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Pseudo-differential Calculus on Manifolds with Geometric
Singularities

B.-W. Schulze

Abstract. Differential and pseudo-differential operators on a manifold
with (regular) geometric singularities can be studied within a calculus,
inspired by the concept of classical pseudo-differential operators on a
C∞ manifold. In the singular case the operators form an algebra with
a principal symbolic hierarchy σ = (σj)0≤j≤k, with k being the order
of the singularity and σk operator-valued for k ≥ 1. The symbols de-
termine ellipticity and the nature of parametrices. It is typical in this
theory that, similarly as in boundary value problems (which are special
edge problems, where the edge is just the boundary), there are trace,
potential and Green operators, associated with the various strata of
the configuration. The operators, obtained from the symbols by various
quantisations, act in weighted distribution spaces with multiple weights.
We outline some essential elements of this calculus, give examples and
also comment on new challenges and interesting problems of the recent
development.

Introduction

The analysis on manifolds with singularities (certain stratified spaces in our
terminology, for instance, with conical, edge, or corner singularities) is motivated
by models of physics or the applied sciences, and also by structures of geometry
and topology.

These lectures give an introduction and a survey on some new developments
in this field. We consider ellipticity of operators referring to a principal symbolic
hierarchy, with components contributed by the various strata of the configuration
M . For instance, if M is an open C∞ manifold, then the ellipticity of a (classical
pseudo-)differential operator A is the standard one, namely, non-vanishing of the
homogeneous principal symbol σψ(A), given on T ∗M \ 0 (the cotangent bundle of
M minus the zero-section). If M is a C∞ manifold with boundary, then M is the
disjoint union of two strata, namely, Y 0 := intM and Y 1 := ∂M , and we have
the interior symbol σψ(A) associated with Y 0 and the boundary symbol σ∂(A) as-
sociated with Y 1. The latter one is operator-valued and a kind of semi-quantised
object containing σψ(A), frozen at the boundary. At the same time, ellipticity re-
quires boundary conditions, formulated as additional entries in a block matrix of
boundary symbols, with σ∂(A) in the upper left corner, and other entries repre-
senting trace conditions (for instance, Dirichlet) and potential data (for instance,
double layer potentials, occurring in parametrices). In addition, compositions and
parametrix constructions generate Green symbols in the upper left corners; those
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constitute (together with an ‘interior parametrix’) what is known in classical cases
as Green’s function of a boundary value problem.

If M has conical singularities Y 1 := {v1, . . . , vN} ⊂ M or smooth edges Y 1 ⊂
M of any codimension, then M \ Y 1 =: Y 0 is smooth, and again, from the disjoint
union M = Y 0 ∪ Y 1 of strata, we expect two principal symbolic components, in
this case σψ(A) on Y 0 as before and σc(A) at Y 1 in the conical and σ∧(A) in the
edge case, called the (principal) conormal and edge symbol, respectively (see the
formulas (10) and (22) below). The latter ones are again operator-valued.

In higher singularities of order k ∈ N the space M is a disjoint union of C∞

manifolds

M =

k⋃

j=0

Y j , (1)

where (of course) some extra conditions specify the way of how they are connected
with each other, and operators A on M have a principal symbolic hierarchy

σ(A) = (σj(A))j=0,...,k, (2)

where σ0(A) := σψ(A), σ1(A) := σ∧(A) (or = σc(A)), etc. In the edge case which is
a generalisation of the case with boundary, there are again block matrix edge sym-
bols belonging to operators of trace and potential type, plus Green (and Mellin)
symbols in the upper left corner. On the level of operators they contribute an
adequate extra information from the edge. A similar block matrix structure with
additional trace, potential and Green (+ Mellin) data along the lower-dimensional
strata is to be expected for higher singularities. This is a very satisfying concept, it-
eratively organised, which admits to understand a large variety of concrete problems
from the above-mentioned areas, and with new beautiful and challenging problems.
Nevertheless, as we shall see, in the elliptic case the effect of such data of trace and
potential type can often be formulated in terms of extra operators (smoothing over
Y but not compact) in the upper left corner, without loss of information from the
point of view of the index. It is important to specify the nature of operators that
are recognised as the ‘natural ones’ on a manifold M with singularities. For in-
stance, if M has a boundary (6= ∅), then a problem is to distinguish operators with
or without the transmission property (the latter is a subcase of the edge calculus).
In geometric singularities, e.g., when we consider a wedge

X∆ × Ω,

where X∆ := (R+×X)/({0}×X) is a cone with C∞ base X and Ω ⊆ Rq open, then
the Laplace-Beltrami operator belonging to a wedge metric on R+×X×Ω 3 (r, x, y)

dr2 + r2gX(r, y) + dy2,

where gX(r, y) is family of Riemannian metrics on X , smoothly depending on (r, y)
up to r = 0, should belong to the calculus. Such operators (for any order µ ∈ N,
not necessarily of second order) have the form

A = r−µ
∑

j+|α|≤µ
ajα(r, y)(−r ∂

∂r
)j(rDy)α (3)

with coefficients ajα ∈ C∞(R+ × Ω,Diffµ−(j+|α|)(X)) (here Diffν(·) denotes the
space of all differential operators of order ν on the smooth manifold in parentheses).
Operators of the form (3) are degenerate at r = 0 in a typical way, and we call
them edge-degenerate. In the case q = dim Ω = 0 the y-variable does not occur; the
corresponding operators on the open stretched cone X∧ := R+ ×X will be called
of Fuchs type.

On manifolds M with higher singularities we also have a specific choice of typ-
ical differential operators A which are corner degenerate in stretched coordinates,
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with symbols (2), ellipticity, and the construction of parametrices. Those are ex-
pected to belong to corresponding pseudo-differential operator algebras with similar
symbolic hierarchies. Here we outline some elements of such a calculus, where the
iterative structure of the approach is one of the essential points. We assume that
things are done up to the singularity order k − 1, k ≥ 2, and then pass to the case
k.

What concerns conical singularities and smooth edges, i.e., the case k = 1,
the material may be found in [71], [72], [75], [16], [19], [20], [90], [13], [10], [42],
[85]. The calculus for corner singularities of order k = 2 is studied under different
aspects in [71], [70], [77], [73], [88], [78], [80], [40], [88], [39], [45], [7], [8], [27], see
also the monograph [28] (in preparation), moreover, [12] and [47]. The theory is
voluminous, already for case k = 1, and by no means complete (for instance, in
respect to an analogue of the index theory). The structures for higher singularities
are much more involved and subject of current research. In the present paper
we content ourselves with describing the main ideas of our calculus. Many other
authors studied operators on manifolds with singularities from different point of
views. Ideas, approaches and priorities are contributed by wide fields of applied
mathematics, analysis of partial differential operators, mathematical physics, index
theory, geometry and topology. Let us give a few references here, in particular,
[92], [93], [51], [53], [54], [55], [60], [52], [50], [52], [57], [58], [59], [56], [3]. A
more complete survey on aspects of the recent development and also of historical
background and sources of ideas is given in [80].
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1 Differential operators on manifolds with higher singularities

1.1 Conical singularities.
Definition 1.1 A manifold M with conical singularity {v} is a topological space
with a chosen point v ∈M such that

(i) M \ {v} is a C∞ manifold,
(ii) there is a C∞ manifold X and a C∞ manifold M with boundary ∂M ∼= X

such that M is the image under a continuous map π : M → M , defined
by π(m) = v for all m ∈ ∂M, and π|M\∂M : M \ ∂M → M \ {v} is a
diffeomorphism.

In a similar manner we can define manifolds with finitely many conical singu-
larities {v1, . . . , vN}. For simplicity we mainly consider the case N = 1.

The space M is called the stretched manifold associated with M .
Here and in future, when we speak about topological spaces in connection with

the definition of singular spaces, we assume (for convenience) that the spaces are
countable unions of compact sets. In particular, our C∞ manifolds are assumed to
be of that kind (and also oriented). Let M0 denote the category of C∞ manifolds
where isomorphisms (morphisms) are the diffeomorphisms (differentiable maps).
Remark 1.2 Let Mcone denote the system of all manifolds M with conical singu-
larities. We interpret Mcone as a category, where the isomorphisms (morphisms)

β : M → M̃ are homeomorphisms (continuous maps) which map conical points to
conical points and for which there is a diffeomorphism (differentiable map) b : M→
M̃ of the associated stretched manifolds as C∞ manifolds with boundary, such that

β ◦ π = π̃ ◦ b (where π̃ : M̃ → M̃ is of analogous meaning as the above-mentioned
π).
Example 1.3 Let M be defined to be the set M := {x̃ := (r, x) ∈ R1+n : x̃ = 0 or
r > 0, x/r ∈ X for some closed compact
C∞ manifold X embedded in Sn}.

Here Sn is the unit sphere in Rn+1 3 x̃. For the stretched manifold we obtain
the cylinder

M = {x̃ = (r, x) ∈ R1+n : r ∈ R+, x ∈ X},

and π : M→M can be realised as π(r, x) = (r, rx).
Remark 1.4 Operators on a manifold with conical singularities are interesting for
many reasons; for instance, it may be natural in a boundary value problem to assume
that the boundary has conical singularities (see Kondratyev [32]). For our purposes
conical singularities are crucial to forming manifolds with higher singularities, for
instance, cones, where the base X already has singularities.

In a second step we can pass to a wedge, i.e., the Cartesian product of that
cone with a smooth manifold (see Section 1.2) and then iterate the construction
(see Section 1.3).

By Hs(Rn) we denote the standard Sobolev space in Rn of smoothness s ∈ R.
On a C∞ manifold X we have the spaces Hs

comp(X) of Sobolev distributions with
compact support and Hs

loc(X) ⊂ D′(X) defined by the condition ϕHs
loc(X) ⊂

Hs
comp(X) for every ϕ ∈ C∞0 (X). If X is closed and compact, both spaces coincide,

and we simply write Hs(X) instead of Hs
comp(X).

Recall that Hs(Rn) can be characterised as the completion of C∞0 (Rn) with
respect to the norm

{∫
〈ξ〉2s|Fu(ξ)|2dξ

} 1
2

,
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where F is the Fourier transform in Rn. Replacing Rn by R+ × Rn 3 (r, x) and
taking the Mellin transform on R+,

(Mu)(w) :=

∫ ∞

0

rw−1u(r)dr,

w ∈ C, we obtain the weighted Sobolev space Hs,γ(R+ × Rn), defined to be the
completion of C∞0 (R+ × Rn) with respect to the norm

{∫

Rn

1

2πi

∫

Γn+1
2
−γ

〈Re w, ξ〉2s|(MFu)(w, ξ)|2dwdξ
}1/2

;

here Γβ := {w ∈ C : Re w = β}. If X is a closed compact C∞ manifold, we then de-
fine Hs,γ(X∧) for X∧ = R+×X 3 (r, x) by means of finite sums over contributions
supported in R+ ×U for a coordinate neighbourhood U (using a partition of unity
on X), where the local terms are pull backs of elements of Hs,γ(R+ × Rn) under
charts R+×U to corresponding conical subsets of R1+n

+ = {(r, x) : r > 0, x ∈ Rn},
where the charts commute with the canonical R+-actions on R+ × U and R1+n

+ ,
respectively. An alternative definition of Hs,γ(X∧) (in the notation of Remark 1.6)
is given below in Theorem 3.12 (ii).

In the sequel, by a cut-off function ω on the half-axis we understand an ω ∈
C∞0 (R+) that is equal to 1 in a neighbourhood of 0.

In an infinite (stretched) cone with closed compact base X there is also another
species of weighted spaces, namely,

Ks,γ(X∧) := {ωu+ (1− ω)v : u ∈ Hs,γ(X∧), v ∈ Hs
cone(X

∧)}. (4)

For purposes below we also define the spaces

Ks,γ;g(X∧) := 〈r〉−gKs,γ(X∧) (5)

or any s, γ, g ∈ R.
Here, for X = Sn the space Hs

cone(X
∧) is defined to be the subspace of all

u ∈ Hs
loc(R × X)|R+×X such that (1 − ω)u in the Euclidean coordinates of R1+n

x̃

(where (r, x) ∈ R+ ×X are polar coordinates in R1+n
x̃ \ {0}) belongs to Hs(R1+n).

If X is an arbitrary closed compact C∞ manifold, we define Hs
cone(X

∧) to be the
set of all u ∈ Hs

loc(R×X)
∣∣
R+×X such that (1−ω)ϕu is the pull back of an element

in Hs(R1+n
x̃ ), for any ϕ ∈ C∞0 (U) for an arbitrary coordinate neighbourhood U on

X , where the pull back refers to a diffeomorphism R+ × U → Γ for a conical set
Γ ⊂ R1+n

x̃ which commutes with the canonical R+-actions on R+ × U and R1+n
+ ,

respectively (the one in R1+n
+ is x̃→ λx̃, the multiplication by λ ∈ R+). Concerning

more observations on the spaces Hs
cone, see Remark 2.20 and Theorem 3.13 below.

Remark 1.5 The spaces Ks,γ;g(X∧) are Hilbert spaces in a natural way. They
can be endowed with a family of isomorphisms κgλ : Ks,γ;g(X∧) → Ks,γ;g(X∧),

u(r, x)→ λ
n+1

2 +gu(λr, x), λ ∈ R+.
In general, if H is a Hilbert space and κ = {κλ}λ∈R+ a group of isomorphisms

κλ : H → H, λ ∈ R+,

κλκν = κλν for arbitrary λ, ν ∈ R, and if λ → κλh defines a continuous map
R+ → H for every h ∈ H (i.e., κ is strongly continuous), then we say that H is
endowed with a group action.
Remark 1.6 Later on, in order to point out the cone X∆ itself instead of the
open stretched cone X∧, we often write Hs

cone(X
∆) := Hs

cone(X
∧), Hs,γ(X∆) :=

Hs,γ(X∧), and

Ks,γ;g(X∆) := Ks,γ;g(X∧),Ks,γ(X∆) := Ks,γ;s−γ(X∧). (6)

Nevertheless all those spaces are distribution spaces overX∧ = X∆\ {tip of the cone}.
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Finally, if M is a compact manifold with conical singularity {v}, we define the
spaceHs,γ(M) to be the subspace of all u ∈ Hs

loc(M\{v}) such that ωu ∈ Hs,γ(X∧)
for any continuous function ω on M supported in a small neighbourhood of v such
that ω|M\{v} is C∞ and ω ≡ 1 in another neighbourhood of v. The meaning of X
is as in Definition 1.1, and the condition on ωu refers to the splitting of variables
(r, x) ∈ X∧ in M \ {v} close to the point v.

