32)
tan o an

py py =pPuViTy (E;”) + E;I'”)) . (5.33)

These expressions give uncertainties

— fi
AE;I) zm""pnAynvuTn
(AX Vi

L)
AX‘y

, (5.34)



— h
AEMW =~ —  — 4 P, M,V T,
’ Puly, vV, T,

AT (5.35)

With the product of (5.34) and (5.35) and finding its minimum value by variation of

a=p,p, the following critical value is obtained

A LD ([T (LT
W

a=p Py = — — ’ (5.36)
Ax, Ay, V,V, T\T, Ax(yI’H) ‘ Ax(yH "
which, replacing it in the previous product gives
AEPAE = i[04 A0 )2 oA + 20|, (5.37)

which, like (5.17), does not generally, but only in certain cases, represent an agreement
between measurability and free quantum electromagnetic formalism.
We select two bodies ¢, and ¢, one from each test body system I and II, for which the
expression r—c(t, —t,) vanishes for two times ¢, and 7, lying in the time intervals 7,
and T, respectively; that is, the two bodies are light-like related. To establish the
necessary correlation between the test bodies one might at first think of a spring which
should connect the bodies &, and ¢, directly with each other; however, due to the
retardation of the forces one would thereby run into difficulties. We add to the second
test body system a neutral component body ¢, which is situated in the immediate
vicinity of &,, whose momentum in the y-direction is measured at the times ¢, and 1,;
the relative displacement (D;I” '-D{" ') of the bodies ¢, and ¢, are again determined
by means of a light signal, as a result of which both bodies undergo equal and opposite
momentum changes.

In Figure 5, bodies ¢, and ¢, are controlled by the clock which is located in space-
time region I. This clock’s counterstroke mechanism acts simultaneously on ¢, and ¢,

stroking with the two arms at the same time on the inverted U-shaped protrusions on
the top of the test bodies, and synchronizing the stroke given to each of them by the
clock’s internal mechanism. Also, &, and ¢,, are initially fixed to the reference system

by mechanical arms which belong to the clock, and which fit just between the bolts of



the test bodies, and the bolts which are screwed to the reference system. The
neutralizing bodies of &, and ¢, stay fixed by screws to the reference frame throughout
the whole measuring process. It is not necessary to specify the elastic constants of the
springs which move the mechanical arm of the clock in region I, together with the
clock’s spring in region II. Body &, has a mirror which reflects light signals sent from
£, using a device for this effect, which can rotate on an axis, in such a way that it can
move in whatever direction that £,, does, and in this way it can send the light signal to
any position that £, has at a given moment. The three bodies mentioned have a rigid
bar embedded in them with an inverted U-geometry, and on these the counterstroke is
made, which counteracts the changes in velocity. The change in the spatial arrangement
of the clocks in space-time regions I and II, with respect to what they have in Figure 4, is
considerable.

To relate bodies ¢, and ¢, two arms are used which were originally parallel to
directions x and y, which can rotate on a pivot. As you can see from Figure 5, the clocks
are not synchronized but, there is not a special reason for that. Also, the division in the
laboratory floor is indicating a potentially large distance falls between bodies ¢, and ¢, ,
but these two bodies are supposed to be very near each other. The gap should instead
presumably lie between body ¢, and body ¢, but, remember that bodies ¢, and ¢,
belong to the space-time region Il and body &, belongs to the space-time region I.

Note (see Figure 5) that the times of measurements of body &, are recorded with
the same clock that controls the measurements of &,. The measurement process in
space-time region Il is governed by the clock which is located inside it.

There are also some rulers which are fixed by screws to the reference frame, which
could serve respectively to compare the lengths of the experimental set-ups and the
spatial regions of measurement.

