Pseudodifferential Methods for
Boundary Value Problems
The Fields Institute
Charles L. Epstein

Department of Mathematics
University of Pennsylvania

November 29, 2006

Contents

1 Manifolds with Boundary 2

2 The Basic Example 3

3 Functional Spaces on Manifolds with Boundary 10
4 Estimates for Operators Satisfying the Transmission Conition 14

5 The Calderon Projection 22

6 Fredholm Boundary Value Problems for First Order Operators 25
Introduction

These notes provide an outline for lectures delivered byathtbor at the Fields
Institute on December 13, 2006. The topic of the lecturesésapplication of
pseudodifferential operator techniques to solve boundahye problems for first
order differential operators. These techniques came tdotteein the analysis of

*Keywords: Elliptic operator, boundary layer method, Frddh problem. Research par-
tially supported by NSF grant DMS06-03973 and the Franci€arey term chair. E-mail:
cle@math.upenn.edu



boundary value problems for the Dirac operator on a manifatth boundary,
see [10, 1, 2, 3, 4]. The boundary conditions we consider afiaetl by pseu-
dodifferential operators, frequently specialized to plelifferential projections.
We assume a familiarity with the basics lof-Sobolev space theory and pseudod-
ifferential operators.

1 Manifolds with Boundary

Let Q be a closedn-dimensional manifold with boundary. As local models we
have

By ={xeR": x| <1landBi = {x e R": |x|| < 1andx,>0}. (1)

The interior ofQ has a cover by open seftd;} and the boundary has a cover by
open setgVi} such that, for each there is a homeomorphispy : U; — By C
R", and for eactk there is a homeomorphispy : Vi — B C R". In the later
casepk(Vk N bQ) C bB; . The pairs(Uj, ¢;) are called interior coordinate charts
and (Vk, k) are boundary coordinate charts. On the nontrivial inteises of the
coordinate charts we require that the induced maps fromessib$R" to itself be
diffeomorphisms, e.g. IJ; N U;, # @, then

pjop;t:pp(UjNUp) — ¢j(UjNU;), @)

is a diffeomorphism.

A function, r, which is non-negative (or non-positive) in the interior(®@fand
vanishes to order oné( # 0) along the boundary is called a defining function for
the boundary of2. The normal bundle to the boundary is the line bundle along the
boundary

NbQ =TQ [ho /ThQ. 3

The dual bundle, the co-normal bundlN;bQ, is the sub-bundle oT*Q [po
consisting of 1-forms that annihilafEbQ. It is spanned at every poirng, by dry.
The geometry of2 near to the boundary is described by the tubular neighbarhoo
theorem:

Theorem 1 (The tubular neighborhood theorem).If Q is a manifold with bound-
ary, then there is a neighborhood U ofdthat is diffeomorphic to @ x [0, 1). It
can be realized as a one sided neighborhood of the zero sestthin NIXQ2.

Using the identification ofJ with a neighborhood of the zero section, it is
easy to show tha can be embedded as a subset of the smooth manifold without
boundary: Q ~ Q I,q Q. The interior ofQ is an open subset @. If Q is a
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compact manifold with boundary, théhis a compact manifold without boundary.
If we fix an orientation o2, thenQ ~ Q L1, [—Q], where[—Q] denote with
the opposite orientation, is also an oriented manifold.

We use€¢™(Q), €X(Q), etc. to denote smooth, respectivéty-functions on
the interior ofQ, and€¢>(Q), €X(Q), these classes of functions on the closure. If
F — Qs a vector bundle, the®i®(Q; F), €(Q; F) are the sections df, that
are smooth, respgX, up to the boundary. If it is clear from the context, we often
omit explicit mention of the bundle from the notation. Whegind) analysis on a
manifold with boundary it is very useful to be able to extenddtions fromQ to
Q. Seeley proved a very general such result:

Theorem 2 (Seeley Extension Theorem)if Q is a manifold with boundary, then
there is a continuous linear map

E : ¢®(Q) — €®(Q). (4)
E also extends to define a continuous linear i4(Q) — €<(Q).

Recall that, fors € R, the L2-Sobolev spacéiS(R") is defined as those tem-
pered distributionss € ¥ (R") whose Fourier transform is a function, which
satisfies:

Jul2 = / GEPA+ )% < oo. 5)
Rn

Let X be a compact manifold without boundary, having coordinateec(U;, ¢;).
Let {y;} be a partition of unity subordinate to this cover. A disttibo u e
€%~ (X) belongs toH*(X), if for every j, the compactly supported distribution
wjuo gpj_l, on R" belongs toHS(R"). It is a well known result that the Sobolev
spaces are invariant under such changes of coordinate anefdfe, the space
H3(X) is well defined as a topological vector space. A norm, whidinds this
topology is given by

2 -1,2
||u||HS(X) = Z” t//JUOgDJ ”HS(Rn). (6)
]

Defining function spaces on manifolds with boundary is a lreninvolved, we
return to this question in Section 3
Good references for the material in this section are [9] 4ddl [

2 The Basic Example

Before going on, we consider, in detail, the simplest caséchvreveals the main
ideas we encounter in the general case. We€let D, the unit disk in the plane.
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The operator we study is tiieoperator,
- 1 _
ou = E(ax +ioy)u. @)

The Cauchy-Pompieu formula states that) & €*(Q), then

u(z)zé/au(w,d))dxdy_i_i/u(w,zb)dw. (®)

w—2z 2ri Z—w
D1 bDl
From the perspective of pseudodifferential operators,ftiliows from the fact that
[27 (w — z)]~t is a fundamental solution for theoperator,

- 1

As we shall see, the first term in (8) defines a bounded map #itD;) —
Hs*+1(D,), for everys € R. The second term in formula (8) defines a holomorphic
function in D1, an element of the nullspace 6f The main task before us is to
understand the behavior of this second terma as bD;.

Using the Fourier representation

u@r,0) = > up(r)e", (10)

n=-—00

we see that .
lul?, =2z > /|un(r)|2rdr, (11)

I’]:—OOO

and, after integrating by parts, we find that

[e.e]

2 2 00
||éu||ﬁz=%{z (r|ag(r)|2+m)dr— > n|an(1)|2] (12)

N=—00 N=—00

Our goal is to find boundary conditions for tideoperator, so that resultant un-
bounded operator oh?(D,) is Fredholm and has a compact resolvent. For non-
negative integers defing¥(D;) to be the closure o8> (D) with respect to the
norm:

2 2
ulZe = D llogagull?zqp,- (13)
m-+n=k



For reals > 0, define H3(D;) by interpolation. For rea$, a distributionu in
€%—>°(bD,) belongs toHS(bD,) provided:
UlZsppy = D 10MAA+n?)® < oo, (14)
N=—00
whered(n) = (u, €").