An A ∈ Diffµ(M \ {v}) is said to be of Fuchs type, written A ∈ Diffµdeg(M), if

A locally near v in the splitting of variables (r, x) ∈ X∧ close to v has the form

A = r−µ
µ∑

j=0

aj(r)
(
−r ∂

∂r

)j

with coefficients aj ∈ C∞(R+,Diffµ−j(X)).
Observe that when M is compact, every A ∈ Diffµdeg(M) induces continuous

operators

A : Hs,γ(M)→ Hs−µ,γ−µ(M) (7)

for all s, γ ∈ R.
For any A ∈ Diffµdeg(M) we define

σ(A) := (σψ(A), σc(A)). (8)

The first component is the homogeneous principal symbol

σψ(A) := σψ(A|M\{v}).
Observe that locally close to v in the splitting of variables (r, x) ∈ X∧ with the
covariables (%, ξ) the symbol σψ(A) has the form

σψ(A)(r, x, %, ξ) = r−µσ̃ψ(A)(r, x, r%, ξ) (9)

for a σ̃ψ(A)(r, x, %, ξ) which is smooth up to r = 0. The second component is the
principal conormal symbol

σc(A)(w) :=

µ∑

j=0

aj(0)wj ,

interpreted as a family of differential operators on

σc(A)(w) : Hs(X)→ Hs−µ(X), (10)

parametrised by w ∈ Γn+1
2 −γ for any fixed γ.

Definition 1.7 An operator A ∈ Diffµdeg(M) is said to be elliptic (with respect to

a given weight γ) if

(i) A is σψ-elliptic, i.e., σψ(A) 6= 0 on T ∗(M\{v})\0 and in addition σ̃ψ(A) 6= 0
for (%, ξ) 6= 0, up to r = 0;

(ii) the operators (10), w ∈ Γ n+1
2 −γ , define a family of isomorphisms for some

s = s0 ∈ R.

Remark 1.8 Let A ∈ Diffµdeg(M) be σψ-elliptic. Then there is a discrete set D ⊂ C
(i.e., D is countable and K ∩D finite for every compact set K ⊂ C) such that the
operators (10) are isomorphisms for all w ∈ C \D for every s ∈ R. This property
determines all γ ∈ R where Definition 1.7 is satisfied, namely, when D∩Γ n+1

2 −γ =

∅.
Theorem 1.9 For an operator A ∈ Diffµdeg(M) the following conditions are equiv-
alent:

(i) A is elliptic (with respect to a weight γ);
(ii) the operator (7) is Fredholm for some s0 = s ∈ R.
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If A satisfies the condition (i), then (7) is Fredholm for all s ∈ R; moreover V =
kerA ⊂ H∞,γ(M) is independent of s, and there is a subspace W ⊂ H∞,γ−µ(M)
of finite dimension such that W ∩ imA = {0}, and

W + imA = Hs−µ,γ−µ(M)

for every s ∈ R.
The problem of expressing parametrices of elliptic operators in Diffµ(M) gives

rise to what we call the cone algebra onM . By that we understand a specific pseudo-
differential calculus, consisting of subspaces Aµ(M, (γ, γ − µ)) ⊂ Lµcl(M \ {v}) (see
Sections 2.1, 2.2, 3.1 below) of operators A with a principal symbolic structure
of the form (6). Every A ∈ Aµ(M, (γ, γ − µ)) induces continuous operators (5).
Below we shall develop some ingredients of the cone algebra. More details may be
found in various papers and monographs of the author, see [69], [72], [74], and other
references mentioned in the introduction.

An essential element is the elliptic regularity of solutions.
Theorem 1.10 Let A ∈ Aµ(M, (γ, γ − µ)), µ ∈ R, be elliptic (in the pseudo-
differential set-up, similarly defined as in Definition 1.7). Then there is a parame-
trix B ∈ A−µ(M, (γ−µ, γ)) such that 1−BA and 1−AB belong to A−∞(M, (γ, γ))
and A−∞(M, (γ − µ, γ − µ)), respectively.

Here the spaces A−∞ consist of smoothing operators which are compact in
the respective weighted spaces (when M is compact) and with specific mapping
properties referring to asymptotics close the conical points, see the considerations
below. A consequence is that

Au = f ∈ Hs−µ,γ−µ(M), u ∈ H−∞,γ(M)

implies u ∈ Hs,γ(M), for every s ∈ R.
The result follows from BAu = Bf ∈ Hs,γ(M) and BAu = u − Gu, Gu ∈

H−∞,γ(M).
The precise definition of A−∞(M, (γ, γ − µ)) 3 G consists of requiring the

continuity property

G : Hs,γ(M)→ H∞,γ−µP (M) (11)

for all s ∈ R, with a so-called asymptotic type P

P = {(pj ,mj , Lj)}j∈N.
A similar condition is asked for G∗, the formal adjoint with respect to the H0,0(M)-
scalar product. The definition of Hs,γ

P (M) is as follows. By discrete asymptotics of
a function u ∈ Ks,γ(X∆) of type P for r → 0 we understand the property that for
every β > 0 there exists an N = N(β) ∈ N such that for any cut-off function ω

vN (r, x) := u(r, x)− ω(r)

N∑

j=0

mj∑

k=0

cjk(x)r−pj logk r ∈ Ks,β(X∆)

with pj ∈ C, Re pj <
n+1

2 − γ, Re pj → −∞ as N → ∞ (when there are infinitely
many pj), k ∈ N, and coefficients cjk belonging to finite-dimensional subspaces
Lj ⊂ C∞(X). We usually assume the ‘shadow condition’ which means (p,m,L) ∈
P ⇒ (p− j,m,L) ∈ P for all j ∈ N.

The space Ks,γ
P (X∆) is Fréchet with a semi-norm system consisting of u →

‖vN‖Ks,β(X∆) for every β > 0 and u → ‖cN‖CL(N) , N = N(β), with cN = cN (u)

being the (unique) sequence of coefficients (cjk)0≤k≤mj ,0≤j≤N ∈ ⊕Nj=1Lj , where the

latter space is identified with CL(N) for L(N) =
∑N
j=0(mj + 1) dimLj . Flatness of

order Θ relative to the weight γ is measured by functions in the Fréchet space

Ks,γ
Θ (X∆) := lim←−

k∈N
Ks,γ−ϑ−(k+1)−1

(X∆),
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here Θ represents the half-open ‘weight interval’ Θ = (−ϑ, 0], −∞ ≤ ϑ < 0, The
(non-direct) sum

Ks,γ
PΘ

(X∆) := Ks,γ
P (X∆) +Ks,γ

Θ (X∆) (12)

gives us a notion of finite asymptotic expansions of the respective u(r, x), (when
ϑ > −∞) with pj belonging to the weight strip {n+1

2 − γ + ϑ < Rew < n+1
2 − γ},

n = dimX . Observe that ω(r)r−p logk rc(x) ∈ Ks,γΘ (X∆) for every p ∈ C with
Re p ≤ n+1

2 − γ + ϑ, k ∈ N, c ∈ C∞(X).
Now if M is a manifold with conical singularity {v}, we fix (as an additional

datum) a splitting of variables (r, x) ∈ R+ ×X close to {v}. Then we can identify
ωu ∈ Ks,γ

P (X∆) for a cut-off function ω with a corresponding element in Hs,γ(M),
and we then denote by Hs,γ

P (M) the subspace of all u ∈ Hs,γ(M) that localise near
v to such a function with asymptotics of type P .
Remark 1.11 Given an elliptic (with respect to a weight γ ∈ R) operator A ∈
Diffµdeg(M) then

Au = f ∈ Hs−µ,γ−µ
Q (M), u ∈ H−∞,γ(M)

implies u ∈ Hs,γ
P (M) for every discrete asymptotic type Q with a resulting discrete

asymptotic type P . The components of P are determined by Q and by σc(A)−1(w)
which is a meromorphic Fredholm family, with poles of finite multiplicity and finite
rank Laurent coefficients at the principal part of the Laurent expansion. A similar
result is true of elliptic operators A ∈ Aµ(M, (γ, γ − µ)) in general.
Remark 1.12 The latter statement refers to the cone algebra with discrete asymp-
totics. In the edge and the higher corner calculus below we prefer to generalise the
notion of asymptotics as continuous asymptotics.

The essential aspect is to rephrase the singular functions of asymptotics in terms
of analytic functionals in the complex plane of the Mellin covariable w. Examples
of such functionals are linear combinations

ζN : h→
N∑

j=0

mj∑

k=0

ljk
dk

dwk
h(w)|w=pj (13)

with (in the scalar case) coefficients ljk ∈ C, h ∈ A(C). (Here A(U) for any open
U ⊂ C denotes the space of all holomorphic functions in U , in the (nuclear) Fréchet
topology of uniform convergence on compact subsets; moreover, if F is a Fréchet
space, then A(U, F ) denotes the space of all holomorphic F -valued functions in U
in the topology of the projective tensor product A(U)⊗̂πF ).

More generally, if K ⊂ C is a compact set and C a (say, smooth) compact curve
clockwise surroundingK (such that the winding number with respect to every point
of K is equal to 1), then every f ∈ A(C \K) determines an analytic functional

ζ : h→ 1

2πi

∫

C

h(w)f(w)dw. (14)

For f in (13) we can take a meromorphic function with poles at the pj ∈ C of
multiplicity mj +1 and suitable Laurent coefficients. Taking h(w) = r−w we obtain

〈ζN , r−w〉 =

N∑

j=0

mj∑

k=0

cjkr
−pj logk r

for cjk = k!(−1)kljk . This shows that discrete asymptotics of a function u(r) in

Ks,γ
P (R+) can be expressed by the condition that

u− ω(r)〈ζN , r−w〉 (15)

belongs to Ks,β(R+), for every β > 0 with a suitable ζN of the kind (13), N =
N(β) ∈ N.
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The generalisation to an arbitrary base X of the cone is evident. In (13) it
suffices to assume ljk ∈ Lj , 0 ≤ k ≤ mj , i.e., to talk about C∞(X)-valued analytic
functionals. In (14) in this generalisation we would take f ∈ A(C \ K,C∞(X)).
Let A′(K,C∞(X)) denote the (nuclear Fréchet) space of C∞(X)-valued analytic
functionals carried by K.

Let P ⊂ C be a closed set such that P ⊂ {Rew < n+1
2 − γ}, P ∩ {c0 < Rew <

c1} compact for every c0 < c1, and w0, w1 ∈ P , Rew0 = Rew1 ⇒ (1−λ)w0 +λw1 ∈
P for every 0 ≤ λ ≤ 1. We then call P a continuous asymptotic type associated
with the weight data (γ,Θ), Θ = (−∞, 0]. If w ∈ P ⇒ w − j ∈ P for every j ∈ N,
we say that P satisfies the shadow condition (this will be tacitly assumed in the
sequel).
Definition 1.13 We define Ks,γ

P (X∆) to be the subspace of all u ∈ Ks,γ(X∆)
such that for every β > 0 there is an N ∈ N and a ζN ∈ A′(P ∩ {Rew ≥ n+1

2 −
2β}, C∞(X)), such that the remainder (15) belongs to Ks,β(X∆). Similarly as
(12) we can form spaces with continuous asymptotics in a finite weight interval
Θ = (−ϑ, 0] relative to γ.

The spaces Ks,γ
P (X∆) are Fréchet in a natural way; then also (12) is Fréchet in

the topology of the non-direct sum.
Similarly as in the discrete case we can form (Fréchet) spaces Hs,γ

P (M) of
weighted distributions with continuous asymptotics of type P on a manifold M
with conical singularity v (and also Hs,γ

PΘ
(M) for arbitrary Θ). This gives rise to

a more general notion of Green operators (11) in the cone algebra, namely, Green
operators with continuous asymptotics.

1.2 Boundaries and edges.
Definition 1.14 A manifold M with edge is a topological space with a subset Y ⊂
M , the edge, such that

(i) M \ Y and Y are C∞ manifolds;
(ii) there is a C∞ manifold X and a C∞ manifold M with boundary ∂M such

that ∂M has the structure of an X-bundle over Y , and M is the image
under a continuous map π : M → M , where π|∂M is the bundle projection
∂M→ Y , and π|M\∂M : M \ ∂M→M \ Y is a diffeomorphism.

The space M is called the stretched manifold associated with M .
For simplicity we assume that Y has only one connected component, dimY = q.

The case q = 0 corresponds to a conical singularity. In a similar manner we can
consider the case of finitely many connected components of different dimension.
Remark 1.15 Let M1 denote the system of all manifolds M with edge singularity.

We interpret M1 as a category, where the isomorphisms (morphisms) β : M → M̃
are homeomorphisms (continuous maps) which restrict to diffeomorphisms (dif-

ferentiable maps) Y → Ỹ between the respective edges and for which there is a

diffeomorphism (differentiable map) b : M → M̃ of the associated stretched mani-

folds as C∞ manifolds with boundary, such that β ◦ π = π̃ ◦ b (where π̃ : M̃ → M̃
is of analogous meaning as the above-mentioned π), and b restricts to a bundle

isomorphism (morphism) ∂M → ∂M̃ of the X bundle over Y to the respective X̃

bundle over Ỹ .
Note that Mcone is a subcategory of M1.

Example 1.16 (i) Let X be a C∞ manifold and X∆ = (R+×X)/({0}×X) the
infinite cone with base X, interpreted as an element of Mcone with R+ ×X
as the associated stretched manifold. Then, if Ω ⊆ Rq is an open set, the
wedge

M := X∆ × Ω
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is a manifold with edge Ω. The associated stretched manifold is equal to

M = R+ ×X × Ω.

The boundary ∂M in this case is the trivial X-bundle X × Ω.
(ii) Let M be a C∞ manifold with boundary. Then the boundary can be in-

terpreted as an edge Y , and the C∞ manifold X in Definition 1.14 is of
dimension 0. In this case M is equal to its stretched manifold M.

Remark 1.17 From Definition 1.14 it follows that when M is a manifold with edge
Y , every y ∈ Y has a neighbourhood V ∈M1 such that there is an isomorphism

χ : V → X∆ × Ω

in M1 for an open set Ω ⊆ Rq, q = dimY ; in particular, χ is associated with a
diffeomorphism

V→ R+ ×X × Ω (16)

between the associated stretched manifolds. In addition χ restricts to diffeomor-
phisms

V \ Y → X∧ × Ω and V ∩ Y → Ω. (17)

The manifold X will also be called the base of the (local) model cone X∆ of M . If M
is a manifold with C∞ boundary, then we may write V = V , and (16) corresponds
to the transformation of a neighbourhood V of a point y ∈ ∂M to the half-space
R+ × Ω.