A spring parallel to the y-axis is mounted on the first arm and ¢,,, and a spring
parallel to the x-axis acts between the second arm and ¢,. The elastic constant of the two

springs is chosen as



k= %pIpIIVIVIITII (Zx(;,m + K;;{I,I) )' (5'38)

this taking place during T, .
Force F transferred from ¢, to the arm parallel to the x-axis is F = —k(D;’” '—p»)

and the linear momentum P = FT7, is
1 _ —
pP= EpIpIIVIVIITITII (Ax(yI’”) + Ax(y”J) )(D;(cl) - D;m) ) (5.39)

The balancing equations of the linear momentum are therefore
p; W p;(l) = pIVITI (Ex(l) + D;H)IOIIVIITIIZX()'”J) )+ P, (5'40)

") ") ") ')
-p, *p, P

y y y y

=PuVuTy (E»('”) +D;I)p1V1TIZ)c(;,H))_P : (5.41)
Replacing the value of P given by (5.39) in the equations (5.40) and (5.41) and

reorganizing the resulting equations, we have
sy O 4L VV.TT D™ (A0 _
P, Py =PVHE, +2,0,,0” VT Ty {=Dy" (A

Zx(yll,l))_l_(D;II) —D;I”))(Zx(yL”) +XX())II,I))+D)((I)(XX())I,II) +Zx(yll,1))}, (542)

") ") "(r) ")
-p, *p, P

— 1 _
Y 4 Y y =PuVuTy E‘»('H) +Ep1p11V1V11 I,T, {D;(cl)(Ax(yI’H) -
Z)C(VVII,I))_(D;II) _D;III))(ZX(yI,II) + Zx(fl’l))+D§,H)(Xg’”) +Z){(}{1,1))} ) (5'43)
Based on equations (5.42) and (5.43) after the compensation of the above terms in the

parenthesis with springs of constants (1) (see Figure 5)

k, = p12V12T1

— 1 — —
Ax(x”)‘ + Epl pIIVIVIITII (A;;’”) + A;c(;]’l) ), (5'44)
between &, and the reference system and

k, = p121V112T11

AL P p VYT AL A, (5.45)

between ¢, and the reference frame, we obtain

h

AE(" = ————
pIA'xIVITI

+%p11V11Ay11T11 Kx(yI’H) - Zx(;”) ’ (5'46)



h

1
—+—p,V,Ax,T,
Puly, vV, T, e

AE™

y

A (L1D) A UL
AID g rnl, (5.47)

Taking the product of the uncertainties (5.46) and (5.47) and finding their minimum
value by variation of & = p, p,;, we obtain the critical value

2h
Ax, Ay, V,V, T,T, ‘Ax(y”” - Ax(y”'l)

a=pPy= ’ (5.48)

which, when replacing it in the product above mentioned allows us to obtain the

uncertainty relation

T AU _ AU A dLD|
AEAE(" =~ 204" — AU |~ 1

A (1,1 A UL
AU _gmn|, (5.49)

in agreement with the free quantum electromagnetic formalism.

5.1.4 MEASUREMENT OF E” AND H "

According to Bohr and Rosenfeld @) (10) the complete commutativity and independent
measurability of averages of parallel dissimilar components required by the free
quantum electromagnetic formalism finds its direct interpretation in the identical
vanishing of the component H'” of the field produced by the measurement of E\", as
shown by (4.8), and it is not necessary to compensate the effects of H""’ and H!"".
Therefore we conclude that
AE"AH!" =0, (5.50)

in full agreement with the formalism.
5.2 CASES NOT CONSIDERED BY BOHR AND ROSENFELD

5.2.1 MEASUREMENT OF H "’

Considering the measurement of H'” the linear momentum balance will be ©)



p; o p'y(l) _ jil)VITI (ﬁil) + E)EI,I)), (5.51)
H" being the average of H_ in the space-time region I if no measurement were made

)

on the test body at the instant ¢, where the initial linear momentum pjy(l is measured.

At t; we similarly measure the final linear momentum p) (”, and H ;' ' is the field

average which arises from these measurements as described above in Section 4.2
according to formula (4.33) when the space-time region I is equal to the space-time
region IL.