A boundary condition fop defines a Fredholm operator (with compact resol-
vent) provided that functions in the domain of the operatdisfy an estimate of
the form

lullnspy < CllloullL2p,) + IUllLz2(py], (15)
for ans > 0. Equation (12) shows that the difficulty in proving this is guced
precisely by the valuea, (1) for n > 0, as all other terms on the right hand side
of (12) are positive. Indeed &u = 0 then

u(r,0) = > upre™. (16)
n=0

In this case the negative boundary term in (12) exactly lwaisirthe other two
positive terms.

While it is not immediate from (12), ah?-function such thatf = ou e
L2(D,), satisfies an important estimate, and has an important “fjlokgularity
property. Standard interior estimates imply tbat HZ.(D1), and hence has a
well defined restriction tbD;, for eachr < 1. Suppose thap € €>(D,), then a
simple integration by parts shows that, fox 1, we have:

/u(r, €No(r,d%dz= -2 |:D/ fgodxdy+/uégodxdy} . (17)

b Dy Dr

The limit asr — 1 certainly exists on the right hand side and therefore, gfte |
hand side also has a well defined limit.

Clearly, the limiting pairing on the left hand side of (17)lpnlepends on
¢ bp,, hence we can set

p=> a7 (18)
n=0

The Cauchy-Schwarz inequality then shows that

— lanl? — Nlay|?
< IIfllez Zz(n+1)+||u||Lz > 9
n=0 n=0

This estimate proves the following basic result:

D Un(Dans

n=1
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Theorem 3. Suppose thatlu angu are in L?(Dy), thenr — u(r, -), is continuous
as a map fromO0, 1] to H=z(b Dy ). More explicitly,

o |Un(r)|?
> s (20)
oo V141
is uniformly bounded for & (0, 1], and
. - [Un(r) — Un(1)|2
I = 21
m T O @D

In other wordsu has distributional boundary values in a negative Sobolev
space. As a corollary we can also use the Cauchy-Pompiewfarfor data of
this type. This leads naturally to the question: in what satwes the limit

. 1 u(1, €%)de’

lim — [ —— -~
z>bDy 27 z— @’
bD;

(22)

exist? For the case at hand this question can be answereditgcadalculation.
Forz € D;, the Cauchy kernel can expanded to give

1 RN
5= e > ()" (23)
n=0

Using the expansion in equation (23) we deduce that

r—>1- gf —reid
bD;

i0 i0 0
lim / ud.endeEr) _ > uy(0)e™. (24)
n=0

Indeed, ifu(l, ) € H3(bD,) for anys € R, then this limit exists inHS(bD,).
We denote the projection operator defined on the right hashel Gl (24) byIl, .
This operator is a pseudodifferential operator of degree. zié has the following
principal symbol:

1iféE>0

0if& <O. (23)

oo(I1;) (€7, &) = [

To see this, we use oscillatory testing: chogses smooth with compact support,
so thaty (x) = 1, anddg (x) = &, then

a0(Q)(x, ¢) = lim e Q(ye**)(x). (26)
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For the case at hand, l¢t. = +6, and choosey with y(€?) = 1, then

lim e "+ 11, (ye"*)(e’) =

n—oo

[ iMoo 257y € = w @) (4 )

liMpso0 352, wi€1? =0 =)

In the case at hand . is usually called the Szegd projector, though it agreeh wit
what is, more generally, called the Calderon projecto@for

We now define boundary value problems for theperator onD;. Let % de-
note a pseudodifferential projection acting distributiatefined on the boundary.
We define an operatq@, %) as the unbounded operator dA(D;) with the do-
main

Dom(3, ®) = {u € L3(Dy) : du € L*(Dy) andR(u [pp,) =0}.  (28)

Theorem 3 and the fact th@tis a pseudodifferential operator show that the bound-
ary condition makes sense. It is elementary to prove thatisha closed operator.
We now compute the formal adjoint of this operator. A funetiois in the do-
main of theL?-adjoint if and only if there exists af € L?(D,) so that, for every
u € Dom(o, %) we have:

(ou,v) = (u, f) (29)

Takingo € €>°(D,) and integrating by parts we see that

(0u,v) — (u, 0*v) = (U, € "v)pp,. (30)

Foru [pp, We can take any function of the forf f. Since the boundary term
must vanish, for all, we see tha{ld —&*)e "’y lbp,= O is necessary as well.
Hence the adjoint boundary condition is that defined by tlogeptor Id—%*. We
suppose that is self adjoint, so that is the same as the boundary condigdined
by Id —%.

We now give a condition that implies that this is a Fredholnerapor with a
compact resolvent. Our condition is expressed in termsaxddimparison operator

T =RIL, + (Id—R)(Id —I1..). (31)

Theorem 4. The operator(@, %) is a Fredholm operator with a compact resolvent
provided that7 is an elliptic pseudodifferential operator.

Proof. First suppose that lies in the nullspace ofo, ®). In this casedu = 0 and
thereforeJ (u [yp,) = R(u [pp,) = 0. As T is elliptic this shows thati belongs
to a finite dimensional space of smooth functions. Thus thispace of(é, R) is
finite dimensional and contained (D).



The key to proving the theorem is to show that the range of gerator has
finite codimension and that, for data in the domain, we havestimate like that
in (15). If we let¢ denote the operator defined by the Cauchy kernel, then we need
two basic estimates: far € R, the following operators are bounded

u e H%(D1) — %u e HSY(Dy)

n (32)
f € HS(bDy) > €(f4d,) € HS"2(Dy).

HereJ, is thed-measure normal tbD;. The map fromH3(bD,) to Hs+%(D1) is
denotedi, and called the Poisson operator. The hypothesis of theghewmnplies
that there is a pseudodifferential operatarof degree 0 so that

JU =1d—Ky, UT = Id—Kp, (33)

whereKq, K, € ¥~*°(bD,), and have finite rank.
Leto € L?(D;) and set

up = %o andug = —HUR(U1 [bp,)- (34)

From the Cauchy-Pompieu formula it follows that, in the seo§ distributions,
0(Up + u1) = . Moreover, the fact that — u [pp, is bounded fronH YDy —

H? (bDy) and (32) imply that botly, andu; belong toH!(D,); there is a constant
C so that
[Uo + Uillnip,) < CllvllLe. (35)

What remains is to check the boundary condition. To that eadcstate a simple
but fundamental lemma.