According to these observations to any point of the edge we fix such a neigh-
bourhood V and tacitly identify V \ {edge} with the open stretched wedge X∧×Ω
in the splitting of variables (r, x, y).

Let M be a manifold with edge Y , and let X be the base of the model cone. An
A ∈ Diffµ(M \ Y ) is said to be edge-degenerate, written A ∈ Diffµdeg(M), if locally

near any point of Y in the splitting of variables (r, x, y) ∈ X∧ × Ω the operator A
has the form

A = r−µ
∑

j+|α|≤µ
ajα(r, y)

(
−r ∂

∂r

)j
(rDy)α (18)

with coefficients ajα ∈ C∞(R+ ×Ω,Diffµ−(j+|α|)(X)). For any A ∈ Diffµdeg(M) we
define

σ(A) := (σψ(A), σ∧(A)). (19)

The first component is the homogeneous principal symbol σψ(A) := σψ(A|M\Y ).
Observe that locally close to the edge in the splitting of variables (r, x, y) ∈

X∧ × Ω with the covariables (%, ξ, η) the symbol σψ(A) has the form

σψ(A)(r, x, y, %, ξ, η) = r−µσ̃ψ(A)(r, x, y, r%, ξ, rη) (20)

for a σ̃ψ(A)(r, x, y, %, ξ, η) which is smooth up to r = 0.
The second component of (19) is the homogeneous principal edge symbol

σ∧(A)(y, η) := r−µ
∑

j+|α|≤µ
ajα(0, y)

(
− r ∂

∂r

)j
(rη)α, (21)

considered for (y, η) ∈ Ω× (Rq \ {0}).
Proposition 1.18 Let X in Definition 1.14 be a closed compact C∞ manifold;
then the principal edge symbol of A ∈ Diffµdeg(M) defines a family of continuous
operators

σ∧(A)(y, η) : Ks,γ;g(X∆)→ Ks−µ,γ−µ;g(X∆) (22)

for every s, g, γ ∈ R, smoothly depending on y, η.
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Remark 1.19 We have

σ∧(A)(y, λη) = λµκλσ∧(A)(y, η)κ−1
λ for all λ ∈ R+ (23)

(see Remark 1.20). This property is also referred to as twisted homogeneity.
Remark 1.20 Observe that the operators σ∧(A)(y, η) for every fixed y and η 6= 0
represent an element of Diffµdeg(X∆), (see the notation in Section 1.1). Therefore,

we have the ‘subordinate’ symbols from (8), especially, the conormal symbol

σcσ∧(A)(y, w) =

µ∑

j=0

aj0(0, y)wj : Hs(X)→ Hs−µ(X). (24)

Definition 1.21 An operator A = Diffµdeg(M) is said to be σψ-elliptic, if σψ(A) 6= 0

on T ∗(M \Y ) \ 0 and if in addition σ̃ψ(A) 6= 0 for (%, ξ, η) 6= 0, up to r = 0 for any
wedge neighbourhood V of a point the edge.
Remark 1.22 If A ∈ Diffµdeg(M) is σψ-elliptic, then for every fixed y and η 6= 0

the operator σ∧(A)(y, η) ∈ Diffµdeg(X∆) is σψ-elliptic in the sense of Definition 1.7

(i). Moreover, according to Remark 1.8 for every y ∈ Ω there is a discrete set
D(y) ⊂ C such that the operators (24) are isomorphisms for all w ∈ Γ n+1

2 −γ when

D(y) ∩ Γn+1
2 −γ = ∅, for every s ∈ R.

Theorem 1.23 Let M be a manifold with edge, X compact, and let A ∈ Diffµdeg(M)

be σψ-elliptic. Then the operators (22) are Fredholm for all y ∈ Ω, η 6= 0, and all
γ = γ(y) ∈ R where D(y)∩Γn+1

2 −γ = ∅; this holds for all s, g ∈ R. For γ = γ(y) we

have V = kerσ∧(A)(y, η) ⊂ K∞,γ;∞(X∧) which is independent of s, and there is a
subspace W ⊂ K∞,γ−µ;∞(X∆) of finite dimension such that W ∩ imσ∧(A)(y, η) =
{0} and W + imσ∧(A)(y, η) = Ks−µ,γ−µ;g(X∆) for every s, g ∈ R, η 6= 0.

We shall return to the nature of edge symbols as operators on an infinite cone,
in the context of conical exits to infinity, see Theorem 2.21 below.

Let us now make a few remarks on the case when M is a C∞ manifold with
boundary. As noted in the introduction (and as everybody knows) the ellipticity
of operators is usually combined with the ellipticity of boundary conditions.

The local model of a manifold with boundary is the half-space R+×Ω 3 (r, y),
Ω ⊆ Rq open, i.e., a wedge X∆×Ω with dimX = 0. In ‘standard’ boundary value
problems the natural differential operators are usually not assumed to be of the
form (18) but

A =
∑

j+|α|≤µ
bjα(r, y)Dj

rD
α
y (25)

with bjα ∈ C∞(R+ × Ω). Clearly we can easily transform (25) into the form (18),
but the class of edge-degenerate operators is much larger than the class of operators
(21). For simplicity, in order to avoid ‘comp’ or ‘loc’ Sobolev spaces, we assume
Ω = Rq and bjα(r, y) independent of (r, y) for |r, y| > C for some C > 0. Then (25)
is continuous as an operator

A : Hs(R1+q
+ )→ Hs−µ(R1+q

+ ), (26)

Hs(R1+q
+ ) = Hs(R1+q)

∣∣
R1+q

+

, R1+q
+ = {(r, y) ∈ R1+q : r > 0, y ∈ Rq}. As before,

the operator A has its principal symbol σψ(A)(r, y, %, η) =
∑

j+|α|=µ bjα(r, y)%jηα,

and an analogue of the principal edge symbol (21) is the principal boundary symbol

σ∂(A)(y, η) := σψ(A)(0, y,Dr, η) : Hs(R+)→ Hs−µ(R+) (27)

acting between standard Sobolev spaces on the half-axis, η 6= 0.

The spaces Hs(R+) are Hilbert spaces with group action (κλu)(r) := λ
1
2u(λr),

λ ∈ R+, and the homogeneity of the boundary symbol is similar to (23), namely,

σ∂(A)(y, λη) = λµκλσ∂(A)(y, η)κ−1
λ
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for all λ ∈ R+.
Remark 1.24 Let (25) be elliptic, i.e., σψ(A)(r, y, %, η) 6= 0 for (%, η) 6= 0; then
(27) is a surjective family of Fredholm operators for every η 6= 0 and s > µ− 1

2 .

Example 1.25 Consider the Laplacian ∆ = ∂2

∂r2 +
∑q

j=1
∂2

∂y2
j

. Then

σψ(∆)(%, η) = −|%|2 − |η|2 and σ∂(∆)(η) =
∂2

∂r2
− |η|2,

and we have kerσ∂(∆)(η) = {ce−|η|r : c ∈ C}.
A boundary value problem for an elliptic operator A consists of the task to

solve the equations

Au = f in the domain, Tu = g on the boundary,

for instance, in the half-space R1+q
+ with boundary Rq , with given right hand

sides f, g and a so-called trace operator T that represents the boundary condi-
tions. T may be given as a vector of operators of the form u → r′Bu, where B
is a differential operator and r′ the operator of restriction to the boundary. We
then have the boundary symbol σ∂(T )(y, η) consisting of the vector of operators
r′σψ(B)(0, y,Dr, η) : Hs(R+) → C; in this case r′ is the restriction to r = 0 and
s > 1

2 sufficiently large.
An example is B ≡ 1 and T = r′; this operator represents Dirichlet conditions.

For A = ∆, see Example 1.25, we obtain a family of isomorphisms.

t
(
σ∂(∆)(η) σ∂(r′)

)
: Hs(R+)→ Hs−2(R+)⊕ C

for all η 6= 0, s− 2 > − 1
2 .

In general, if we have finitely many trace operators T = t(T1, . . . , Tj+), in
elliptic boundary value problems, the role of σ∂(T )(y, η) is to fill up the family of
Fredholm operators (27) to a family of isomorphisms

t
(
σ∂(A)(y, η) σ∂(T )(y, η)

)
: Hs(R+)→ Hs−µ(R+)⊕ Cj+

for η 6= 0. If we want to complete the calculus by passing to parametrices of
operators A = t(A T ), we have to invert such isomorphisms and to find associated
operators P := (P K), now being of row matrix from and with pseudo-differential
operators P with the ‘right’ behaviour at the boundary. This is possible within the
calculus of boundary value problems for operators with the so-called transmission
property at the boundary, see [6] or several monographs, e.g., [63], [25], [75], or
[31]. The operator K is called a potential operator.

In this calculus we can compose operator block matrices as soon as the image
of the first factor fits to the range of the second one. In addition it turns out that,
in order to fill up the boundary symbol of such a pseudo-differential operator to a
family of isomorphisms, in general we need trace and potential entries at the same
time. This gives rise to 2× 2 block matrices of ‘boundary value problems’

A =

(
A K
T Q

)
(28)

with a principal symbolic tuple σ(A) = (σψ(A), σ∂(A)).
Before we return to the edge case we want to rephrase the Sobolev spaces

occurring in (26) as edge spaces.
Definition 1.26 [71] Let H be a Hilbert space with group action κ = {κλ}λ∈R+.
Then the abstract edge space Ws(Rq , H) of smoothness s ∈ R is defined to be the
completion of S(Rq , H) with respect to the norm

‖u‖Ws(Rq ,H) =
{∫
〈η〉2s‖κ−1

〈η〉û(η)‖2Hdη
}1/2



Pseudo-differential Calculus on Manifolds with Geometric Singularities 13

(with û = Fu being the Fourier transform in Rq and κλ acting on the values of
û(η) in H).

Useful functional analytic results on these so-called abstract edge spaces may
be found in [72], [75], [29], [31]. Apart from our calculus on singular manifolds,
edge spaces in several variants have been also applied in [2] and [15].
Example 1.27 For H = Hs(R+) with (κλu)(r) = λ1/2u(λr), λ ∈ R+, we have

Hs(R1+q
+ ) =Ws(Rq , Hs(R+)).

Remark 1.28 Given a Fréchet space E written as a projective limit of Hilbert
spaces Ej , j ∈ N, with continuous embeddings . . . ↪→ Ej+1 ↪→ Ej ↪→ . . . ↪→ E0, we
say that E is endowed with a group action κ, if κ is a group action on E0 and κ|Ej
a group action on Ej for every j. In that case we can form the spaces Ws(Rq , Ej),
and we set

Ws(Rq , E) := lim←−
j∈N
Ws(Rq , Ej).

Example 1.29 (i) Let H := Ks,γ(X∆) be endowed with the group action as in
Remark 1.8 for g = s−γ, see also the notation (6). We then have the spaces

Ws(Rq ,Ks,γ(X∆))

for every s, γ ∈ R.
(ii) Let E = Ks,γ

P (X∆) for a discrete or continuous asymptotic type P , written
as a projective limit of Hilbert spaces with the group action as in (i) (which is
always possible). Then we obtain Ws(Rq ,Ks,γ

P (X∆)) which is an edge space
with asymptotics.

Definition 1.30 (i) Let M be a manifold with edge Y . Then Hs,γ
[loc)(M) denotes

the subspace of all u ∈ Hs
loc(M \ Y ) such that the push forward of u|V \Y

under V \ Y → X∧ × Rq, multiplied by any ϕ ∈ C∞0 (R+ × Rq), belongs to
Ws(Rq ,Ks,γ(X∆)). This is required for every V as in Remark 1.17, with
Rq instead of Ω, see the formula (17).

(ii) Replacing in the latter condition Ks,γ(X∆) by Ks,γ
P (X∆) for a (continuous)

asymptotic type P (satisfying the shadow condition) we obtain the space
Hs,γ

[loc),P (M). Similarly, Hs,γ
[comp)(M) and Hs,γ

[comp),P (M) are defined to be

the subspaces of the corresponding ‘[loc)’-versions of elements with compact
support.

If M itself is compact, we omit ‘[comp)’ and ‘[loc)’ and simply write

Hs,γ(M) and Hs,γ
P (M),

respectively.
The notation also makes sense for the case dimY = 0, i.e., conical singularities.

Proposition 1.31 An operator A ∈ Diffµdeg(M), M ∈ M1 compact, induces con-
tinuous operators

A : Hs,γ(M)→ Hs−µ,γ−µ(M) (29)

and

A : Hs,γ
P (M)→ Hs−µ,γ−µ

Q (M) (30)

for all s, γ ∈ R and every asymptotic type P with some resulting asymptotic type
Q.

Assuming now that A ∈ Diffµdeg(M) is σψ-elliptic in the sense of Definition

1.21, it is a natural question, whether the operator (29) can be seen as the ‘upper
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left corner’ of a Fredholm operator

A =

(
A K
T Q

)
:
Hs,γ(M)
⊕

Hs(Y, J−)
→
Hs−µ,γ−µ(M)

⊕
Hs−µ(Y, J+)

(31)

for suitable J± ∈ Vect(Y ) (Vect(·) means the set of all smooth complex vector
bundles over the manifold in parentheses). In simplest cases we may imagine trivial
bundles J± = Y × Cj± for suitable j± ∈ N, also denoted by Cj± .

Answers are given within the pseudo-differential edge algebra, first developed
in this generality in [71] and then more and more completed in several papers and
monographs, see the references in the introduction and also the comments in [80].
Note, in particular, that the calculus of [71] contains information from [64] which
is a variant of the edge calculus when the base of the model cone is of dimension
0 (i.e., a calculus of boundary value problems without the transmission property
at the boundary) and from [65], [66], [68], [67]. A later investigation of Mazzeo
[49] on edge-degenerate operators employed rather different techniques. Trace and
potential operators on the edge are not considered there.

In Section 3 below we will develop more details on the structure of cone and
edge algebras.

1.3 Higher singularities. We now turn to categories Mk of manifolds of
singularity order k ≥ 1. The definition will be inductive. The categories M0 and
M1 are introduced in Section 1.1 and 1.2. By induction assumption, in future
referred to as (IA), we employ the categories Ml for all 0 ≤ l ≤ k − 1, k ≥ 2, and
then pass from k − 1 to k. The information feeded in by (IA) is that

X ∈Ml ⇒ X × Ω ∈Ml

for any open C∞ manifold Ω. This allows us to form X∧ = R+ ×X ∈Ml, and we
can define (locally trivial)

X − bundles or X∧-bundles.