The average H!" can be determined with arbitrary precision by choosing the
value of j" sufficiently large. However, this makes H!"" very large also, and then the

achievable precision in the measurement of H'!" has the value

— A —
A" =20 AF 0D, (5.52)
J Vi,

which, assuming that the displacement of test body D,” is of order Ay,, has the

following value, limited by Heisenberg’s uncertainty principle

AH" = L + j;I)AyIVITI

G 5.53
i j;l)AyIVITI " ( )

Finding a minimum value of (5.53) with a variation of j!”’, we obtain the following

critical value

j(l) _ 1 /]
‘ Ay, V/T, ‘Gx(x”)‘

(5.54)

which, on replacing it in (5.53) allows us to find the minimum uncertainty

AHO =

X min

G| (5.55)

If (5.55) were an inevitable limit in the precision of the measurement of H'”, we would
reach the conclusion that it is not possible to compensate for the effect of the field of the
test body and the measurement would only make sense when 7 was neglected, that is

to say, at the classical limit (12), (13), (14), (15),



Nevertheless, the coefficient of the displacement D{" in H{"" only depends on

geometrical relations, enabling it to organize things, so that the effects of H"" would be
completely compensated. The measuring device is modified, fixing the test body,
previously completely free during time 7, to a rigid system by means of a nut, and with

a spring whose tension will be proportional to the displacement D!". So, we would

have
p;“) _p'y“) =j"vT,H" +H"")-5,D{"T,, (5.56)

which suggests that

D 220 AL
S = b4 VI TI Gxx

, (5.57)

is the constant of the spring.

The spring will have no problems with its application because, by having the test

body a large mass m, the test body’s oscillation period T =27 \/E is much greater than

S
T, and its displacement in this period of time will be small compared with D|” and
with D{"’s own powers from order two onwards.

Observe that the mass and current of the test body are parameters independent of
each other in their adjustment.

Finally, we can write that

AH" U— (5.58)
J. Ay, VT,

which may be substantially reduced, by choosing ;" sufficiently large, in complete

agreement with the prediction of the formalism (19).
5.2.2 MEASUREMENT OF H'” AND H "

In this case for the momentum balance of the two test bodies we have )

P = VTS EI S, (639)



p; ) _ p'y([l) — j;II)V”T” (ﬁ;”) + ﬁ;”,”) + ﬁ;l,”) ) , (5.60)
It would seem from the previous section that the appearance of fields H” and H """
implies in itself limited precision in the measurements of H'!"” and H'". The reactions

JiPvT,H'Y and j"V,T,H"" can be cancelled by means of springs with elastic

constants s, given by (5.57) and s, given by

SII = .;H) 2V15TII‘EX§X”!”)‘ * (561)
Therefore we obtain
p) N p'y(l) _ jil)VITI (ﬁ:” +ﬁ;”’”), (5.62)
P‘ an p“y(ll) — J-;II)VHTH (H;II) + H;EI’H))/ (5.63)
from which
MO =g (5.64)
) j;I)AyIVITI i
V7 (LS —N ; {0} (5.65)

J Ay, VT, ’
By replacing in (5.64) and (5.65) the expressions corresponding to (4.33) and correctly
choosing j’Ay, and j"’Ay, either one of the quantities AH” or AH" can obviously
be arbitrarily diminished, but only at the expense of an increase of the other.

By multiplying (5.64) by (5.65) and finding its minimum by a variation

of j, = j" j"", we obtain the following critical value

h 5(1,11)‘5(11 1)‘
j.=j = e . (5.66)
Co AyIAyIIVIVIITITII‘G)éxl,n)‘ G
Replacing (5.66) in the above product, we get the minimum value
ATV < 1G] +[G )2 G + G|, 5.67)

In spite of the great similarity of relation (5.67) to the uncertainty relation (2.1) required

by the formalism, there is, nevertheless, a fundamental difference in that the latter



contains not the sum of the magnitudes of the quantities G{"’ and G"" but their

algebraic difference.

The equation (5.67) is in full contradiction with the previous study of measurement
of a simple field component. The minus sign (-) instead of plus sign (+) in the formula
(2.1) for example, when regions I and II overlap completely, causes the cancellation of
the product of the uncertainties, a situation which does not occur, according to (5.67).

In general, the two expressions (5.67) and (2.1) agree exactly only when at least one

of the quantities G’ or G!"" vanishes which in general requires that one of the
: r r. : ., .
expressions t, —t, —— or t, —t, —— in the Dirac J -function’s arguments remain different
c c

from zero for every pair of points (x,,y,,z,,t,) and (x,,y,,2,.t,) of regions I and II
respectively.