Lemmal. If If € Im®R, then

I, f =Tf. (36)

We see that the boundary valuewfis —I1,UR(U1 [pp,), and
TUR(U1 [bpy) = (Id =K1)R(U1 [bpy)- (37)

Assume thab is chosen so thalk;R(u; [,p,) = 0; this amounts to imposing
finitely many, bounded linear conditions. With this assumptve see that

TUR(U1 bD,) = R(U1 [bD,) € IMR, (38)
hence the lemma implies that

TILURUL [bp,) = TUR(U1 [bD,) = R(U1 [bD,y)- (39)
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Putting the pieces together, we have shown that, & _L2(D1) satisfies finitely
many linear conditions, then there is a solutioe Dom(a, ) to the equation

ou =vo, (40)

which satisfieg|u|ly1(p,) < Cllv|l 2p,)- Hence the range of the operator contains
a closed subspace of finite codimension; it is therefore @fdmite codimension
and closed. The nullspace is also finite dimensional andstlifices to show that
the operator is Fredholm.

To show that Dortg, %) ¢ H(D;), we suppose thatu = f, R(U [pp,) = O.
Letu; =€ f e HY(D,). Thenup = u — u; satisfies,

dUp = 0 and%(Uo [bp,) = —%(Us lbp,) € H2(bDy). (41)
Sincedug = 0, we see that
—%R (U1 [op,) = T (Uo [6bD,) (42)
and therefore
(1d —K)Uo Thp,= —UZ(U1 [bp,) € HZ(bDy). (43)

As K3 is a smoothing operator, we see that there is a con§lansuch that if
u € Dom(o, %), then

lullhioy < C1[||5U|||_2(D1) + Ul 2oy ] (44)

This estimate implies that Dog®, %) ¢ H*(D1), which implies that the operator
has a compact resolvent. O

As a corollary of this theorem we can identify thé-adjoint of (6, %) with
(0%, €(1d —®)e'?).

In fact much more is true: for eache [0, o), there is aCs, so that ifou =
f € HS(D;), andR(U [pp,) = O, thenu € HS*! and

IUllustapy) < Cslll Fllnsoy + IUllL2oy]- (45)

The condition thatr be an elliptic pseudodifferential operator, coupled witb t
fact that? is a projection implies that

1ifE>0

0if & <O. (46)

ao(R)(€’,¢) = [



There are many possible projections satisfying this candit

It is clear that the main conclusions of the theorem remaia if there is an
< 1so that the operatéit : HS(bDy) — HS#(bDy), foralls > —3. In the 1-
dimensional such examples are not naturally occuring,gh@uhigher dimensions
they are quite important.

A similar discussion applies to study higher order elligifuations as well.
For example ifP = A = (57 4 &), thenG(x,y) = [2z]'log|z — w]| is a
fundamental solution. Green’s formula states that, & ¢%(D1), then

u2 = / Au(w)G(z, w)d A, + /[U(w)ﬁva(Z, w) — 0y, U(w)G(z, w)lds,,
D1 bD;

(47)
herev is the outward unit normal vector toD,. If Au = 0, thenu is determined
by its Cauchy datdu, d,u) [pp, . The Green’s function satisfies estimates much
like those satisfied by the Cauchy kernel. The Calderon pimje?, takes a pair
of functions defined on the bounda(y, g) to the pair(u, 6,u) [,p,, Whereu is
the element of keA, given by

u(2) = / [ ()3, G(Z w) — §W)G(Z, w)Ids,. (48)
bDy

Boundary conditions are now defined by pseudodifferentiajegtions acting
on the pair(u, 6,u) [pp, . The BVP is elliptic if the comparison operator =
RP + (Id —R)(Id —2) is elliptic. For simplicity we will largely stick to the case
of first order systems in the sequel.

3 Functional Spaces on Manifolds with Boundary

To extend the results of the previous section to the case ehargl manifold with
boundary we first need to introduce function spaces thatdaptad to the study
of boundary value problems. We & denote a compact manifold with boundary,
which we often think of as a subset of the douléke which is a compact manifold
without boundary. There is a certain amount of subtlety lwvea in the definitions
of spaces of distributions on a manifold with boundary, whia the end, has to do
with what one means by regularity up to the boundary. We lsttdhk of Q as a
closed subset d®, but in this section we often emphasize that point by writihg
The main distinction derives from whether one wishes to idemsa function
to be smooth o2 if the function and all its derivatives extend smoothlybQ@,
or one wishes to consider a function to be smoothoifi the function and all its
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derivatives vanish alongQ. In the latter case, its extenstion by zero to allbf
is smooth. We denote the former space of functions¢y(Q) and the later by
©>(Q). The elements of the dual space¥®(Q) are called supported distribu-
tions and are denoted 5§ >°(Q). The elements of the dual space®F(Q) are
called extendible distributions, and are denoted&b§’ (Q2).

An important difference between these two spaces condeeraction of differ-
ential operators. As usual this is defined by dualityP ifs any differential operator
then P! maps both spaces of smooth functions to themselves, arefdhemwe can
define an action oP on either¢—>°(Q) or ¢=>(2) by duality:

(Pu, p) 2 (U, P'p). (49)

If u e 6=°(Q), then we takey € €>(Q) in equation (49), while ifi € €=°(Q),
then we takep € €>(Q). Of course¢>(Q) is a subset of botk~>°(Q) and
€~ (Q). If u € €*(Q), then the meaning dPu depends on whether we think of
it as an extendible or a supported distribution. The difieeein the two definitions
is a distribution with support obQ. For example, ii € €*(D1) andP = ¢ then

u(1, €%)e’do

. (50)

Oextll — ésupd-] =46(r —1)
A distribution u € ¢~°(Q) if and only if there is an elemerd € €~>°(Q)
such that supp C Q, which definesu. In this caseu is defined on an element
p € €(Q) by
u(p) = U(9), (51)

whereg is any extension of to an element of6™(Q), for example the Seeley
extensionEg. Because supg C Q, the value ofU (p) is independent of which
extension is used. Thd®-norm is defined on supported distributions by setting

[ulls = 1U Ins(&)- (52)

The subspace oé=°°(Q) for which this norm is finite is denoted biys(Q). The
important thing to note about this space is that in orderfdo be smooth in
this sense, that is belonging #5(Q), for a large value o6, it must have many
derivatives inQ, which vanishat the boundary. This is because supg Q. The
spacet™(Q) is a dense subset & > (Q).