General notions and constructions on fibre bundle over a C∞ manifold can easily
be adapted to the case of such fibres, by systematically using that by (IA) we know
not only the objects in Ml but also isomorphisms and morphisms in that category.

Let M∧l (R×Ml) denote the subcategory of all spaces of the form X∧ (R×X)
for X ∈Ml. Moreover, define the category

R+ ×M := {R+ ×X : X ∈Ml} (32)

where an isomorphism (morphism)

R+ ×X → R+ × X̃ (33)

in (32) is a homeomorphism (continuous map) such that there is an isomorphism
(morphism)

R×X → R× X̃
in R ×Ml which restricts to isomorphisms (morphisms) {0} ×X → {0} × X̃ and
R+ ×X → R+ ×X in Ml and M∧l , respectively (clearly {0}×X is identified with
X).

We then define the category M∆
l of cones X∆ = (R+ ×X)/({0} ×X), where

an isomorphism (morphism) X∆ → X∆ is the quotient map of some isomorphism

(morphism) (33) in R+×Ml with respect to the map {0}×X → {0}× X̃ between
the corresponding subspaces.
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This allows us to form (locally trivial) X∆-bundles L and (R+×X)-bundles L
over a C∞ manifold Y . Such an L contains an X-bundle Lsing and an X∧-bundle
Lreg as subbundles, where

L = Lsing ∪ Lreg (34)

(disjoint union), and there is a map π : L → L to an X∆-bundle over Y by
fibrewise applying the quotient map R+×X → (R+×X)/({0}×X). For instance,
if L = R+×X×Ω, then Lsing = {0}×X×Ω, Lreg = R+×X×Ω, and L = X∆×Ω.
Remark 1.32 By (IA) we know that X-, X∧- and R ×X-bundles over a smooth
manifold Y for X ∈ Ml, 0 ≤ l ≤ k − 1, also belong to Ml. However, our X∆-
bundles L over Y will already be of singularity order k when X ∈Mk−1. This is a
part of Definition 1.33 below.

A simple consideration then shows that X- and X∧-bundles as well as (R ×
X)-bundles for X ∈ Ml, 0 ≤ l ≤ k − 1, are objects in corresponding categories
with isomorphisms (morphisms) referring to the bundle structure, including the
compatibility with the respective bundle projections. This gives rise also to a
category of X∆-bundles when we employ the quotient spaces fibrewise and the
above-mentioned (iso)morphisms between them.

By construction, L as an R+ ×X-bundle, is a subbundle of an R ×X-bundle
that we denote by 2L (the double).
Definition 1.33 A topological space M is said to be a manifold of singularity order
k ≥ 1, written M ∈Mk, if

(i) there is chosen a subspace Y ⊂M , Y ∈M0, such that M \ Y ∈Mk−1;
(ii) Y has a neighbourhood U in M which has the structure of a (locally trivial)

cone bundle L over Y with fibre X∆ for some X ∈ Mk−1, i.e., U ∼= L (in
the sense of isomorphy of such cone bundles).

We call Y the minimal stratum of M .
Denoting the manifold Y in Definition 1.33 for the moment by Y k, for M \

Y k ∈ Mk−1 we have again a minimal stratum Y k−1 ∈ M0 such that (M \ Y k) \
Y k−1 ∈ Mk−2, and so on. In this way we obtain a sequence of C∞ manifolds
Y k, Y k−1, . . . , Y 1, Y 0, such that M can be written as a disjoint union (1). Let us
call Y 0 the maximal stratum of M and set dimM = dim Y 0.
Remark 1.34 With every M ∈ Mk we can associate its stretched manifold M by
invariantly attaching the X-bundle Using to M \ Y k; here, similarly as (34), for

U ∼= L we form U ∼= L in the sense of R+ ×X-bundles, and U = Using ∪ Ureg. We
then write

M = Msing ∪Mreg

for Msing := Using and Mreg := M \Msing
∼= M \ Y k. From this construction we

obtain a continuous map π : M → M such that π|Msing : Msing → Y k is the bundle

projection of the respective X-bundle over Y k and π|Mreg : Mreg → M \ Y k an
isomorphism in Mk−1. By gluing together two copies of M along Using we obtain
the double 2M of M; then 2M ∈Mk−1.
Remark 1.35 We interpret Mk as a category, where the isomorphisms (mor-

phisms) β : M → M̃ are homeomorphisms (continuous maps) which restrict to

isomorphisms (morphisms) M \ Y k → M \ Ỹ k in Mk−1 and diffeomorphisms

(differentiable maps) Y k → Ỹ k, such that there is an isomorphism (morphism)

2M → 2M̃ in Mk−1 of the doubles of the associated stretched spaces, such that its

restriction b : M→ M̃ satisfies the condition β ◦ π = π̃ ◦ b (where π̃ : M̃→ M̃ is of
analogous meaning as the above-mentioned π : M→M), and b restricts to a bundle

isomorphism (morphism) Msing → M̃sing of the X-bundle over Y k to the respective

X̃-bundle over Ỹ k.
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Now the constructions at the beginning of this section in connection with the
categories M∧l , R ×Ml, R+ ×Ml, M∆

l , and bundles L,L, 2L etc, can easily be
performed up to l = k. This allows us to formulate an analogue of Definition 1.33
for k + 1 instead of k.
Theorem 1.36 M ∈Mk, N ∈Ml implies M ×N ∈Mk+l for every k, l ∈ N.

We now turn to spaces of differential operators on Mk and their symbolic
structures.

By (IA) we have the spaces Diffµdeg(X) for every X ∈ Ml for 0 ≤ l ≤ k − 1,
and those spaces are Fréchet in a natural way. Moreover, we have the principal
symbolic hierarchy

σ(A) := (σj(A))0≤j≤l

for A ∈ Diffµdeg(X), X ∈Ml. Furthermore, by (IA) we know that an isomorphism

ϕ : X → X̃

in Ml induces an isomorphism

ϕ∗ : Diffµdeg(X)→ Diffµdeg(X̃)

of the corresponding spaces of operators.
Definition 1.37 Let M ∈ Mk, k ≥ 1, and Y k ⊂ M the minimal stratum of M .
Then an operator A ∈ Diffµdeg(M \ Y k) (the latter space known by (IA)) is said to

belong to Diffµdeg(M), if

(i) in the case dimY k = 0 the operator has close to Y k in the splitting of
variables (t, x) ∈ R+ ×Xk−1, Xk−1 ∈Mk−1, the form

A = t−µ
µ∑

j=0

aj(t)(−t
∂

∂t
)j

with coefficients aj ∈ C∞(R+,Diffµ−jdeg (Xk−1));

(ii) in the case dim Y k =: qk > 0 the operator has close to Y k in the splitting of
variables (t, x, z) ∈ R+ ×X × Ωk, Xk−1 ∈Mk−1, Ωk ⊆ Rqk open, the form

A = t−µ
∑

j+|α|≤µ
ajα(t, z)

(
− t ∂

∂t

)j
(tDz)

α (35)

with coefficients ajα ∈ C∞(R+ × Ωk,Diff
µ−(j+|α|)
deg (Xk−1)).

Remark 1.38 Applying Definition 1.33 for k ≥ 2 once again to X ∈Mk−1, i.e., to
a minimal stratum Y ⊂ X, Y ∈M0, and taking into account that X \ Y ∈Mk−2,
we see that every y ∈ Y has a neighbourhood V in X, where V \ Y admits a
local splitting of variables into (r, x, y) ∈ R+ ×Xk−2 × Ωk−1, Ωk−1 ⊆ Rqk−1 open,
Xk−2 ∈Mk−2. Then (35) takes the local form

A = t−µr−µ
∑

j+|α|+l+|β|≤µ
ajα,lβ(t, r, y, z)

(
−r ∂

∂r

)l
(rDy)β

(
−rt ∂

∂t

)j
(rtDz)

α

with coefficients

ajα,lβ ∈ C∞(R+ × R+ × Ωk−1 × Ωk,Diff
µ−(j+|α|+l+|β|
deg (Xk−2)).

Example 1.39 Let X ∈ M0 be equipped with a Riemannian metric gX . Then,
as noted in the introduction, the Laplace-Beltrami operator belonging to the wedge
metric

dr2 + r2gX + dy2
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on W := R+ ×X × Ω 3 (r, x, y), Ω1 ⊆ Rq1 open, is edge-degenerate and of order
2. Taking W as the cone of another wedge V := R+ ×W × Ω2 3 (t, (r, x, y), z) for
Ω2 ⊆ Rq2 open, we can form the corner metric

dt2 + t2(dr2 + r2gX + dy2) + dz2.

The associated Laplace-Beltrami operator is then of the form (35) for µ = 2. The
process of iteratively forming higher wedge metrics can be continued, and then, if
k is the corresponding singularity order, the associated Laplace-Beltrami operator
belongs to Diff2

deg over that higher wedge.

Definition 1.40 Let M ∈Mk, Y k ⊂M its minimal stratum (see Definition 1.33),
and let A ∈ Diffµdeg(M). We then set

σ(A) := (σ(A|M\Y k ), σk(A)), (36)

where σ(A|M\Z ) := (σ0(A), . . . , σk−1(A)) is known by (IA) from M \ Y k ∈Mk−1,
and

σk(A)(w) :=

µ∑

j=0

aj(0)wj for dimY k = 0 (37)

as a w-depending family of operators in Diffµdeg(X), w ∈ C,

σk(A)(z, ζ) := t−µ
∑

j+|α|≤µ
ajα(0, z)

(
−t ∂
∂t

)j
(tζ)α for dimY k > 0, (38)

as a (z, ζ)-depending family of operators in Diffµdeg(X∧), (z, ζ) ∈ Ωk × (Rqk \ {0}).
Theorem 1.41 A ∈ Diffµdeg(M), B ∈ Diffνdeg(M) implies AB ∈ Diffµ+ν

deg (M), and

we have σ(AB) = σ(A)σ(B), with componentwise composition of an the right hand
side (and the rule σk(AB) = (T νσk(A))σ(B) when the dimension of the minimal
stratum is zero; recall that (T βf)(w) = f(w + β)).

The proof is simple when we employ (IA) for the operators realised on M \Y k ∈
Mk−1 and then compute the rule for the k-th symbolic component directly.
Remark 1.42 By repeatedly applying Definition 1.33 locally near neighbourhoods
of minimal strata, first near any point of Y (where Y denotes again the minimal
stratum of M) in a trivialisation of Ureg over a coordinate neighbourhood Ωk on Y ,
i.e., Ureg|Ωk ∼= R+×Xk−1×Ωk 3 (rk , xk−1, yk) (here in modified notation compared
to the one before), then similarly near the minimal stratum of X ∈Mk−1 in a local
splitting of variables, (rk−1, xk−2, yk−1) ∈ R+ ×Xk−2 × Ωk−1, and so on, we can
introduce locally close to Y on M coordinates

(r1, . . . , rk, x, y1, . . . , yk) ∈ (R+)k × Σ×
k∏

j=1

Ωj ,

Ωj ⊆ Rqj open, Σ ⊆ Rn open, yj ∈ Ωj , x ∈ Σ, where an operator A ∈ Diffµdeg(M)

has the form A = r−µ1 . . . r−µk A0, and A0 is a polynomial in the vector fields

r1
∂

∂r1
, r1r2

∂

∂r2
, . . . , r1 . . . r2

∂

∂rk
,

∂

∂x1
, . . . ,

∂

∂xn
, r1

∂

∂y1,i
, i = 1, . . . , q1,

r1r2
∂

∂y2,i
, i = 1, . . . , q2, . . . , r1 . . . rk

∂

∂yk,i
, i = 1, . . . qk,

with coefficients in C∞
(
(R+)k × Σ×∏k

j=1 Ωj
)
.

Remark 1.43 We do not study here operators of ‘multi-Fuchs type’, defined in
terms of vector fields rj

∂
∂rj

, see [60], [59], [57], [58], and the references there. The

resulting calculus is simpler than ours.
More generally, if we are given a space of ‘typical’ differential operators on the

maximal stratum Y 0 of a corner manifold M which are polynomials in vector fields
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of a prescribed ‘degenerate’ behaviour at M \ Y 0 (together with the coefficients), it
may be an interesting task to establish a pseudo-differential calculus that extends
the space of those differential operators to an algebra, closed under the construction
of parametrices of elliptic elements (whatever ‘ellipticity’ means). In any case the
result will depend on the vector fields in a specific way. What we do in the present
paper is to treat operators in Diffµdeg(M) in the sense of Definition 1.37, cf. also
Remark 1.42.
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2 Pseudo-differential operators with parameters and conical exits to
infinity

2.1 Classical operators with parameters. Standard material on pseudo-
differential operators may be found in any textbook on this topic, see, for instance,
Kumano-go [41], or Treves [94]. In the first part of this section we recall a few facts,
mainly in order to fix our notation.

Parametrices of elliptic differential operators on a C∞ manifold X exist in the
class of classical pseudo-differential operators of opposite order. In local variables
x ∈ Σ, Σ ⊆ Rn open, with the covariables ξ ∈ Rn, the pseudo-differential operators
of order µ ∈ R are given as

Au(x) = Op(a)u(x) + Cu(x) (39)

where a(x, ξ) is an amplitude function (or symbol) in C∞(Σ×Rn), and C an oper-
ator with kernel in C∞(Σ× Σ). Concerning a(x, ξ) we ask the symbolic estimates

sup
x∈K
|Dα

xD
β
ξ a(x, ξ)| ≤ c〈ξ〉µ−|β| (40)

for all ξ ∈ Rn, multi-indices α, β and compact subsets K ⊂ Σ; here 〈ξ〉 := (1 +
|ξ|2)1/2, c = c(α, β,K) > 0.

The corresponding space of such symbols is denoted here by Sµ(Σ×Rn) (and the
subspace of x-independent elements by Sµ(Rn)). By admitting the dimension of ξ-

variables independent of the dimension of x we can also define spaces Sµ(Σ×Rn+l
ξ,λ ),

where (ξ, λ) ∈ Rn+l plays the role of covariables in the symbolic estimates.