We select two bodies b, and b, , one from each test body system I and II, for which the
expression r—c(t, —t,) vanishes for two times ¢, and 7, lying in the time intervals 7,
and T,, respectively; that is, the two bodies are light-like related. To establish the
necessary correlation between the test bodies one might at first think of a spring which

should connect the bodies b, and b, directly with each other; however, due to the

retardation of the forces one would thereby run into difficulties. But we can manage

with a short spring much smaller than c7,, if we add to the second test body system a
neutral component body b,, which is situated in the immediate vicinity of b,, and
connected with it by a spring whose elastic constant is s.

The body b, is initially to be bound to the rigid frame by means of a device
previously described and after removing this device, at time?,, its momentum is to be
measured with the same accuracy as that of the test body system II. It thereby undergoes

an unknown displacement D{"’ in the y-direction which is of the same order of

magnitude as Ay, .



The force exerted by the spring on the first test body system is therefore

F= —s(D;I” '-DY ') and so the linear momentum Y transferred from b,, to b, during T,

is Y = FT,, from which
1 _ _
=7l Vi, @y +Gi\o -pi™), (5.68)
where
5= 3GV, (G -G (569

Similarly, b,, undergoes a change of linear momentum -Y during the same period of
time. At time 7, the linear momentum of b,, is measured again with the same accuracy.
However, before this measurement, and in fact at time ¢, a short light signal is to be
sent from b, to b,,, by which the relative displacement (D;”’ '-D{" ') of these bodies can
be measured with arbitrary accuracy by means of a suitable device described in detail by
Bohr and Rosenfeld @). At the emission and absorption of the signal the two test bodies

undergo momentum changes which indeed remain completely unknown, but cancel

each other exactly in the sum of the momentum changes measured on the bodies. The
above implies that cr;, = D\"”’ — D"’ and for doing this, body b,, carries a small mirror
on itself and body b, a light-emitting device, which can rotate on a fixed support and
therefore point in any direction in which b, is found with respect to b,, .

Instants #, and ¢, are measurement times for the linear momentum of body b,, at
the beginning and at the end respectively in region I and similarly for b, in times ¢,
and ¢, inregion II.

The times of measurements of body b, are recorded with the same clock
that controls the measurements of b,. After the momentum measurements the bodies

are returned approximately to rest, that is, any momentum imparted to the test bodies
by the fields to be measured is removed by the counterstrokes. The measurement

process in space-time region II is governed by a clock which is located inside it.



Thus, for the momentum balance of the two test body systems during the
measurement we have, if we include body b,, in system II is
p) N p'y(l) _ jil)VITI (ﬁ;” i ﬁ;ll,l)) 4y, (5.70)

p} an p' (n + p”, i) _p‘v(III) — J-;II)VHTH (Him + ﬁ;l,l[))_Y ) (5'71)

y Yy Yy

Transforming and reorganizing the formula (5.70) the following is obtained
p;(l)_p'y( _]ZI)VTH(I)_i_;];I) II)VV TT { D(II)(G(III)

5(1],1) ) + (D(II) _ D(III) )(5(1,11) + 5(1],1) ) + D(I) (5(1,11) + 5(1],1) )} (5 72)
XX y y XX XX y XX XX * *
Similarly, transforming and reorganizing the equation (5.71) the following is obtained

" n " n (i) () . (1) 77 () 1
y - y + py - py ] VIITII H += 2

J(I)](H)V Vo T, T, {D;I)((_;x(xn,]) -
EX(XI,II))_(D;II) _D;III))(EX(XI,II) +5X(x11,1))+D;II)(EX(XI,II) +5;X11,1))} . (5.73)

In equations (5.72) and (5.73) the quantities D|” and D" multiply terms in the

brackets which, exactly as the simple reactions of each test body on itself, be cancelled
by means of a suitable spring connections with the rigid frame and the test bodies by
screws and nuts respectively.

The elastic constant of the spring for body b,, would be

(I) 2

Siu=1J VT

SO VYT, G 4G, (5.74)

Z

acting on the elimination of the effect of the test body field in region I, H"""’, and of one
part or factor which, after the transformation of the formula (5.70) in (5.72), depends on

the displacement D" . In analog form for body b, it can be determined that

(II) 2

Sui=1J VT

[GE SOV, TG G, (575)

with a similar function to that of s, .