On the other hané™®(Q) is a closed subspace ©f°(Q) and therefore the
Hahn-Banach theorem implies thatuife €~>°(Q), then there idJ € €~°(Q)
that extendsi. We define theH *-norm for this space of distributions by

lulls = inf U le. (53)
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The subspace ¢6—°°(Q) for which this norm is finite is denoted y°(Q). From
the definition of the norm, it is again clear that a distribatu is smooth in this
sense if it has many derivatives wisimooth extensiort® bQ, rather than having
to vanish to high order alongQ. The spaceé>(Q) is dense irf6=>°(Q). It is
clear that for ever € R, we have a natural magds(Q) — H3(Q). This map
turns out to be injective i§ > —% and surjective is < % The L2-pairing onQ
betweeri6>(Q) and¢>(Q) can be extended to show that, for sle R, we have
the isomorphisms

[H3(Q)] ~ H3(Q) and[H3(Q)] ~ H3(Q). (54)

If s> % then restriction to the boundary extends to define a contimtrace

map:
7 HS(Q) — HS 2(bQ). (55)

Because this map is not defined foe % it is convenient to work with spaces that
treat regularity in the tangential and normal directionglgly differently. These
spaces greatly facilitate the analysis of operators defindcf (Q). We first define
these spaces for the half spd&®. Let X’ = (g, ..., %Xn-1),¢" = (&1, ..., én-1)s
and define the tangential Fourier transform to be

U, X) = / u(x', xn)e < dx. (56)
Rn-1
Form a non-negative integer arsde R we define

m [e.e]

lUllfns = 2 / / 104, T(E", %) 2L+ ['17)° 1 dE d X, (57)

j=0Rn—1 0

The spaceHms)(R') is the closure of@go(ﬁi) with respect to this norm. It con-

sists of all distributions i6~>°(RT) such thai,T is a function for 0< j < m,

and the norm in (57) is finite. The corresponding space of aueg distributions,

H(m,s)(Ri), is defined as the closure @° (intR"} ) with respect to this norm.
These spaces are useful for two reasons:

Theorem 5. If m is a positive integer an@ < | < m, then the map
6> (R) > u— 8} u(-, Xn),

for x, > 0, extends as a continuous map from(R") — Hs+m‘j‘%(R“‘l).
Moreover, % — 3} u(-, X,) is continuous fronf0, 1) to HS+*M=i=2 (R1-1).
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Of particular note is the fact that%(IRZ‘r) D H(l’_%)(lRi). While the restriction

to the boundary is not defined for € H%(Rﬂ‘r), it is defined, as an element of
L2(bRY}), foru € Hy _3(RY).

Because they behave well under localization and changeatitate, these
spaces can be transferred to a manifold with boundary. (Farcompact mani-
fold with boundary we leHm s)(Q), H(m,s)(Q) denote the corresponding function
spaces. Suppose th@t, ¢) is either a boundary or interior coordinate chart, and
w € 62°(V). A distribution u, defined onQ, belongs to one of these spaces if
(wu) o 9t belongs to the corresponding spac®Ih Using the tubular neighbor-
hood theorem, Theorem 5 extends to this situation:

Theorem 6. LetQ be a compact manifold with boundary, r a defining function for
bQ, Q = {r > 0}. If m is a positive integer an@l < j < m, then the map

€*(Q)3u— dluC,r),

forr > 0, extends as a continuous map fromglg) (2) — H3+m‘j‘?1(b£2). More-
over, r — alu(., r) is continuous fronf0, 1) to HS*™=i~3(bQ).

The connection with the analysis of boundary value probl@nslifferential
operators is provided by the following weak, but extremedgful regularity theo-
rem. In the situation described in Theorem 6, a differemtierator,P of degreem
is calledtransversely elliptiaf o (P)(X, dr) is invertible for allx € bQ. In other
words, the boundary a® is non-characteristic foP.

Theorem 7. Suppose thaf2 is a compact manifold with boundary and P is a
transversely elliptic operator or order nBuppose that . L3(Q) = Ho,)(Q),
and Pue L(Q), then ue Hp_m(Q).

As indicated by the identification, 2(2) = H,0(€2) we interpretu as an
extendible distribution when definingu. The theorem has a very useful corollary,
which is a generalization of Theorem 3.

Corollary 1. If u, Pu both belong to &(Q), Ehen, for0 < j < m the maps
r — alu(r, -) are continuous froni0, 1) to H=(z*1)(bQ). In particular,

ru=Q,-),au,-),...,omtu, ) o
is well defined as a distribution on the boundary.

The range ofl" consists of distributional sections of a vector bunéle—
bQ. Suppose thak is a pseudodifferential operator definedls®, which acts on
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sections oft. As is well known, pseudodifferential operators act cordgimly on
distributions. Thus we can define an unbounded operatar’¢f?), with domain

Dom(P,®) = {ue L?: Pue L?and®I'u = 0}. (58)

It is not difficult to show that these operators are closede dhestion of principal
interest is to know when these operators are Fredholm.
Good references for the material in this section are [9] 4ddl [

4 Estimates for Operators Satisfying the Transmission Con-
dition

In the sequel we le© be a compact with boundarg, its double and andE, F
complex vector bundles ov€l. We suppose tha® is a first order elliptic, differ-
ential operator from sections & to sections of. In general we are rather sloppy
about which bundle is which, largely leaving them out of tb&ation, except when
absolutely necessary.

The ellipticity of P means that for each non-zeface Tx*fz, the principal sym-
bol, po(x, &) is an invertible element of HofEy, Fx). This in turn is well known
to imply that there is a parametrix fét, that is an operato® € ¥~1(Q; F, E) so
that

PQ=Idr —K; QP =Idg —K; (59)

with Ky, K2 smoothing operators of finite rank. (The smoothing opesedoe those
with Schwartz kernels if6>° (Q x Q) tensored with the appropriate vector bundle.)
The symbol of the operatd has an asymptotic expansion:

(Q~ D q (60)

j=0

For eachx, q;(x,¢) is arational functionof ¢ of degree—1 — j. Indeed, the
denominator ofj; is just a power of depg(X, &). This implies thatQ is an operator
satisfying the transmission condition.

Definition 1. A classical pseudodifferential operator @ € ¥*(Q) satisfies the
transmission conditiog, if whenevare € (Q) and we denote by the extension
of u, by zero, to all ofQQ, thenQuy [into €xtends to define an element@®(Q).