The notation Op(a)u in (39) (also written Opx(a)u) means
∫∫

ei(x−x
′)ξa(x, ξ)

u(x′)dxd̄ξ, d̄ξ = (2π)−ndξ, interpreted in the well-known oscillatory integral set-up.
Globally on X we define Lµ(X), the space of pseudo-differential operators of order
µ as the set of of all A0 +C where A0 is an arbitrary locally finite sum of operators
the form ϕ(χ−1)∗Op(a)ψ, for any ϕ, ψ ∈ C∞0 (U), and any chart χ : U → Σ
on X , where (χ−1)∗ means the push forward of operators from Σ to U under
χ−1, and C a globally smoothing operator. The space L−∞(X) is identified with
C∞(X ×X) via a Riemannian metric on X . Let Lµcl(X) denote the subspace of all
elements of Lµ(X) where the symbols a(x, ξ) are classical, i.e., locally in (x, ξ) ∈
Σ × Rn there exist C∞ functions a(µ−j)(x, ξ) in Σ × (Rn \ {0}), j ∈ N, such that

a(µ−j)(x, λξ) = λµ−ja(µ−j)(x, ξ) for λ ∈ R+ and a(x, ξ)− χ(ξ)
∑N

j=0 a(µ−j)(x, ξ) ∈
Sµ−(N+1)(Σ × Rn) for any excision function χ(ξ) (i.e., χ ∈ C∞(Rn), χ(ξ) = 0 for
|ξ| < c0, χ(ξ) = 1 for |ξ| > c1 for some constants 0 < c0 < c1). The space of those
symbols is denoted by Sµcl(Σ × Rn) (and the subspace of x-independent elements
by Sµcl(Rn); later on we employ this space with its nuclear Fréchet topology). In

a similar manner we define Sµcl(Σ × Rn+l
ξ,λ ). If a consideration is valid both in the

classical and the general case; we often write subscript ‘(cl)’.
Setting L−∞(X ;Rl) = S(Rl, L−∞(X)) we can define the space Lµ(cl)(X ;Rl) of

all parameter-dependent pseudo-differential operators on X which are of the form
A0(λ)+C(λ), where A0(λ) is defined similarly as A0, now with symbols a(x, ξ, λ) ∈
Sµ(cl)(Σ×Rn+l) and C(λ) ∈ L−∞(X ;Rl) where A0(λ) is defined in a similar manner

as A0, now with symbols a(x, ξ, λ) ∈ Sµ(cl)(Σ× Rn+l), and C(λ) ∈ L−∞(X ;Rl).
Every A ∈ Lµcl(X ;Rl) has a parameter-dependent homogeneous principal sym-

bol σψ(A), locally depending on the variables (x, ξ, λ) ∈ Σ × (Rn+l \ {0}) and
homogeneous in (ξ, λ) of order µ and invariantly defined as a C∞ function on
T ∗X × Rl \ 0.

An A ∈ Lµ(X ;Rl) is said to be properly supported, if the support Sλ of the
distributional kernel of A(λ) in D′(X × X) has the property that the sets Sλ ∩
{(x, x′) : x′ ∈ K ′} and Sλ ∩ {(x, x′) : x ∈ K} are compact in X ×X for arbitrary
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compact sets K,K ′ in X ; this is required for all λ ∈ Rl. It can be proved that
every A ∈ Lµ(X ;Rl) has a properly supported representative A1 modulo some
L−∞(X ;Rl), where the support of the kernel of A1(λ) is contained in a fixed proper
subset of X ×X for all λ.

For simplicity we now concentrate on classical operators and X compact. A ∈
Lµcl(X ;Rl), B ∈ Lνcl(X ;Rl) andA orB properly supported entailsAB ∈ Lµ+ν

cl (X ;Rl),
and we have σψ(AB) = σψ(A)σψ(B).
Definition 2.1 An operator A ∈ Lµcl(X ;Rl) is said to be parameter-dependent

elliptic, if σψ(A)(x, ξ, λ) 6= 0 on T ∗X × Rl \ 0 (for l = 0 we simply talk about
ellipticity).
Theorem 2.2 Let A ∈ Lµcl(X ;Rl) be (parameter-dependent) elliptic. Then there

is a properly supported parametrix P in the sense 1 − PA, 1 − AP ∈ L−∞(X ;Rl)
(with 1 being the identity operator).
Theorem 2.3 Let A ∈ Lµcl(X ;Rl) be parameter-dependent elliptic, X compact.
Then the associated operators

A(λ) : Hs(X)→ Hs−µ(X) (41)

are Fredholm for all λ ∈ Rl, s ∈ R. They are of index 0 when l > 0; there is then
a C > 0 such that the operators (41) are isomorphisms for all |λ| ≥ C.

The following material belongs to the basics of the pseudo-differential cone and
edge algebras, see [72].
Definition 2.4 Let Mµ

O(X ;Rq) for µ ∈ R, q ∈ N, denote the space of all entire
functions h(w) in C with values in Lµcl(X ;Rqη) such that h(β+ i%, η) ∈ Lµcl(X ;R1+q

%,η )
for every β ∈ R, uniformly in compact β-intervals. For q = 0 we simply write
Mµ
O(X).

Theorem 2.5 Let f(w, η) ∈ Lµcl(X ; Γβ×Rq) be a parameter-dependent family with
parameter (Imw, η) ∈ R1+q, w ∈ Γβ, for some fixed β ∈ R. Then there exists an
h(w, η) ∈Mµ

O(X ;Rq) such that

h(w, η)
∣∣
Γβ×Rq − f(w, η) ∈ L−∞(X ; Γβ × Rq).

Moreover, if f(w, η) is parameter-dependent elliptic with parameter (w, η) ∈ Γβ ×
Rq, then h(w, η)

∣∣
Γα×Rq is also parameter-dependent elliptic with parameter (w, η) ∈

Γα × Rq, for every α ∈ R, uniformly in compact α-intervals.
Let X be compact. A set of triples

R = {(pj ,mj , Lj)}j∈Z,
where pj ∈ C,mj ∈ N and finite-dimensional subspaces Lj ⊂ L−∞(X) of operators
of finite rank, is called a discrete asymptotic type of Mellin symbols, if the set
πCR = {pj}j∈Z intersects every strip {c0 ≤ Rew ≤ c1} in a finite set. Let M−∞R (X)
for such an R denote the set of all f ∈ A(C\πCR, L−∞(X)) which are meromorphic
with poles at the points pj of multiplicity mj + 1 and Laurent coefficients at (w −
pj)
−(k+1) belongong to Lj(X), 0 ≤ k ≤ mj . We then set

Mµ
R(X) := Mµ

O(X) +M−∞R (X). (42)

Theorem 2.6 Let X be compact, let h ∈Mµ
R(X) be written as h = h0 + l according

to (42), h0 ∈Mµ
O(X), l ∈M−∞R (X), and let h0

∣∣
Γβ

be parameter-dependent elliptic

with parameter w ∈ Γβ, for some fixed β ∈ R. Then there exists an h−1 ∈Mµ
S (X)

for a suitable discrete asymptotic type S of Mellin symbols such that hh−1 = h−1h =
1 (in the sense of pointwise composition of meromorphic operator functions).
Remark 2.7 Functional analytic properties of meromorphic Fredholm functions
are studied in [21] and [22], [23]. A beautiful factorisation result for meromorhic
pseudo-differential families is obtained in [95]; concerning factorisations in a more
‘abstract’ set-up, see [24]. Meromorphic Fredholm families of corner operators are
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investigated in [78], [46], [26], see also [11] and [61] for the case of boundary value
probems.

2.2 Corner-degenerate operators. Let M ∈ M1, and let Y ⊂ M denote
its minimal stratum. We then introduce Lµdeg(M) to be the subspace of all A1 +C ∈
Lµcl(M \ Y ) for any C ∈ L−∞(M \ Y ) such that locally near Y in the splitting of
variables (r, x, y) ∈ R+ ×X × Ω, X ∈ M0, Ω ⊆ Rq open, the operator A1 has the
form

r−µ Opy Opr(a),

for an operator-valued amplitude function

a(r, y, %, η) := ã(r, y, r%, rη),

ã(r, y, %̃, η̃) ∈ C∞(R+ × Ω, Lµcl(X ;R1+q
%̃,η̃ )),

and C ∈ L−∞(M \ Y ). More generally, by

Lµdeg(M ;Rl) (43)

we denote the subspace of all A = A1 + C ∈ Lµcl(M \ Y ;Rl) for arbitrary C ∈
L−∞(M \ Y ;Rl), where A1 is locally near Y of the form

r−µ Opy Opr(a)(λ)

for

a(r, y, %, η, λ) := ã(r, y, r%, rη, rλ),

ã(r, y, %̃, η̃, λ̃) ∈ C∞(R+ × Ω, Lµ(cl)(X ;R1+q1+l

%̃,η̃,λ̃
)).

By (IA) we know the spaces (43) for arbitrary M ∈Ml, 0 ≤ l ≤ k − 1, including
the fact that they are Fréchet spaces in a natural way.
Definition 2.8 Let M ∈ Mk and Y k its minimal and Y 0 its maximal stratum.
Then

Lµdeg(M ;Rl),
µ ∈ R, l ∈ N, denotes the space of all operator families

A = A1 + C

for arbitrary C ∈ L−∞(Y 0;Rl) where A1 is locally near Y k in the splitting of
variables (r, x, y) ∈ R+ ×Xk−1 × Ωk, Xk−1 ∈Mk−1, Ωk ⊆ Rqk open, of the form

r−µ Opy Opr(a)(λ),

where

a(r, y, %, η, λ) := ã(r, y, r%, rη, rλ)

for an ã(r, y, %̃, η̃, λ̃) ∈ C∞(R+ × Ωk, L
µ
deg(M \ Y k;R1+qk+l

%̃,η̃,λ̃
)).

The operators A ∈ Lµdeg(M ;Rl) are called (parameter-dependent) corner-degenerate.
Remark 2.9 With the notation of Definition 2.8 we have

Lµdeg(M ;Rl) ⊂ Lµcl(Y
0;Rl). (44)

Moreover, every A ∈ Lµcl(M ;Rl) has a properly supported representative in

Lµdeg(M ;Rl) mod L−∞(Y 0;Rl).

According to the relation (44) everyA ∈ Lµdeg(M ;Rl) has a parameter-dependent

homogeneous principal symbol σψ(A) ∈ C∞(T ∗Y 0×Rl\0). Locally in the splitting
of variables (r1, . . . , rk, x, y1, . . . yk) near Y k mentioned in Remark 2.9 and with the
respective covariables (including the parameter) (%1, . . . , %k, ξ, η1, . . . ηk , λ) (and in
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modified notation with (r, y) and (%, η) replaced by (rk , yk) and (%k, ηk), respec-
tively) we have

σ̃ψ(A)(r, y, %, ξ, η, λ) := rµ1 . . . r
µ
kσψ(r, x, y, r−1

1 %1, . . . ,

r−1
1 . . . r−1

k %k, ξ, r
−1
1 η1, . . . , r

−1
1 . . . r−1

k ηk, r
−1
1 . . . r−1

k λ)
(45)

for a function σ̃ψ(r, x, y, %̃, ξ, η̃, λ̃) which is smooth in r ∈ (R+)k up to r = (0, . . . , 0).
We employed the abbreviation

r = (r1, . . . , rk), y = (y1, . . . , yk)

%̃ = (%̃1, . . . , %̃k), η̃ = (η̃1 . . . , η̃k), λ̃ = (λ̃1, . . . , λ̃l).

Theorem 2.10 Let A ∈ Lµdeg(M ;Rl), B ∈ Lνdeg(M ;Rl), and let A or B be properly

supported. Then we have AB ∈ Lµ+ν
deg (M ;Rl) and σψ(AB) = σψ(A)σψ(B).

Definition 2.11 An operator A ∈ Lµdeg(M ;Rl) is said to be parameter-dependent

σψ−elliptic, if σψ(A) 6= 0 on T ∗Y 0×Rl\0, moreover, if A
∣∣
M\Y k ∈ L

µ
deg(M \Y k;Rl)

is parameter-dependent σψ-elliptic on M \ Y k ∈ Mk−1 (this notion is known by
(IA)), and if in the above-mentioned splitting of variables near Y k the function

σ̃ψ(A) is non-vanishing in (%̃, ξ, η̃, λ̃) 6= 0 up to r = (0, . . . , 0). (For l = 0 we simply
speak about σψ-ellipticity.)
Theorem 2.12 Let M ∈ Mk and let A ∈ Lµdeg(M ;Rl) be (parameter-dependent)

σψ-elliptic. Then there is a properly supported parametrix P ∈ L−µdeg(M ;Rl) in the

sense that 1− PA, 1−AP ∈ L−∞(Y 0;Rl).

2.3 Symbols with twisted homogeneity. IfM ∈Mk, k ≥ 1, has a minimal
statum Y of dimension q > 0, then the operators in the local model X∆ × Ω of
M close to Y , Ω ⊆ Rq open, X ∈ Mk−1, will be pseudo-differential operators on
Ω with operator-valued amplitude functions, operating in distribution spaces over
(the main stratum of) X∆ and also over lower-dimensional strata. An important
aspect in this connection is the twisted homogeneity (see Remark 1.5).

Definition 2.13 Let H and H̃ be Hilbert spaces, equipped with group actions κ =

{κλ}λ∈R+ and κ̃ = {κ̃λ}λ∈R+ , respectively. Then S(µ)(Ω×(Rq \{0});H, H̃), µ ∈ R,

is defined to be the subspace of all a(y, η) ∈ C∞(Ω× (Rq \ {0}),L(H, H̃)) such that

a(µ)(y, λη) = λµκ̃λa(µ)(y, η)κ−1
λ

for all λ ∈ R+. Here L(H, H̃) is the space of linear continuous operators H → H̃
in the operator norm topology.

Let χ(η) be an excision function in Rqη. Then, if a(µ)(y, η) is as in Definition
2.13, the function a(y, η) := χ(η)a(µ)(y, η) which belongs to

C∞(Ω× Rq ,L(H, H̃)) (46)

has the property that

sup
y∈K
η∈Rq
〈η〉−µ+β|‖κ̃−1

〈η̃〉{Dα
yD

β
ηa(y, η)}κ〈η〉‖L(H, eH) (47)

is finite for every α, β ∈ Nq and K b Ω. Let

Sµ(Ω× Rq;H, H̃) (48)

denote the set of all a(y, η) in the space (46) with that property. Moreover, let

Sµcl(Ω× Rq ;H, H̃) (49)
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denote the subspace of those a(y, η) in the space (46) such that there are elements

a(µ−j)(y, η) ∈ S(µ−j)(Ω× (Rq \ {0});H, H̃), j ∈ N, with

a(y, η)−
N∑

j=0

χ(η)a(µ−j)(y, η) ∈ Sµ−(N+1)(Ω× Rq ;H, H̃)

for all N ∈ N. The functions in (48) are called (operator-valued) symbols, those in
(49) classical symbols, and the a(µ−j)(y, η), j ∈ N, the homogeneous components
of a(y, η). If a consideration refers to classical or general symbols, we also write as

subscript ‘(cl)’. In particular, Sµ(cl)(R
q ;H, H̃) denotes the space of symbols that are

independent of y.
Example 2.14 (i) The operatorMϕ of multiplication by ϕ(r) ∈ C∞0 (R+), rep-

resents an element in S0(Rq ;Ks,γ(X∆), Ks,γ(X∆)) for every s, γ ∈ R.
(ii) If A = r−µ

∑
j+|α|≤µ ajα(r, y)(−r∂r)j(rDy)α is an edge-degenerate operator

on X∆ × Ω where the coefficients ajα ∈ C∞(R+ × Ω, Diffµ−(j+|α|)(X)) are
independent of r for r ≥ C for some C > 0, then we have

a(y, η) ∈ Sµ(Ω× Rq ;Ks,γ(X∆),Ks−µ,γ−µ(X∆))

for every s, γ ∈ R. If all ajα are independent of r, the symbol a(y, η) is
classical. In that case we have a(µ)(y, η) = σ∧(A)(y, η).

