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It has long been recognized that measurement can be used as a non-deterministic 
means of preparing quantum states that are otherwise difficult to obtain.  With discrete 
projective measurements, one must typically accept a probabilistic outcome. However, 
with certain continuous QND models of projective measurement, the observer can affect 
the result by using feedback control.  To illustrate this concept, we here present 
experimental results demonstrating deterministic preparation of spin squeezed states via 
measurement and control.  We then consider the theoretical extension of the conditioning 
equations at long times and propose feedback controllers capable of deterministically 
preparing highly entangled multi-particle Dicke states.

Measurement Trajectories

An ensemble of Cesium atoms is laser cooled then optically 
pumped such that each atom occupies the F=4, mF=4 ground 
state in the x basis. The initial collective state is thus a coherent 
spin state (CSS) as shown in (A). Subsequent to the state 
initialization, a far off resonant, linearly polarized probe beam 
traverses the sample.  The polarization rotation is measured by 
a polarimeter and the resulting photocurrent provides 
continuous information about the collective Jz of the ensemble.  
As information is acquired, the variance in the z direction is 
deterministically reduced while the mean becomes randomly 
displaced.  When control is enabled, the measurement is used 
to modulate the y magnetic field to cancel the mean projection.
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Future work will focus on optimizing the free space squeezing demonstrated here and identifying limiting noise sources.
We have recently investigated quantum parameter estimation applications with this system, measuring an unknown 
magnetic field via Larmor precession at the same time the spin squeezing is produced. In future experiments we 
plan on applying a field parallel to the spins such that the system can be used to simulate non-QND oscillator-like 
dynamics and test related measurement procedures. Eventually, a cavity and an optical lattice will be added to the 
system to suppress spontaneous emission and extend the time during which the projective behavior of the measurement 
is valid.

The measurements of the above plot were repeated 500 times 
at each of several inter-measurement rotation angles with and 
without feedback.  The open-loop conditional measurements 
and the closed-loop measurements (using the above averaging
windows) display the expected sinusoidal squeezing curve.  
Notice that the optical noise floor is below the squeezing 
minima.   

Example trajectories with corresponding timing diagram. If a 
constant field were present, large scale Larmor precession 
would be observed.  The upper two plots demonstrate 
measurement projection noise, with an optional inter-field 
rotation to observe the anti-squeezing from the initial 
measurement.  The lower two plots demonstrate the 
deterministic preparation of the spin-squeezing with the use 
of feedback control.  Independent measurements have been 
made to verify the expected scaling of the projection noise 
with atom number. 
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Directions for further work

The free space measurement description eventually becomes complicated as spontaneous emission causes 
destruction of the quantum state.  If this effect is suppressed, as it can be with a high finesse cavity, the 
QND projective behavior will eventually prepare an eigenstate of the measured variable, Jz.  Here we analyze
the long time behavior of the related conditioning equations and demonstrate that the projective measurement 
can in principle be made deterministic with feedback control.

In homodyne configuration, the photocurrent is given by

The stochastic master equation describing how to map this photocurrent to the optimal state description 
is given by

where

If the efficiency is one, we can use the stochastic
Schrodinger equation (SSE) instead

In this figure, an initially x-polarized coherent spin state (CSS) of N=10 spin-1/2 particles is evolved via the SSE.  At 
small times, a conditional spin squeezed state is prepared.  At long times, the state converges randomly to one of 
the fixed points of the SSE, which are the eigenstates of Jz (a.k.a. Dicke states) and can be highly entangled.

It can also be shown that the variance decreases to zero 
on average, proving the eventual preparation of Dicke states 
by the open-loop SME.

Through numerical simulation, we notice other interesting features of the dynamics.  In (A) it is seen that the
variance is bounded, such that the projection will always take a finite amount of time.  Also, (C) clearly shows that
certain regions of Hilbert space are forbidden by the dynamics of the SSE. 

The long time variance bounds imply two level system behavior

Short time moment expansion Current average estimator

Now we wish to add feedback control to the measurement process in the hopes of preparing a given state 
deterministically on every trial. In the following we assume unity efficiency (SSE) and we aim to produce  
a particular desired Dicke state (m=md) for N=10.  For the controller, we choose to work with Bayesian 
(state-based) feedback as it naturally turns the disturbing feedback off once the desired state is prepared, 
unlike Markovian (direct current) based feedback.  We choose our feedback gain small enough such that 
the numerical results remain valid.  

The 'cost function' that the control should minimize
(for target state md) is given by the quantity:

It can be shown that the average evolution of the cost function is given by

This suggests that, to make this quantity negative, we 
choose a controller of the form 

This controller (with a gain of 10) results in the evolution shown below with md=0.  While the number of 
successful trials (m=0) is increased from 25 to 90 percent, the remaining fraction is lost because all Dicke 
states remain fixed points with this controller.  Also notice that the presence of the control law somewhat 
compromises the 'best case' projection rate in (A).
 

Motivated by the previous results, we now choose a feedback controller that explicitly makes the desired 
state the only fixed point of the SSE/SME:

While this controller is not explicitly designed to make the cost function decrease on average, we 
numerically demonstrate below that this law (again with a gain of 10) seems to prepare the same 
Dicke state (md=0) deterministically on every trial.  This is shown by the exponentially decreasing average 
of the cost function in (A).  Although some fraction (about 10 percent) of the trajectories 'miss' on the first 
pass, they are recycled by the control back into the attractive region of the target state.  

Without a field, the discretization of the Dicke levels can be resolved by the sub-optimal current average estimator,
but the simplicity of the estimator comes with a slower convergence rate.

Optimization - Given measurement dynamics, a cost function, an actuator, and experimental constraints 
(bandwidth, etc), we would like to find constructive methods for producing near optimal controller designs.
Model Reduction - A key element in the design of any controller is reducing its complexity such that it can
be implemented by a device with finite resources.
Classical theory - Although quantum features often dominate, it is useful to adopt and adapt techniques already 
developed for classical estimation, control, stochastics, filtering, etc.
Experimental improvement - Only by attaining sufficiently quantum limited experiments can these ideas be tested.

The example presented here highlights several interesting lines of research in the field of state preparation via 
measurement and control:
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Now we consider the evolution of the moments of Jz which can be extracted from the above SSE/SME.
First, we can show

which implies the martingale property
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