There is a simple symbolic criterion for a classical pseifter@ntial operator
to satisfy the transmission condition. It is a local cormtfitiwe introduce coordi-
natesx = (X', Xy) in a neighborhoody of a pointp € bY so thatp <+ x = 0,
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U NbY = {x, = 0} andx, > 0 in the interior ofY N U. Assume thatQ is a
classical pseudodifferential operator of ordesuch that (complete) symbol &
has an asymptotic expansion:

0
s (Q(X. &) =q(x, &) ~ > qi(x.&), (61)
j=—00
where
qj (x, A&) = A™ g (x, &) for 2 > 0. (62)

The operator satisfies the transmission condition witheesipY, provided
qJ (X/a an é/a 5n) - e_ni(m+j)qj (X/a Xna _f/a _fn) (63)

vanishes to infinite order along the inward pointing condrinandle toby, i.e.,
wherex, = 0,¢ = 0 and&, > 0. As shown in [9], this is a coordinate invariant
condition and so can be used to check the transmission camflir pseudodiffer-
ential operators defined on manifolds.

In our applications the terms in the asymptotic expansioa (@) are homo-
geneous, rational functions 6f which therefore satisfy the following condition:

qj (x, 2&) =A™ g (x, &), forall A e C*. (64)

We call these properties tlstrengthened transmission conditidn the arguments
which follow we often use this stronger condition as it siifigé the exposition.

To understand the symbolic properties underlying the tréssion condition
we consider a function e C\%go(ﬁi). If

ax’, &) =/u(x’, Xn)e *nénd x,, (65)
0
thena(x’, &) has an asymptotic expansion
8 ux’ 0 -
a(x’, &) ~ Z l(X, ) Z (X', &) (66)

LetI't c C be the contouf—oo, RJU{Ré&’ : 6§ € [x, 0]} U[R, oo). The function
a; satisfies '
a; (X', &) =a (X, D& (67)
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For such a function, the oscillatory integral

/ aj (X', &)exnndé,, (68)

T+

is well defined. In fact, ifx, > 0, then a simple contour deformation argument
shows that this integral vanishes. As an oscillatory irgkdhis remains true for a
function of the forma(x')é1, forany j € Z.

Now suppose thatis a compactly supported distribution with a representatio
as an oscillatory integral, of the form:

0 (X, Xn) = Zi / b(X', & inds,, (69)
T
whereb has an asymptotic expansion
m
b(X', &) ~ D bj(X, &), (70)
j=—00

whereb; (X', &) = bj (X', 1)@{. Forx, > 0, andN > O we observe that

1o o
U(X/s Xn) = U(X/, Xn) — E Z/ bJ (X’, é"n)e”(nindén
j:ll—+

1 / 0 / iXndi
= E[ / [b(X’, &n) — ij (X', &n) 17" dSn+ (71)

lénl> R =1

R 0 N
/b(x’,gn)eixnfndgn—/ij (X, Ré(’)eiX”RéoRdég}
“R z 1=1

The compactly supported terms are smooth functions andtbgral ovets,| > R
is aCN—l(@i) function. AsN is arbitrary, the restriction af to intR'} extends
to %“(@1). This simple analytic continuation argument explains theerse of
the transmission condition. In this section we use this gbcontour deformation
to establish mapping properties f@ acting onH3(Q) as well as its effect on
distributions supported do< itself. The result we obtain is

Theorem 8. Suppose that Q is a classical pseudodifferential operatarder m,
on Q, satisfying the strengthened transmission condition wépect toQ. For
seR, Q: H3(Q) - H™MQ).
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To prove this theorem we use the following local result.

Proposition 1. Let Q be an classical pseudodifferential operator of inédgiegree
m onR" satisfying the strengthened transmission condition wapect tdR" . If

f e Hcsomp(lRE), then, for any ke Ny, we have:

Qf FRQE H(k,s—m—k),loc(Ri) (72)

Proof. Because pseudodifferential operators are pseudoloéallpitvs thatQ f lintrY
is smooth. As¢>(R") is dense intHS(R"), it suffices to show that that, for every

s, there is a constari, such that forf € €*°(R"), andg € C\%go(@i), we have
||§0Q(f)||,-,s_m+%_,- < C| fllns@n)- (73)

Letq ~ > q;, whereqg; (x, &), is a homogeneous rational functiondinof degree
m-— j.

Remarkl. In the following argument, which is modeled on the proof oEdlem
18.2.17 in [9], we proceed somewhat formally. ke 62°(R), with support in
[—1, 1], and total integral 1For eache > 0, we letg, (xX) = e 1 (e 1x). To be
entirely rigorous, we should work with the regularized fioes f, = f x4, ¢,
which belong to€°(R"), derive the formulee below, wita > 0, and allowe
to tend to zero. This argument is quite standard and we l¢aweethe interested
reader.

We begin with a lemma. Lay (&) be a smooth function, witly (&) = 0, if
€'l <1, andy (') = 1, for ||| > 2.

Lemma 2. If f € HSn(RD), then
_ 1 Y2 iX-&
Qu(f) = {(2”)” Jacaa-venfee } (74)
RN

)
belongs tg6®(R}).

Proof of the LemmalFor eachN, there is arR so that, if||&’|| < 2, then the poles
of {qj(x,¢", &)« ] =0,..., N} lie inside Dr(0). Becausef is supported in the
lower half space, its Fourier transform extends to be a hotphic function ofé,

is the upper half space. L&, denote the arc, in thé&,-plane,{&, = Re’, 0 e
[z, 0]}. Using the analyticity properties df and theg;, we can therefore argue as
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in equation (71), that fox, > 0, we have

Qo(F)(X', %) = 2 )n/ / (q(x $)— Zq,(x 5)) X (1 — y (&) x

Rn-11én|>R

f(é)dé e*<'de’
/ / 4%, YN (L — () ()™ de’

Rn-1 Int<R

/ / Zq,<x (1 (&) F()dEe < de

e )"

(27f )"
Rn-1T4

(75)

By taking N large, we can make the difference appearing in the firstiategn-

ish as rapidly as we like, thereby making the first integratmsoth as we wish.
The other two terms are integrals over compact sets, whietetbre definé¢>-
functions in{x, > 0}. The existence of an estimate, as above follows from the
closed graph theorem. O

From the lemma it suffices to consider

/ 40, Oy )f(f)éxfdf} , (76)

RY

QuH)) = { By

for f e %go(@rl). For eachj € N, define the pseudodifferential operator:

Qj(H(x) = { oy / 9 (x. )y (& )f(E)E'def} N ()
R}
ForN e N, the differenceQ — >, _\ Qj1 is a pseudodifferential operator of order
—N, and therefore it suffices to prove estimates@#(f), j =0, ...