Forming Op(a)u(y) =
∫∫

ei(y−y
′)ηa(y, η)u(y′)dy′d̄η, d̄η = (2π)−qdη, for every

a(y, η) in (48) we obtain a continuous operator

Op(a) : C∞0 (Ω, H)→ C∞(Ω, H̃). (50)

Instead of Op(·) we also write Opy(·).
Theorem 2.15 Let a(y, η) ∈ Sµ(Ω × Rq, H, H̃); then (50) extends to continuous
operators

Op(a) :Ws
comp(Ω, H)→Ws−µ

loc (Ω, H̃)

for all s ∈ R.
This theorem has been proved (under very general assumptions on the symbols)

in [89], generalising the approach of [30] in the scalar case. For the concrete contexts
of the edge calculus it was known before; a proof under some mild additional
assumptions may be found, e.g., in [72], see also [14].

2.4 Conical exits to infinity. As we see in the example of edge symbols (see
Proposition 1.18 or the formula (38)), edge-degenerate operators give rise to oper-
ators on an infinite cone X∆, where (apart from the interesting behaviour near the
tip) we should refer to some background information at infinity. Although freezing
of coefficients at the edge, say in the expression for σ∧(A)(y, η), η 6= 0, shows an
automatic behaviour at infinity which is completely determined by the behaviour
of the operator close to the edge, it is worth to notice a connection to aspects of
the (pseudo-differential) calculus on a manifold with conical exit to infinity. This is
remarkable even when X smooth; however, if X itself has singularities, the various
strata of X∆ (except for the tip of the cone) also have conical exits to infinity, i.e.,
the geometric singularities are ‘travelling’ to infinity and do something specific in
respect to the details of the calculus.

To illustrate things we consider the Euclidean space Rm 3 x interpreted as a
cone (Sm−1)∆ with conical exit |x| → ∞. The symbols of the calculus in this case
are required to satisfy the estimates

|Dα
xD

β
ξ a(x, ξ)| ≤ c〈x〉ν−|α|〈ξ〉µ−β

for all x, ξ ∈ Rm, α, β ∈ Nm, c = c(α, β) > 0.
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Given a pair of orders (µ, ν) ∈ R2 we obtain in this way a space of symbols
Sµ;ν(Rm × Rm), see [91], [62], [9]. The associated pseudo-differential operators
in Rm act in weighted Sobolev spaces Hs;g(Rm) := 〈x〉−gHs(Rm) as continuous
operators

Opx(a) : Hs;g(Rm)→ Hs−µ;g−ν(Rm) (51)

for every s, g ∈ R. In particular, we obtain a continuous operator S(Rm)→ S(Rm)
in the Schwartz space. By virtue of 〈x〉−νSµ;ν(Rm × Rm) = Sµ;0(Rm × Rm) the
order ν at x = ∞ is not very essential in this context. Therefore, we often may
assume ν = 0.

It can be proved that Op(·) defines a bijection

Op : Sµ;ν(Rm × Rm)→ {Op(a) : a(x, ξ) ∈ Sµ;ν(Rm × Rm)} =: Lµ;ν(Rm)

to the space of associated pseudo-differential operators, and that

L−∞;−∞(Rm) :=
⋂

µ,ν∈R
Lµ;ν(Rm)

coincides with the space of all integral operators with kernels in S(Rm × Rm).
An operator A = Op(a) ∈ Lµ;ν(Rm) is said to be elliptic, if there exists a

p(x, ξ) ∈ S−µ;−ν(Rm × Rm) such that

1− p(x, ξ)a(x, ξ) ∈ S−1;−1(Rm × Rm).

Theorem 2.16 The following conditions are equivalent:

(i) A ist elliptic;
(ii) the operator (51) is Fredholm for some fixed (s, g) = (s0, g0).

An elliptic operator A ∈ Lµ;ν(Rm) has a parametrix P ∈ L−µ;−ν(Rm), and (51) is
Fredholm for all s, g ∈ R. Moreover, V := kerA ⊂ S(Rm) is independent of s, g,
and there is a subspace W ⊂ S(Rm) of finite dimension such that W ∩ imA = {0},
W + imA = Hs−µ;g−ν(Rm), for all s, g.
Remark 2.17 Let A ∈ Lµ;ν(Rm) induce an isomorphism (51) for some (s, g) =
(s0, g0), then (51) is an isomorphism for all s, g ∈ R, and we have A−1 ∈ L−µ;−ν(Rm).

There is also an analogue of classical symbols, including the variable x. Using
Sµcl(R

m) with its nuclear Fréchet topology, we can set

Sµ;ν
clξ;x

(Rm × Rm) := Sµclξ
(Rm)⊗̂πSνclx(Rmx )

(⊗̂π denotes the projective tensor product of Fréchet spaces).
There is a straightforward generalisation of these considerations to the case of

a C∞ manifold M with conical exit to infinity. That means, M can be written as
a union

M = M0 ∪M∞
where M0 is C∞ and M∞ is identified with an infinite cylinder (ε,∞) × X for
some 0 < ε < 1 and a (for simplicity) closed compact C∞ manifold X , such that
M∞ ∩M0 = (ε, δ)×X for a δ with 0 < ε < δ < 1 (i.e., M0 is a kind of bottle with
a neck, containing the cylinder (ε, δ) × X , and M∞ is connected with M0 along
this cylinder). In addition on M∞ we fix an atlas of charts χ : (ε,∞)× U → Γ for
coordinate neighbourhoods U on X and a set Γ ⊂ Rn+1 (for n = dimX) of the form
Γ = {(x0, x) ∈ Rn+1 : x0 ∈ (ε,∞), x/x0 ∈ B for an open bounded set B ⊂ Rn},
such that χ(λr, ·) = λχ(r, ·) for all λ ≥ 1, (r, ·) ∈ (ε,∞)×U . There is then a variant
of the above-mentioned symbol spaces for Γ instead of Rm, namely, Sµ;ν(Γ×Rm),
and there are also subspaces of classical (in (x, ξ)) symbols indicated by subscript
‘clξ;x’. Using an open covering of M by charts, over M∞ as just explained, and over
M0 arbitrary, we can define the space Lµ;ν

(cl)(M) of pseudo-differential operators as

sums of local pseudo-differential operators with such symbols, pulled back to M and
combined with localising factors, plus global smoothing operators. The latter ones
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are defined by the mapping properties Hs;g(M)→ Hs′;g′(M) for all s, s′, g, g′ ∈ R;
the weighted Sobolev spaces Hs;g(M) are an immediate generalisation of the ones
in Rm (assuming that M \M∞ is compact, otherwise we have suitable ‘comp’ and
‘loc’ versions).
Definition 2.18 Let M be a manifold with conical exit to infinity. An A ∈ Lµ;ν(M)
is said to be elliptic, if A is elliptic as an operator in Lµ(M), and if for the local
symbols a(x, ξ) ∈ Sµ;ν(Γ × Rm) there are p(x, ξ) ∈ S−µ;−ν(Γ × Rm) such that 1−
p(x, ξ)a(x, ξ) ∈ S−1;−1(Γ×Rm) (the second condition concerns the above-mentioned
charts χ : (ε,∞)× U → Γ and will be referred to a ‘exit-ellipticity’).
Remark 2.19 There is a straightforward generalisation of Theorem 2.16 to the case
of an arbitrary manifold M with conical exit to infinity (when M \M∞ is compact).
Also the cylinder M∞ = (ε,∞)×X 3 (r, x) itself is a manifold with conical exit to
infinity, though open for r → ε, but it makes sense to consider operators of the class
Lµ;ν

(cl)(M∞) also in this case. Ellipticity then entails the existence of a parametrix

in L−µ;−ν
(cl) (M∞).

Remark 2.20 Let X be closed compact, and consider the set X∆ \ {([0, ε] ×
X)/({0} × X)} =: X�,ε as a part of a manifold with conical exit to infinity, for
instance, R×X =: X� which has another exit r → −∞. Then we have

(1− ω)Hs;g(X�) = (1− ω)〈r〉−gKs,γ(X∆)

for any cut-off function ω (where 1 − ω(r) := 0 for r < 0), and, in particular,
Hs

cone(X
∧) = Hs;0(X�)|R+×X .

Theorem 2.21 Let M be a manifold with edge (see Definition 1.14), and let A ∈
Diffµdeg(M) be σψ-elliptic (see Definition 1.21) . Then the operator σ∧(A)(y, η) for

every fixed y and η 6= 0 is elliptic in Lµ;0(X�, ε) for every ε > 0 (see the notation
of Remark 2.20).
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3 A hierarchy of operator algebras

3.1 The program of the iterative calculus. Given a space N ∈ Mk−1,
k ∈ N, k ≥ 2, we assume to have constructed an algebra A(N) of operators on
the maximal stratum of N , graded by orders µ ∈ R, i.e., A(N) =

⋃
µ Aµ(N),

where every Aµ(N) is again the union of subspaces Aµ(N, g) with weight data
g = (γ, γ − µ) for a tuple of weights γ = (γ1, . . . , γk−1) ∈ Rk−1, γ − µ = (γ1 −
µ, . . . , γk−1−µ). For N ∈M0 we have in mind the spaces Aµ(N) = Lµcl(N) without
any such weight data, while for N ∈ M1 we mean the respective cone or edge
pseudo-differential algebras, established in [71], [72], etc. (see also the references
in the introduction). In general we construct A(N) as a subspace of Lµdeg(N) in

such a way that Aµ(N) = Lµdeg(N) mod L−∞ on the maximal stratum of N (see

Definition 2.8). For a more transparent description, we consider at the moment
operators of the form of upper left corners rather than full 2 × 2 block matrices
including trace and potential entries occurring in the edge case, (for some reason
this is not too restrictive, see Remark 3.8 below). In addition we consider operators
between spaces of scalar distributions, although in general it is interesting to admit
distributional sections in vector bundles (which is a straightforward generalisation).

The program of the iterative calculus on spaces M ∈Ml for l ≥ k is to organise
a natural scenario to pass from A(N) to corresponding higher generations of calculi.
Spaces M in Mk can be obtained from Mk−1 by pasting together local cones N∆ or
wedges N∆×Ω, Ω ⊆ Rq open, N ∈Mk−1. Analytically, the main steps (apart from
invariance aspects) consist in understanding the correspondence between A(N) and
the next higher algebras

A(N∆) and A(N∆ × Ω). (52)

We will call the process of passing from A(N) to (52) ‘conification’ and ‘edgification’,
respectively, of A(N). The key words listed below characterise the main elements of
this approach. The corresponding structures are feeded in as information by (IA)
(induction assumption). Those are to be generated again on the next floor of the
building of operator algebras.

Parameter-dependent calculus. The first observation is that (by (IA))
we have a parameter-dependent version A(N ;Rl) =

⋃
Aµ(N, g;Rl) of A(N) with

parameters λ = (λ1, . . . , λl) ∈ Rl of dimension l ∈ N. The parameters can be intro-
duced by letting local symbols depend on those additional parameters, treated as
components of covariables, and by defining parameter-dependent smoothing oper-
ators as Schwartz functions in the sense S(Rl,A−∞(N)) (see also the constructions
of Section 2.2). Here A−∞(N) denotes the space of smoothing operators on N ,
consisting of the spaces A−∞(N, g) 3 C, required to map weighted distributions of
any smoothness to weighted smooth functions with (here continuous) asymptotics;
the same is asked on the formal adjoint C∗ (see the explanations below under the
headline ‘Global smoothing operators’. Then A−∞(N, g) has a natural locally con-
vex topology, and we can talk about Schwartz functions with values there. As a
parameter we also may have Imw on any line Γβ := {w ∈ C : Rew = β}; then our
notation is, e.g., Aµ(N, g; Γβ × Rl).

Cones with exit to infinity. If A(N) is established for every N ∈ Mk−1,
we know at the same time A(N∧) for N∧ = R+ ×N 3 (t, ·), since Mk−1 is closed
under taking Cartesian products with a C∞ manifold. However, the behaviour
for t → ∞ which is regarded as a conical exit of N∧ to infinity, can be specified
in terms of extra conditions on symbols as well as on smoothing operators. This
gives rise to what we call exit symbols, where, roughly speaking, t is recognised as
a covariable. In particular, we may have components of homogeneity zero in t at
t→∞, with values in spaces of symbols in the covariables in the ‘usual sense’. The
smoothing operators are defined in terms of kernels that are Schwartz functions in
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(t, t′) for large t, t′ with values in A−∞(N). Let Acone(N
∧) denote this subcalculus

of A(N∧).
Holomorphic Mellin symbols and kernel cut-off. As explained before,

together with the operator spaces A(N) we have parameter-dependent analogues
A(N ;Rl) and also families in C∞(R+×Ω,A(N ;Rl)) for any open set Ω ⊆ Rq. This
allows us to define edge-degenerate families

p(t, z, τ, ζ) := p̃(t, z, tτ, tζ)

for p̃(t, z, τ̃ , ζ̃) ∈ C∞(R+ × Ω,A(N ;R1+q

τ̃,ζ̃
)). The combination tτ indicates an op-

eration of Fuchs type in t ∈ R+, while tζ represents edge-degenerate derivatives.
For the calculus with Mellin symbols, analogously as in the edge algebra for k = 1,
we should impose quantisations based on a holomorphic dependence on the Mellin
covariable in the new axial direction t ∈ R+. So the point is to extend the no-
tion of parameter-dependent operator spaces A(N ;Rl+1) to the case A(N ;C×Rl),
l ∈ N. The property is that any h(w, λ) ∈ A(N ;C×Rl) is defined by the condition
h(w, λ) ∈ A(C,A(N ;Rl)) (with A(U,E) for open U ⊆ C denoting the space of
holomorphic functions in U with values in E), such that

h(β + iτ, λ) ∈ A(N ;Rl+1
τ,λ )

for every β ∈ R, uniformly in arbitrary compact β-intervals. The holomorphy of
operator families can be defined in terms of holomorphic families of the underly-
ing local symbols, plus holomorphy of families of smoothing operators, formulated
by using the mapping properties between weighted spaces and spaces of smooth
functions (say, with continuous asymptotics).