Furthermore, as was described by Bohr and Rosenfeld @, the terms proportional

to the relative displacement (D;'” '-D" ') are known with arbitrary accuracy and can

therefore easily be taken into account in the field measurements.



Now, the following uncertainties can be obtained taking into account the

Heisenberg's uncertainty principle

_ 1 _ _
AH" = iji V.T +§j£”)V”Ay”T” G -G, (5.76)
: BVl
AR ~ h +lj(”V Ay, T,|G ™ _(_;um‘. (5.77)
! j;H)AyIIVIITII CorTr h

Taking the product of the uncertainties (5.76) and (5.77) and finding their minimum

value by variation of j_=j" j"", we obtain the critical value

. (1) » 2h
Jz_]y) ;11)_
AyIAyU[I[H]I]H

(_;(1,11) _(_;(11,1) 4 (5'78)

which, when replacing it in the product above mentioned allows the following

uncertainty to be found

AHOAT ™ = 21G U ~G U] = G0 -G, (5.79)

The function A(r,t)=41{§ (r—ct)—0 (r+ct)}, with ’”:|’7z -7
T r

, I, =(x,,y,,2,) and

2

7, =(x,,y,,z,), satisfies the equality XA=0, where X =V~ —%

c ot

is the d’Alambertian

o (t —f) o (t +£)

operator. But 8 (r—ct)=— < andd (r+ct)=—FC, with  which
c c

A(r.1) = 1{15 - -Ls o+ r)} and as 5 (a)=5 (—a) therefore
A c |r c r c

5 u+D)=6 (= 1="), thatis, A(rt, 1) = — {15 -t -Dy=Ls5 @ -1, —r)}. It can
c c 4z c (r c r c
Lo 52
be seen that [VI.VZ -— } A=0, that is
c oo,

9’ 9’ 9’ 0’
+ A=— - A. Therefore, based on the definitions of
dy,dy, 07,0z, ox,0x, ¢ dt,0t,



GZ" and ALY it is possible to obtain G2V —G? = ALY — A2 and concluding with the

XX XX XX

. ~ (1,1 ~ LD _| AU /BN
equallty Gxx - Gxx ‘ - Axx - Axx /

Aﬁ;”Aﬁ;”) ~ h‘ZXg‘I,II) _ ZX(XII.I) , (5.80)

in complete agreement with the free quantum electromagnetic formalism and taking

2 2
into account that in this case J J { o, — —1) —lﬁ(t1 —-t, —1)} =
dy,9y, azlazz ¢ r ¢

9’ 9’ ro 1 r
o ——)—=0(t, —t,—)¢.
[ayzayl 02,0z, H (& - c) r (=t c)}

5.2.3 MEASUREMENT OF H'!” AND H ‘f,”)

In this case we would have for the linear momentum balance before the compensation
of the test body fields that
p, " =p, =iV, (H"+H" +H""), (5.81)

") )

pz _ pz — j;II)VHTH (H;II) + EVSII,II) + H;I,II)) . (582)

After compensating the effects of H!"” and H{"" in equations (5.81) and (5.82)

respectively with springs whose elastic constants are s, =j." *VT,|G!’ )‘ and
Sy = j)((”) ZVI?TII B,
p) ON p'y( _ ]zI)V T, (H(I) +D(11) (II)V”T”B(II ny, (5.83)
pz an p;(ll) ](II)V”TH (H(II) + D(l) I)V T A(I 11)) (5.84)
These uncertainties are obtained from the above equations
_ I —
AH " = ———+ j Az, V, T, 5.85
x jil)VITIAyI Jx iV utn|Byy ( )
AH" = f + DAY V,T | (5.86)
J"V, T, Az, et ' '



As the calculation being made is restricted only in order of magnitude, we can assume

that ‘Eg’ ! )‘ z‘Z)fy” ! )‘. So, the product of the uncertainties (5.85) and (5.86) has a critical

value
h Z(I,II)‘ Z(II,I)‘
0 = j;l)ji”) — Xy _xy _ ) (587)
Ay, Az, VvV, T, T, ‘Ax(y”” HAX();”'I)
which, on replacing it in the above product gives
AHPAH ™ = 1[0+ [A0))2 oA + 20|, (5.:89)