To prove these estimates, we take the tangential Fouresforan of Q;,(f).
We let

G (7, %, &) = / q; (X', Xn, E)e™ T dX'. (78)
Rn—l
From the symbolic estimates, it follows that, for eddhe N, there is a constant,

Cwm, so that _
1<

MA@+ M (79)

q;(7, %n, &) < C
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There is a universal constafit, so that if f € HS(R"), then

0
/ / & %) P+ €1 %A% dE < C'l  flsqan - (80)

RN-1 —o00

Moreover, fA(f’, &) analytically extends tdlm &, > 0}; for g > 0, the Cauchy-
Schwarz inequality implies the estimate:
2

0
| fA(f/, a+ip))? = t/ (&, X)X @+HA g,

; (81)

[ 11, x)2d%,

< 25
Asq;(x, ¢, &) is homogeneous i), its poles, as a function df, in the upper
half plane, are of the forfi|&’|w (@) : j = 1,...,L}; we let
w (@) = a (@) + i (@). (82)

Here| &'l = &'. We can use contour integration to evaluate dhéntegral. As-
suming, for the moment, that all the polesopfare simple, we obtain that

L .
QN x) = > —
I=1

el IR R
= R

n—1
fA(g/, 1wy (w/))eanHc’,‘/Hw (w/)eix/vé‘/dgz/’
where
(%, &, &) = (& — 1€ lwr (@))a (X, &, &). (84)
Away from ¢’ = 0, these are homogeneous symbols of degree j + 1. Clearly

it suffices to separately estimate each term in (83). For &&cthere is a constant
Cw such that the tangential Fourier transformq& satisfies the estimate:

y Igm-i+t
@+ ™

This shows that the tangential Fourier transform of eaat iarthe sum satisfies
the estimate:

g (7', %, &) < C (85)

"y @I 1w (@) le A Ide
@+ 1 =™

|6§'{f(n’,xn)|sc/ 1<
Rn-1
(86)
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We apply the Cauchy-Schwarz inequality to the right hane sid(86) to ob-
tain:

QN f (. x)?<C

R

| @
S @ ="
(87)

We chooseM sulfficiently large that the second integral converges. Hptility
and compactness, the the imaginary part of the expofiént) > g > 0, aso’
varies over the unit sphere. Using this estimate, and the&st in (81) we see
that

/ €12 Dy @ (& 1w (@) Pe 2o g
@+ 1€ =

| 1@t @+ e mdsdy <

rRN-1 0

/ / w (ENE NPT IHD(L + ||| 2SH ™
A+ 11E = n'IDMB21IE 112

0
X / | f~(é/a yn)|2dynd§/d’7/'
RN—1 gn-1 —00

(88)

One power of|¢’|| in the denominator results from performing theintegral, and
the other comes from (81). To complete the proof we use thewolg elementary
lemma:

Lemma 3. Ift e Rand M > 2t 4+ n, then there is a constant C so that:

1 711\ 2t
/ (1”5,”1'2,”)M <C@+ I, (89)

Rn-1

The proof is left to the reader.
Interchanging the order of th¢' and ¢’ integrations in (88), we apply the
lemma to obtain that

| 1@l sy <

RN-1 0

0
c / @+ 1€ / (&, yo)2dyade’. (90)
Rn—l —00
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In light of equation (80), this proves the proposition, kog 0, under the assump-
tion that all poles ofg; are simple. The latter assumption is easily removed, by
using Cauchy’s formula

k! f (w)dw

R

the Leibniz formula, and symbolic estimates. It is seen v@ ¢fie same result, as
in the simple case, if we replace (81) with the estimate

0 ~
[ 11(&, %) 12d X%
108 f(& a+ip)P < C—

ﬁ2k+1 (92)
To estimate derivatives in the, direction, we simply differentiate (83). Each
derivative replaces the symbol, ¢, with a symbol of one higher degree and the
argument is otherwise the same. O

Proof of the TheoremLet f € H3(Q). Using the Seeley extension theorem we
know that there is a consta@t, and an extensiorf’ of f to Q, so that

I lhs@) < Csll fllns- (93)

BecauseQ is a pseudodifferential operator of ordex it follows that there is a
constantC; so that
IQF Ihs-m@) < Cell f'llns(@)- (94)
In light of the definition of the norm okl 5(Q), this shows thaQ f’ [oe H3™(Q).
If we let
f !/ M~
f = - TQ\Q (95)
0inQ,
then we need only show th&f_ [qe H5 ™(Q). To prove this we observe that it
is enough to prove estimates in boundary coordinate chBinesneeded estimates

follow immediately from the proposition, and the well knovatations amongst the
spacedd >~M(Q) andHk s—m—k) (€2). This completes the proof of the Theorent]

Using essentially the same argument we can treat the casainfjle layer
potential:

Theorem 9. Suppose that Q is a classical pseudodifferential operatarder m
on Q, satisfying the strengthened transmission condition wépect taQ. If r
is a defining function for 8, and f € € (bQ), then Q f ® J(r)) extends to
define a function i8> (Q). If f € H3(bQ), then, for ke Ng, we Q(f ® 4(r)) €

H(k,s—m—k—%)(Q)'
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Remark2. Similar results hold for multiple layer potentials, i.e.stlibutions of
the formQ(f ® sU1(r)).

5 The Calderon Projection

We now letQ denote a parametrix for a first order differential operak@cting
between sections of a vector bundEesandF :

P:¢®(Q; E) — €®(Q; F), (96)

A typical example is a Dirac operator. To simplify the dissios a little bit, we
assume thaP is actually invertible, so tha@ can be taken to be a fundamental
solution; that is the error terms in (59) actually vanish.r e case of a Dirac
operator this can always be arranged.

The operatorQ is a classical pseudodifferential operator. Indeed, itakxy
has an asymptotic expansion:

7 (Q)(X,&) ~ D q(x, %), 97)
i=0
with g; (x, ¢) a rational functional of, homogeneous of degreel — j. The de-

nominator ofg; can be taken to be a power of dgd(x, £)).

We suppose that a Riemannian metric is fixedprand Hermitian inner prod-
ucts onE, F, though this data is often suppressed in what follows. Wheded
(-,-)e, €.0. denotes the fiber inner product Bn If 3 is a Hilbert space, then
(-, -)9¢ denotes the Hilbert space inner product. Fix a defining fancat for bQ in
Q, such thadr has unit length along<Q.