A kernel cut-off construction (see the terminology in [70] or [72]) tells us that for
every f(w, λ) ∈ A(N ; Γβ ×Rl), β ∈ R fixed, there exists an h(w, λ) ∈ A(N ;C×Rl)
such that

h(w, λ)
∣∣
Γβ×Rl = f(w, λ) mod A−∞(N ; Γβ × Rl).

It holds for the singularity order k = 1; then it follows for k = 2. By (IA) it is
imposed up to the singularity order k − 1.

If we want to point out subspaces of A(N ;C×Rq) of operators of order µ and
involved weight data (γ, γ − µ), we write

Aµ(N, (γ, γ − µ);C× Rq).
Similar notation is used for other variants of our spaces.

Mellin quantisation. The Mellin quantisation consists of the theorem that
for every given

p̃(t, z, τ̃ , ζ̃) ∈ C∞(R+ × Ω,A(N ;R1+q

τ̃,ζ̃
)) (53)

there exists an

h̃(t, z, w, ζ̃) ∈ C∞(R+ × Ω,A(N ;Cw × Rqζ̃))
such that, when we set

p(t, z, τ, ζ) := p̃(t, z, tτ, tζ), h(t, z, w, ζ) := h̃(t, z, w, tζ), (54)

we have

opγM (h)(z, ζ) = Opt(p)(z, ζ)

mod C∞(Ω,A−∞(N∧;Rq)). Here opγM (·) is the pseudo-differential operator on R+,
based on the weighted Mellin transform Mγu(w) = M(t−γu)(w + γ); then

opγM (f) := M−1
γ fMγ = tγM−1(T−γf)Mt−γ ,

(T−γf)(w) := f(w − γ), M := M0. This result which is true of the singularity
order k = 1 is imposed as (IA) in the iterative process. Note that, although the
‘Fourier phase function’ (t − t′)τ in Opt(·) is equivalent (in the sense of Fourier
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distributions) to the ‘Mellin phase function’ (log t′ − log t)τ which is involved in

opγM (·), the correspondence p̃→ h̃,

C∞(R+ × Ω,A(N ;R1+q))→ C∞(R+ × Ω,A(N ;C× Rq))
is more than only to find a new amplitude function for the new phase. In fact, we
do not only save the smoothness in t up to zero but obtain holomorphy in the axial
covariable.

Edge quantisation By edge quantisation we understand a specific way of
passing from an edge-degenerate family

p(t, z, τ, ζ) = p̃(t, z, tτ, tζ), (55)

(cf. (53)) to an operator in weighted edge spaces. Applying the Mellin quantisation
we first find a Mellin amplitude function h(t, z, w, ζ) (see (54)). In addition we set

p0(t, z, τ, ζ) := p̃(0, z, tτ, tζ), h0(t, z, w, ζ) := h̃(0, z, w, tζ).

Moreover, we fix cut-off functions ω, ω̃, ˜̃ω on the half-axis such that ˜̃ω ≺ ω ≺ ω̃ and
cut-off functions σ, σ̃ (ω ≺ ω̃ means that ω̃ ≡ 1 on suppω). We set

aM (z, ζ) := t−µω(t[ζ]) op
δ−n2
M (h)(z, ζ)ω̃(t′[ζ]) (56)

for a δ ∈ R, n := dimN , and

aψ(z, ζ) := t−µ(1− ω(t[ζ]))ω0(t[ζ], t′[ζ]) Opt(p)(z, ζ)(1− ˜̃ω(t′[ζ])). (57)

Here t′ is the variable in the argument functions u(t′, ·), while ω0(t, t′) := ψ((t −
t′)2/(1 + (t− t′)2)) for any ψ ∈ C∞0 (R+) such that ψ(t) = 1 for t < 1

2 , ψ(t) = 0 for

t > 2
3 . We now form the operator-valued amplitude function

a(z, ζ) := σ{aM (z, ζ) + aψ(z, ζ}σ̃ (58)

(with σ̃ depending on t′). The number δ plays the role of the new weight γk for the
k-th axial variable t ∈ R+. The operator Opz(a) is just the result of edge quantising
the (operator-valued) amplitude function (55) up to the factors σ, σ̃ which localise
the operator near the edge). The quantisation rule (57) which produces aψ can
be slightly simplified for the case of singularity order k = 1 by omitting ω0 in the
middle (see [48]). However, for higher order singularities this localising factor seems
to be indispensable, see [8] or [48]. Note that for k = 1 (and dimY > 0) there is also
another edge quantisation of a simpler shape, see [20]. However, it seems that an
analogue for k > 1 (even if it is possible) causes more effort than the quantisation
(58).

The asymptotic part of the corner calculus. The following constructions
concern the case of compact X ∈ Mk−1. Considering the wedge X∆ × Ω, or its
stretched version

R+ ×X × Ω 3 (t, ·, z),

the above constructions contribute to building up the calculus of A(X∆×Ω). There
is another essential ingredient, namely, so-called Green and ‘smoothing’ Mellin
operators which are pseudo-differential operators on Ω (the edge) with operator-
valued symbols

g(z, ζ) and m(z, ζ),

respectively. A Green symbol associated with the weight data g = ((γ, δ), (γ −
µ, δ − µ)) is defined by

g(z, ζ) ∈ Sµcl(Ω× Rq;Ks,(γ,δ)(X∆),S(γ−µ,δ−µ)
P (X∆)),

together with a similar property of the pointwise formal adjoint, for all s ∈ R (the
definition of symbols is based on a natural extension of the corresponding notion
from Section 2.3 to the case of Fréchet spaces with group action, see also Remark

1.28). Here S(γ−µ,δ−µ)
P (X∆) consists of Schwartz functions for t→∞ and weighted
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functions for t→ 0 with (say, continuous) asymptotics of type P (see Section 1.1 and
Section 3.3 below). Moreover, a smoothing Mellin symbol is a linear combination
of expressions

m(z, ζ) := t−µ+jω(t[ζ]) op
δj−n2
M (fjα)(z)ζαω̃(t′[ζ]), (59)

j ∈ N, α ∈ Nq , |α| ≤ j, with arbitrary cut-off functions ω, ω̃, weights δj ∈ R, such
that δ > δj > δ−j, and Mellin symbols fjα ∈ C∞(Ω,A−∞(X ;C\Vj)). Here Vj ⊂ C
is a closed subset (a so-called ‘continuous’ asymptotic type of Mellin symbols) such
that w0, w1 ∈ Vj with Rew0 = Rew1 implies (1 − α)w0 + αw1 ∈ Vj for every
0 ≤ α ≤ 1, {c0 ≤ Rew ≤ c1}∩Vj compact for every c0 ≤ c1, and Γn+1

2 −δj ∩Vj = ∅.
The space A−∞(X ;C \ V ) for such a V is defined to be the set of all f(w) ∈
A−∞(X ; Γn+1

2 −δ) which extend to a holomorphic A−∞(X)-valued function in C\V
such that χV f

∣∣
Γβ
∈ A−∞(X ; Γβ) for every β ∈ R and every χV ∈ C∞(C) such that

χV (w) = 0 for dist(w, V ) < ε0, χV (w) = 1 for dist(w, V ) > ε1 for some 0 < ε0 < ε1.
Recall that, by notation, A−∞(N ;C\V ) =

⋃
A−∞(X, (γ, γ−µ), g;C\V ) with the

union over (γ, γ − µ) for γ ∈ Rk−1, µ ∈ R. Operator functions m(z, ζ) represent
symbols

m(z, ζ) ∈ Sµcl(Ω× Rq;Ks,(γ,δ)(X∆),K∞,(γ−µ,δ−µ)(X∆))

and

m(z, ζ) ∈ Sµcl(Ω× Rq;K
s,(γ,δ)
P (X∆),S(γ−µ,δ−µ)

Q (X∆))

for every (continuous) asymptotic type P with some resulting Q. The pointwise
formal adjoints have a similar property. (Concerning the spaces Ks,(γ,δ)(X∆) and
subspaces with asymptotics, see Section 1.1 and Section 3.3 below.) The operators
Opz(m+ g) then constitute the local contribution near the edge of the asymptotic
part of the operator space Aµ(M, g) for M ∈Mk, g = ((γ, δ), (γ−µ, δ−µ)), locally
modelled on X∆ × Ω.

Global smoothing operators. Given M ∈ Mk, δ, µ ∈ R, γ ∈ Rk−1, the
space A−∞(M,

(
(γ, δ), (γ − µ, δ − µ)

)
is defined to be the set of all

C : H
s,(γ,δ)
[comp)(M)→ H

s′,(γ−µ,δ−µ)
[loc),P (M)

that are continuous for arbitrary s, s′ ∈ R, with some asymptotic type P , and C∗,
the formal adjoint, has a similar property. In the case dim Y = 0 (i.e., when M is
locally near Y = {v} modelled on a cone X∆ for an X ∈ Mk−1, such a C is also
called a Green operator of the corresponding higher cone calculus.

Global corner operators of k-th generation. An operator A ∈ Aµ(M, g)
for g = (

(
(γ, δ), (γ − µ, δ − µ)

)
, M ∈ Mk, is defined as follows: We first choose

cut-off functions σ, σ̃ on M that are equal to 1 in a neighbourhood of the minimal
stratum Y ⊂ M and vanish outside another neighbourhood of Y . By virtue of
N := M \ Y ∈Mk−1 we have the spaces Aµ(N ; (γ, γ − µ)), known by (IA). Then
Aµ(M, g) is defined to be the set of all

A ∈ Aµ(M \ Y, (γ, γ − µ))

that are of the form
A = Asing +Areg + C

where C ∈ A−∞(M, g), moreover, Areg, Asing ∈ Aµ(M \ Y, (γ, γ − µ)), and Areg

vanishes in some neighbourhood U of Y (in the sense that Areg|U : C∞0 (U \ Y ) →
C∞(U \ Y ) is the zero operator). The operator Asing vanishes outside some other
neighbourhood of Y (in a similar sense), and Asing for dimY = qk > 0 is equal
(modulo pull backs to M) a locally finite sum of operators of the form

ϕOpz(a+m+ σgσ̃)ψ (60)
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referring to the local description of M near Y by wedges X∆ × Ω, X ∈ Mk−1,
Ω ⊆ Rqk open (qk = dimY ), for arbitrary (operator-valued) symbols a,m, g of the
above-mentioned kind, and functions ϕ, ψ ∈ C∞0 (Ω).

For dimY = 0, Y = {v}, and M locally near v modelled on X∆ for some
X ∈Mk−1, we set

Asing = t−µω op
δ−n2
M (h)ω̃ +M (61)

for some h(t, w) ∈ C∞(R+,A
µ(X, (γ, γ − µ);C) and a linear combination M of

operators of the form

m := t−µ+jω op
δj−n2
M (fj)ω̃, (62)

j ∈ N, fj ∈ A−∞(X, (γ, γ − µ);C \ Vj) for certain continuous asymptotic types Vj
(where we only have one summand for j = 0), δ > δj > δ− j, Vj ∩ Γn+1

2 −δj = ∅ for

all j, n := dimX .
By AµM+G(M, g) for dim Y > 0 and AM+G(M, g) for dimY = 0 we denote the

subspace of all operators K ∈ Aµ(M, g) such that K|M\Y ∈ A−∞(M \Y, (γ, γ−µ))
for k ≥ 2 (and K|M\Y ∈ L−∞(M \ Y ) for k = 1) such that

K = K0 + C

for some C ∈ A−∞(M, g), and where K0 is locally of the form (60) for where a ≡ 0.
Moreover, by AµG(M, g) we denote the subspace of such operators K where in (60)
we also have m ≡ 0.

The principal symbolic hierarchy. By (IA) for any operator in Aµ(M \
Y, (γ, γ − µ)), M ∈ Mk, with Y ⊂ M being the minimal stratum, we have the
principal symbolic hierarchy (σ0, . . . , σk−1). For A ∈ Aµ(M, ((γ, δ), (γ − µ, δ− µ)))
we now form

σ(A) =
(
σ0(A|M\Y ), . . . , σk−1(A|M\Y ), σk(A)

)

using that A|M\Y belongs to Aµ(M\Y, (γ, γ−µ)), such that σ0, . . . , σk−1 are known,
and define σk(A) as follows.

For dim Y = 0 and X ∈Mk−1 compact we set

σk(A)(w) := h(0, w) + f0(w), (63)

where h(0, w) are and f0(w) defined by (61) and (62), respectively. (63) is called
the principal (corner) conormal symbol of A.

The symbolic component (63) represents a family of continuous operators

σk(A)(w) : Hs,γ(X)→ Hs−µ,γ−µ(X)

s ∈ R, parametrised by w ∈ Γn+1
2 −δ, n = dimX .

For dim Y > 0 and X ∈Mk−1 compact we set

σk(A)(z, ζ) :=t−µ{ω(t|ζ|) op
δ− dimX

2

M (h0)(z, ζ)ω̃(t′|ζ|) + (1− ω(t|ζ|)
ω0(t|ζ|, t′|ζ|) Opt(p0)(z, ζ)(1− ˜̃ω(t′|ζ|))}+ σk(m+ g)(z, ζ),

(64)

where σk(m + g)(z, ζ) is simply the homogeneous principal symbol of m + g in
the sense of classical symbols with twisted homogeneity of order µ. The symbol
σk(A)(z, ζ) is defined for (z, ζ) ∈ Ω× (Rqk \ {0}).

It follows a family of operators

σk(A)(z, ζ) : Ks,(γ,δ)(X∆)→ Ks−µ,(γ−µ,δ−µ)(X∆) (65)

for all s ∈ R, with the homogeneity property

σk(A)(z, λζ) = λµκλσk(A)(z, ζ)κ−1
λ

for all λ ∈ R+, (κλu)(t, ·) := λ
1+dimX

2 +(s−γ)u(λt, ·), λ ∈ R+. We call (65) the
principal edge symbol of A (where the minimal stratum of M has the meaning of
an edge).
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Compositions. Let M ∈ Mk be compact, and let A ∈ Aµ(M, (γ − ν, γ −
(µ + ν)), B ∈ Aν(M, (γ, γ − ν)). Then we have AB ∈ Aµ+ν(M, (γ, γ − (µ + ν))
and σ(AB) = σ(A)σ(B) with componentwise multiplication of symbols (in the
case dimY = 0 that means for the k-th component σk(AB) = (T νσk(A))σk(B),
(T βf)(w) = f(w + β).