Comparing the inequalities (5.37) and (5.88) we conclude that doing a completely similar

treatment of measurement as it has been made in the measurement case of E’ and
E", the following equation could be obtained
g (DA U _ A (1,00 AULD| _ 3| A ) A UL
AHOAH " = 204" - AU | = n[A" - A0, (5.89)

in complete agreement with the formalism.
5.2.4 MEASUREMENT OF H!” AND E"

The complete commutativity and independent measurability of averages of parallel
dissimilar components required by the free quantum electromagnetic formalism finds
its direct interpretation in the identical vanishing of the component E!” of the field
produced by the measurement of H'”, as shown by (4.24), and it is not necessary to
compensate the effects of E/" and E"".
Therefore we conclude that
AHPAE"™ =0, (5.90)

in full agreement with the formalism.



5.2.5 MEASUREMENT OF E” AND H ‘f,”)

In the present case we have for the linear momentum balance before the compensation

of the test body fields that
]9; " p;(l) =pV,T,(E" +E"" + Dz(”)j)(r”)VIITIIEX(y”J) ), (5.91)

P" w_ p' = j)(cH)VIITII (ﬁim + Dz(,H)j)(c”)VIITHEgI’H) + D)(cl)pIVITIE)c(){,II)) . (5'92)

Z Z
After compensating the effects of the fields E{"” and D j"'V,T,B""" in equations

(5.91) and (5.92) respectively with suitable springs, the linear momentum balance will be

P p = VI ED < DM IV ELD, (69

p" an p' an _ VT, (E;II) +Di1>pIVITIEX<;,H)) ) (5.94)

Z Z

These uncertainties are obtained from the above equations

— i —
AE" ~————+ j"V, Az, T,BU"|, 5.95
x 0, A%V T, Jr VuBZyly|Dy, ( )
— B —
ary __ (1,1)
AH), = J-(II)VHTHAZH +p, A, VT, Bxy ‘ (5'96)
The product of (5.95) and (5.96) has a critical value
h EX(I,II) E({I,I)
z=p, 0 = ) _”(MJ —T (5.97)
A'XIAZIIVIVIITITII Bxy ‘Bxy
which, on replacing it in the above product gives
AEOAT ™ =B+ B )2 0B + B, (5.98)

Through a completely similar treatment of measurement as it has been made in previous

sections, the following equation could be obtained
AEAH " =nB{" — B, (5.99)

in complete agreement with the formalism.



5.2.6 MEASUREMENT OF H!” AND E;” )

In this case we have for the linear momentum balance before the compensation of the

test body fields that
p, " =p, " =iV, HO +H +H""), (5.100)
p‘ an (11) pIIVIITII (E(II) + E(II N/p) + E(I 11))’ (5'101)

7 (1.I) _ I) +(I) ~, I) T, II) _ ) +(I) X083 iy _ () T L,I)
where H;"" =D"j VTG ", E| -DjviT,BS", E =D p,V, T, L, and

IFULD _ D R (L.I)
H>" =D, "p,V,T,B,"".

The quantity L which not is in the Bohr and Rosenfeld’s analysis arises from
the expression L2 —( o o ]{ o, — —1)} by simple integration
" c’ot,ot, ayzay1 c .

After compensating the effects of the fields H!""" and E{""" in equations (5.100)
and (5.101) respectively with suitable springs, the linear momentum balance will be
p; (I _ p'y(l) — j;I)VITI ([7;1) + ﬁ;”,l)), (5.102)

tan (11)
y

=p,V,T, (E“” + E“ Dy (5.103)

From the equations (5.102) and (5.103) respectively we can obtain the following

uncertainties
_ h _
) (1,11)
AH ~m+pﬂAy1]VIlTH‘BW ’ (5-104)
AEy(II) ~ h +]zI)V Ay,T ‘B(” 1)‘ (5.105)
Puly, VT,
The product of (5.104) and (5.105) has a critical value
A ‘E((,Il)“g(ll,l)‘
B=p,j" = (5.106)

Ay, Ay, V,V, T\T,

which, on replacing it in the above product gives

ATONE® = (B + B0 )2 1B+ BO0 (5107



Through a completely similar treatment of measurement as it has been made in previous

sections, the following equation could be obtained
AU _ 5 Ul
AH PAE =nB " =B, (5.108)

in full agreement with the formalism.
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