We let Q, denote the subset @& wherer > 0, andQ_ the subset where
r < 0. We also letY, denote the sdr = ¢}. As Q is a fundamental solution, it is
clear thatu = Q(g ® 4(r)) belongs to the nullspace & onQ \ bQ. We denote
the restrictions to the components of the complemeb by u.. . It follows from
Theorem 9 that iy € HS(bQ; F [pg), thenuy € Hy 1 ,(Q4; E). Let ¢, denote
restriction to{r = ¢}. From Theorem 6 it foIIows that u is well defined as an
element ofH3(Y,), moreover the maps

[0,1] 2 € — 7 UL (98)
[-1,0] 5 € — t.U_

are continuous. Note, however, that generally, # tou_.
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We need to establish the properties of the maps
Pf = IirT01i 7 Qo1 (P, £dr)(f ® 4(r))). (99)

Here f is a distributional section dt [,q, ande1 (P, dr) is the principal symbol
of P in the co-normal directiodr. If us. belongs to the nullspace &fonQ.., then
it follows from Green'’s formula, and the fact th@tis a fundamental solution that

uL(p) = Q (o2(P, £dr)[us [ba, ®4(r)]) (p) for p € Q.. (100)

Hence? . u, = uy [po, . This shows tha# . are projection operators. These are
the Calderon projectors for the operafrindeed, ax) is a fundamental solution,

PQ[oy(P,dr)f ® o(r)] = o1(P,dr) f ® o(r). (101)
Hence, if f is a smooth section dE alongbQ and¢ is a smooth section df in
Q, then

[Pantioe = im [ (QuaP.dn T @ o0). Poe

bQ {Ir|>e¢

= im [ [ @@p.an @ o). o (P drple-

{r=e}

/ <Q<01<P,dr)f®5(r)),a(Pt,dr>w>E}

{r=—¢}

= (o1(P,dr) (P4 +P_) f, 0) L 2(p0: F)-

(202)
As ¢ is an arbitrary smooth section &f anda, (P, dr) is invertible, we see that
f=@+2P )1 (103)

Arguing as in the previous section we can use contour integran the &,-
variable to obtain a formula faQ(g ® 4(r)). Hereg is a smooth section df [ .
As before, this is a local problem, we introduce coordin@xésx,), in a neighbor-
hood ofU of p € bQ, so that

Q. NU = {£x, > O}. (104)

As before we lety € €>*(R""1) be a function that is 0 in a neighborhood of 0 and
1 outside the ball of radius, 2ve can again show that, fap # 0, the functions

1
(2m)"

QQ® () — / / X X, & GG v (&) dE,eX < de’ (105)

RN—1 —o0
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extend smoothly to botf2,.. We study the symbolic properties ®f, by evaluating
thed, integrals, forx, # 0, in:

1
(2m)n

/ / 0 (X, X, &, D)y (E)E50dEE CdE (106)

RN-1 —oc0

using contour integration. Ik, > 0 then, for eachk’, we use a contour that
includes a semi-circle in the upper half enclosing the poleg; (X', Xn, ', &),
whereas ifx, < 0, then we use a contour in the lower half plane enclosing the
poles in the lower half plane. In fact, the locations of théepaf theq; do not
depend onj, but coincide with the zeros of dey(X’, Xn, &', &y). Since

-y
I1E0° 1l
the poles are also homogeneous of degree|£in As P is elliptic, po(X, o', &)
is invertible for&, on the real axis, her@’ = ¢’/||¢’||. Hence (ifbQ is connected)
the number of zeros in each half plane does not deperid pi’). We Iet{mi(a/) :
| =1,...,L.} denote the zeros of deg(x/, 0, @', &) in the upper (lower) half

éa-plane. The zeros may also dependxdnbut we suppress that dependence for
the time being. Evidently the sets

Z, = U @) : 1=1,..., L) (108)

o' esSh—1

pO(X/a Xna é:/a fﬂ) = ”5/” pO(Xla Xna )9 (107)

have compact closures disjoint from the real axis.

Let I'. be an interval on the real axis along with a semi-circlesim &, > 0,
enclosingZ... If R > 0, thenRT".. denotes the contour scaled by the fad®rAs
an oscillatory integral we see that, ftix, > 0, we have

1 i X el
(Zn)n / / qJ (X/a Xna 5/9 fn)g(f/)l//(f/)elxnéndfnelx é df/ =
RN—1 —o0
1 iXnc il
27)" / / aj (X', Xn, &, ENEX NS, | §()w (&)X <de. (109)

R-1 LIEIT+

It is not difficult to see that, fof” # 0, the limits,

) 1
lim ro;(xX,¢) = — / q; (X', 0,¢&", &dén, (110)
Xn— 0% 2r

"I+
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exist, and define homogeneous symbols of degrg¢eThis shows thatP. are
classical pseudodifferential operators of order 0, witlmisglsr_. satisfying

re~ > ryjoi(P,£dr). (111)
j=0

We now carry out the detailed computation of the principahbkgl. For each
o' we letM* (X', »') denote the span of generalized nullspaces of

{Po(X', 0, &, 7" (@', X)) : 1 =1,..., Ly}, (112)

The fiberEy g, is the direct sunM, (o', X' )@M_ (', X'). The subspacesl. (o', X)
consists of directions such that the system of ODEs:

pO(X/s 05 CU/, axn)v(xn) = 0

bO) o, (113)

has a solution, which is exponentially decayingtag, — oo. The principal sym-
bols of Q is [ po(X, £)]~* and therefore, up a constant of modulus 1,

1
oK, ) = 5 / [po(X, 0, o, &)1~ (114)

Iy

are easily seen to be projections, withy (X', o) the projection ontdVl. (X', '),
alongM4 (X', o).

A good treatment of the Calderon projector, in the genersécean be found
in [9]; the case of Dirac operators can be found in [4].

6 Fredholm Boundary Value Problems for First Order
Operators

We now examine boundary value problems for the elliptic firster operatoiP,
considered in the previous section. The domain of the maxax@nsion ofP
as an unbounded operator bA, Domya(P), consists ofl_2-sectionsu of E —
Q, such that the distributional derivatieu is in L2 as well. It follows from
Corollary 1 that ifu € Domyax(P), thenu has distributional boundary values in
H-2 (bQ). Hence, if% is a pseudodifferential operator acting on sections ofq,,
then we can define the domain of a closed, unbounded opewdiog @nL?(Q),
by

Dom(P, R) = {u € DomMpa(P) : R(U [pa) = O}. (115)
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We use the notatioP, %) to denote this unbounded operator acting.G(Q).

In this section we consider boundary conditions defined leygsdifferential
projections. This is not a serious restriction, since thkspace,Ng, of % is a
closed subspace. Under fairly mild conditions, (for examnfl is isolated in the
spectrum ofR), the orthogonal projectiortRy,, onto Ny, is a pseudodifferential
operator. EvidentlyP, %) and (P, %) are the same operator drf. It is not
necessary to assume tlatis a classical pseudodifferential operator, but merely
that it acts orne’(bQ). We give a condition otk that ensures thatP, R) is a
Fredholm operator, that is, has a finite dimensional nutlsgnd a closed range,
in L2, of finite codimension.

As in the example of on D1, our analysis centers on the comparison operator.
We let® denote the Calderon projector fBron Q. If R is a projector defining a
boundary condition foP, then we consider the operator:

T = RP + (Id —R)(Id —P). (116)

Assuming that? : H3(bQ) — H3(bQ) for all s > —%, it follows from the fact
that ® is a classical pseudodifferential operator of order 0, thaireserves the
same Sobolev spaces.

Definition 2. We say thatr is u-elliptic if I has parametrifu, for which there
exists au € R, such that for everg > —1,

a : H3(bQ) — HS“(bQ), (117)
boundedly.

In this case we can selett so that
UT = Id—-K; andTU = Id — K>, (118)

whereK, K, are finite rank, smoothing operators.

The classical elliptic case correspondsute= 0. A small modification of the
d-Neumann condition on a strictly pseudoconvex, almost dexmanifold gives
an example wherg = 3, see [7, 6, 8].

Theorem 10. Let Q be a smooth manifold with boundary and: B> (Q; E) —

©>°(Q; F) afirst elliptic differential operator, with fundamentallstion Q. Sup-
pose that® is a pseudodifferential projection acting on sections ofjg . If ®

is u-elliptic, with 4 < 1, then(P, RR) is a Fredholm operator; ifu < 1, then the
operator has a compact resolvent.

Before proceeding with the proof of this theorem we obsdmattemma 1 has
the following generalization:
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Lemmad. If I f e ImR thengPf = Jf.
Proof. This follows immediately from the fact thatg = J%. O

Proof of the TheoremFirst we observe thatP, %) has a finite dimensional null-
space. Suppose thate Dom(P, %) and Pu = 0. Corollary 1 implies thati has
distributional boundary values id ‘%(bQ), which therefore satisf(u [pbo) = O.
Sinceu € kerP, itis clear that? (U [yq) = U [po . This implies that

R(U [be) = T (U [ba) = 0. (119)
On the other hand (118) then implies that
(Id —Kp)u [pa= 0. (120)

As K; is a smoothing operator, the nullspace(laf —K,) is finite dimensional.
The existence of the fundamental solutiQreasily implies that elements of ker
are determined by their boundary valueshsg®. This shows that the nullspace of
(P, Q) is finite dimensional.

Now we turn to the proof that the range is of finite codimengsimd closed.
Let f € L?(Q, F), and letu; = Qf, where, as usual, we exterfd by zero, to all
of Q, and

Uo = —Qo (P, dr) [UR(Uy o) ® 6(1)] . (121)

We need to show that = ug + u; € Dom(P, %). That Pu = f, in the sense of
distributions, is clear. From Theorem 8 it follows that € H(Q), and there-
fore UR (U1 [po) € H%‘”(bQ). Hence Theorem 9 and the embedding result
Ha— 0 (Q) € H#(Q), imply thatug € H1#(Q). If x < 1, thenu € L3(Q). To
complete the argument, we need to show thai [no) = 0. This is true, provided
that f satisfies finitely many bounded linear conditions.
We note that
TUR(U7 [be) = (Id —K2)R(U1 [ba). (122)

Recall thatK, is of finite rank, hence the requirement
Ko(R (U1 [ba)) = KoR(QF [ha) =0 (123)

is a finite seit of linear conditions ofi As the mapf — Qf [pq is bounded from
L2(Q) to Hz(bQ) is bounded, these are evidently defined by bounded linear fun
tional. LetS denote the subset &(Q; F) where these conditions are satisfied.
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If f € S, then (122) and (123) imply thaf (UR (U1 [po) € IM%R. Lemma 4
then implies that

R(Uo [ba) = —RPUR(U1 bo)
= —TPUR(U1 [b0)
= —TUR(U1 [bo)
= —R(Uz [ba)-

To pass to the final line we use (123). Thus,fife S, then®(U [ho) = O,
and thereforeS is a subspace of the range @, %). This is a closed subspace
of finite codimension; hence the range of the operator iff itdesed and of finite
codimension. This completes the proof thRt %) is Fredholm operator provided
u =<1

Suppose that € Dom(P, %) and letu; = QP(u) € HY(Q). The difference,
u — uy is in the (formal) nullspace dP, hence

(124)

P(U—Uy) [be= (U—U1) [bo aNdR(U — U1) [bo= —R(U1 [bo).  (125)
A priori, (U — u;) [see H~%(bQ). The identities in (125) imply that
T (U — 1) = —R (U1 [he) € HZ(bQ). (126)
Applying U, we see that
(Id —K1) (U — Uy) [ha= —UTR(U [60) € H2#(bQ). (127)

As K, is a smoothing operator, this shows tifat— u;) [poe H 2n (bQ). Theo-
rem 9 implies thati — u; € H=#(Q) and thereforai is as well. Thus the domain
of (P, %) is contained inH~#(Q; E), which, if x < 1, is compactly embedded
into L2, showing that the resolvent 0P, ) is a compact operator. This completes
the proof of the theorem. O

Using the same argument we can also prove higher norm esmat

Theorem 11. Under the hypotheses of Theorem 10, ifef H3(Q; F) satisfies
finitely many linear conditions, then there exists a soluticto

Pu= f and®(u |pq) = 0. (128)
For each s> Othere is a G such that

[ullpsea-u < Csll fllns. (129)
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If % is a classical pseudodifferential operator, then we cailyegise a sym-
bolic condition ford% to be O-elliptic operator. The conditions are that for every
X', &) € T*bQ \ {0}, the retrictions

o0(R) (X', &) Nimeg@)x,ey and(ld —ao(R) (X', &) limd—oo@x.cy>  (130)

are injective. This of course implies tha§(7)(x/, ¢’) is invertible away from
the zero section. If the projections are orthogonal, &) (X', &) Timee@)x,¢")
gives an isomorphism on ley(R) (X', &) if and only if the complementary restric-
tion (Id —ao(R) (X', &) Timad —eo@)(x.¢7y) ives an isomorphism onto the orthogo-
nal complement Irild —oo(R) (X, &)).

As noted above, it is not necessary f#@rto be a classical pseudodifferential
operator. In a series of papers, [7, 6, 8, 5], the case of elgtpseudoconvex,
Spinc-manifold is analyzed. In this context, a modification of #deumann
condition can be defined that give%aalliptic operator.
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