If M is not compact we have a similar result when A or B is properly supported
(the latter notion is a simple generalisation of the one in standard pseudo-differential
operators on an open manifold (see Section 2.1), and every A can be represented
by a properly supported operator modulo an operator in A−∞.

The proof of the composition result follows by (IA) on the level of operators
restricted to M \ Y which already gives us the symbolic rule for the components
σ0, . . . , σk−1. Then for the compositions of the operators near Y we can apply
similar arguments as in [8] (see also [48]) which shows the composition rule for σk .

Another useful aspect is that formal adjoints can be carried out within the
calculus, with a corresponding rule on the level of symbols.

Similar relations hold for the parameter-dependent variants of the operator
spaces.

3.2 Ellipticity and an analogue of the Atiyah-Bott obstruction. The
notion of ellipticity of an operator A on a manifold M ∈Mk, k ≥ 2, can be defined
in an iterative way when we assume by (IA) that the corresponding notion on any
N ∈ Mk−1 is already introduced. Since the symbols are operator-valued, except
for the interior symbol (i.e., the zeroth component on the maximal stratum) this
is connected with the involved weighted spaces, also defined in an iterative manner
(see Section 3.3 below). On a (for simplicity) compact M ∈ M0, we take the
standard Sobolev spaces Hs(M) of smoothness s ∈ R. On a compact M ∈ M1

we have the weighted spaces Hs,γ(M) (‘cone-spaces’ for dimY = 0, ‘edge-spaces’
for dimY > 0, according to the dimension of the minimal stratum) of smoothness
s ∈ R and weight γ ∈ R, and there are also subspaces Hs,γ

P (M) with asymptotics
of type P (constant discrete, or continuous, and associated with weight data (γ,Θ)
as well as with a fixed system of singular charts near Y ).
Definition 3.1 An operator A ∈ Aµ(M, g) for g = ((γ, δ), (γ − µ, δ − µ)) is called
(σ0, . . . , σk−1)-elliptic, if A|M\Y ∈ Aµ(M \ Y, (γ, γ − µ)) is elliptic with respect to
all symbolic components σj(A|M\Y ), j = 0, . . . , k − 1.

By (IA) we know what that means. For k = 0 we have nothing other than the
standard ellipticity, i.e., non-vanishing of the homogeneous principal symbol σ0(A)
on T ∗M \ 0 (or bijectivity of π∗E → π∗F , π : T ∗M \ 0→M when A acts between
distributional sections of bundles E,F ∈ Vect(M)).

For k ≥ 1 the ellipticity condition for σ0(A) is given in Definition 1.7.
For k = 1 and dimY = 0, when Y (for simplicity) consists of one conical point

v, the component σ1(A) is the conormal symbol

σ1(A)(w) : Hs(X)→ Hs−µ(X) (66)

with X ∈M0 being the base of the cone near v, and the ellipticity with respect to
γ is defined to be the bijectivity of (66) for all w ∈ Γ n+1

2 −γ , n = dimX (because

of the notation for general singularity orders we replace the former σc by σ1; in a
similar manner we proceed with σ∧).

For k = 1 and dimY = q > 0 the component σ1(A) is the principal edge symbol

σ1(A)(y, η) : Ks,γ(X∆)→ Ks−µ,γ−µ(X∆), (67)

parametrised by (y, η) ∈ T ∗Y \ 0.
Theorem 3.2 Let M ∈ M1, dimY > 0, and let A ∈ Aµ(M, (γ, γ − µ)) be σ0-
elliptic. Then (67) is exit-elliptic on the infinite cone for r → ∞ (of order 0 at
infinity), for every (y, η) ∈ T ∗Y \ 0 (see Definition 2.18).
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Pointwise the operators in (67) belong to the cone algebra on X∆, i.e., to
Aµ(X∆, (γ, γ − µ)); as such they have a principal conormal symbol

σ1(σ1(A))(y, w) : Hs(X)→ Hs−µ(X) (68)

with obvious meaning of notation (it is independent of η, since σ1 in the cone case
is computed by freezing r at 0 in all arguments).
Definition 3.3 Let M ∈M1, A ∈ Aµ(M, (γ, γ − µ)), and let A be σ0-elliptic. We
then call σ1(A)(y, η) elliptic with respect to γ, if (68) is a family of isomorphisms
for all y ∈ Y , w ∈ Γn+1

2 −γ.

Theorem 3.4 Let A ∈ Aµ(M, (γ, γ − µ)) be σ0-elliptic, and let σ1(A)(y, η) be
elliptic with respect to γ. Then (67) is a family of Fredholm operators for every
(y, η) ∈ T ∗Y \ 0.
Remark 3.5 By virtue of σ1(A)(y, λη) = λµκλσ1(A)(y, η)κ−1

λ for all λ ∈ R+, the
Fredholm family (67) is completely determined by its restriction to S∗Y , the unit
cosphere bundle in T ∗Y \ 0 (a Riemannian metric on Y is assumed to be fixed).
Thus we obtain an index element

indS∗Y σ1(A) ∈ K(S∗Y ),

where K(·) is the K-group (of corresponding classes of pairs (E,F ) ∈ Vect(·) ×
Vect(·)) on the compact space in parentheses, see Atiyah [4].

Bundle pull back with respect to the canonical projection π : S∗Y → Y gives
rise to a homorphism π∗ : K(Y )→ K(S∗Y ).

From boundary value problems, say, with the transmission property at the
boundary, it is known that a necessary and sufficient condition for the existence of
J± ∈ Vect(Y ) such that σ∂(A)(y, η) can be completed to a family of isomorphisms

σ∂(A)(y, η) : Hs(R+)⊕ J−,y → Hs−µ(R+)⊕ J+,y, (69)

(y, η) ∈ S∗Y , is that

indS∗Y σ∂(A) ∈ π∗K(Y ), (70)

see [5] for the case of elliptic differential operators, [6] for elliptic pseudo-differential
operators with the transmission property. The extra entries in (69) (apart from the
given upper left corner) represent the symbols of the additional operators in (28),
and we then have a Fredholm operator

A : Hs(intM)⊕Hs(Y, J−)→ Hs−µ(intM)⊕Hs−µ(Y, J+), (71)

(M in this case is a compact C∞ manifold with boundary Y , and intM = M \ Y
the interior).

A similar criterion for the existence of additional elliptic edge conditions for
the edge-algebra has been given in [72], namely,

indS∗Y σ1(A) ∈ π∗K(Y ). (72)

This admits the construction of an elliptic ‘edge problem’ of the form (31).
Remark 3.6 In such a process there arise two natural questions.

(i) What can be done when (70) or (72) is not satisfied?
(ii) If (70) or (72) hold, is there a way to describe ellipticity with respect to σ1(A)

(in order to obtain Fredholm operators (71) or (31)) by avoiding extra entries
of trace and potential type (possibly on the expense of additional operators
in the upper left corner which are smooth over the main stratum)?

In the case (i) (which happens in boundary value problems, for instance, for Dirac
operators in even dimensions) there is a general concept of posing so-called global
projection conditions, as generalisations of the well-known APS- (or global spec-
tral) conditions, see [87], [84]. The pseudo-differential algebra scenario for such
conditions in boundary value problems is developed in [76] (see also [79], als well
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the case without the transmission property [82]), and in edge problems in [83]).
In the case that (70) or (72) are satisfied, we can construct boundary and edge
conditions, respectively. For boundary value problems with the transmission prop-
erty those conditions in terms of additional entries cannot be avoided. However,
if the transmission property is not satisfied, or in the general edge case, we have
more freedom in the respective edge calculus which allows us to place the additional
information in the upper left corner, according to the following result.
Theorem 3.7 Let M ∈ M1, dimY > 0, let A ∈ Aµ(M, (γ, γ − µ)) be σ0-elliptic,
and assume that σ1(A) is elliptic with respect to a weight γ (cf. Definition 1.21 and
Definition 3.3). Moreover, let the condition (72) be satisfied. Then there exists an
operator M +G ∈ AµM+G(M, (γ, γ − µ)) such that

σ1(A+M +G)(y, η) : Ks,γ(X∆)→ Ks−µ,γ−µ(X∆)

is a family of isomorphisms for all s ∈ R.
Recall that for k = 1 we have AµM+G(M, (γ, γ−µ))|M\Y ⊂ L−∞(M \Y ); there-

fore, a smoothing but (in general) non-compact M + G-contribution to A suffices
to guarantee an analogue of the Shapiro-Lopatinskij condition without additional
trace or potential operators.

For the abstract calculus of elliptic operators on M for M ∈ Mk−1, k ≥ 2, it
seems to be advisable also to make such a manipulation, in order to suppress all the
trace and potential entries on lower-dimensional strata, and to only explicitly take
them into account in the last step, namely, with respect to the minimal stratum
when the order of singularity is equal to k. Those can be again modified by such
an (M +G)-trick, in order to prepare the same thing for k + 1. The tool which is
responsible for that is an analogue of Theorem 3.7 for any higher singularity order
> 1, see the M + G-notation in the preceding section under the headline ‘Global
corner operators of k-th generation’.
Remark 3.8 There are different variants of such ‘M + G-theorems’, also for the
case dim Y = 0, or for parameter-dependent operators. For instance, let dimY = 0,
M ∈ Mk, k ≥ 2, locally near Y = {v} modelled on X∆ for an X ∈ Mk−1, and
let A ∈ Aµ(M, g) for g = ((γ, δ), (γ − µ, δ − µ)) be (σ0, . . . , σk−1)-elliptic, and in
addition

σk(A)(w) : Hs,γ(X)→ Hs−µ,γ−µ(X)

a family of isomorphisms, parametrised by w ∈ Γ 1+dimX
2 −δ (by definition this is

just the ellipticity of A for dim Y = 0). Then for every m ∈ Z there exists an
M +G ∈ AµM+G(M, (γ, γ−µ)) (which is in this case only a ‘smoothing’ Mellin plus
Green operator with respect to a corner point) such that A+M+G is Fredholm and
of index m. For m ≤ 0 (m ≥ 0) we can find M +G in such a way that A+M +G
is injective (surjective); in particular, it is an isomorphism for m = 0). Concerning
constructions of this character in the case of boundary value problems, see [81], and
of edge problems, [42].
Proposition 3.9 Let M ∈Mk, k ≥ 1, Y its minimal stratum, Y compact, dim Y >
0, A ∈ Aµ(M, g), g = ((γ, δ), (γ − µ, δ − µ)) (where the component (γ, γ − µ)
disappears for k = 1); moreover, let A be (σ0, . . . , σk−1)-elliptic (see Definition
3.1), and assume that

σk(A)(y, η) : Ks,(γ,δ)(X∆)→ Ks−µ,(γ−µ,δ−µ)(X∆)

is a family of Fredholm operators for (y, η) ∈ T ∗Y \ 0. Assume that the analogue
of the Atiyah-Bott obstruction vanishes, i.e.,

indS∗Y σk(A) ∈ π∗K(Y ),
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π : S∗Y → Y the canonical projection (see the formula (72) for k = 1).Then there
exist bundles J± ∈ Vect(Y ) and a 2× 2 block matrix family of isomorphisms

σk(A)(y, η) :
Ks,(γ,δ)(X∆)

⊕
J−,y

→
Ks−µ,(γ−µ,δ−µ)(X∆)

⊕
J+,y

, (73)

(y, η) ∈ T ∗Y \ 0, where, when we write A = (Aij )i,j=1,2, the potential entry A12

maps into a subspace with s = ∞ and with asymptotics near the tip of the cone,
and decrease of Schwartz type at infinity.

Clearly we then have

indS∗Y σk(A) = [π∗J+]− [π∗J−].

The entries of (73) are obtained by first constructing them on the compact space
S∗Y and then for arbitrary η 6= 0 via twisted homogeneity. For instance,

σk(A12)(y, λη) = λµκλσk(A12)(y, η), σk(A21)(y, λη) = λµσk(A21)(y, η)κ−1
λ

for all λ ∈ R+, with {κλ}λ∈R+ being the group action on the spaces over X∆.
By multiplying the ij-th entries for i+ j > 2 by an excision function χ(η), we

obtain locally on Y symbols in

Sµcl(Ω× Rq ;Cj− ,Ks−µ,(γ−µ,δ−µ)(X∆)), Sµcl(Ω× Rq ;Ks,(γ,δ)(X∆),Cj+), (74)

Sµcl(Ω× Rq ;Cj− ,Cj+). (75)

They allow us to pass to associated 2× 2 block matrix operators A,

A :
Hs,(γ,δ)(M)

⊕
Hs(Y, J−)

→
Hs−µ,(γ−µ,δ−µ)(M)

⊕
Hs−µ(Y, J+)

.

We then set

σ(A) = (σ0(A), . . . , σk−1(A), σk(A)),

where σk(A) is just defined as the operator family (73). These constructions moti-
vate an extension of Aµ(M, g) for g = ((γ, δ), γ − µ, δ− µ)) to a space Aµ(M, g,v)
of 2 × 2 matrices of operators A with a pair v := (J−, J+) of vector bundles over
the minimal stratum Y of M . The nature of local symbols of the additional entries
is already explained, namely, through (74), (75). There are also global smoothing
operators in that space; the simple explanation will be omitted here. Moreover, we
also have analogous operator spaces Aµ(M, g,v;Rl) with parameters.
Definition 3.10 An operator A ∈ Aµ(M, g,v) on M ∈Mk with minimal stratum
Y , dimY > 0, is called elliptic, if A := A11 is (σ0, . . . , σk−1)-elliptic (see Definition
3.1) and if σk(A) defines a family of isomorphisms (73) (the latter condition is an
analogue of the Shapiro-Lopatinskij condition from the calculus of boundary value
problems). For dimY = 0 we gave the notion of ellipticity already in Remark 3.8.

In a similar manner we define parameter-dependent ellipticity in Aµ(M, g,v;Rl).
Theorem 3.11 Let M ∈Mk, Y its minimal stratum, g = ((γ, δ), (γ − µ, δ − µ)),
where (γ, γ − µ) disappears for k = 1. We then write g−1 = ((γ − µ, δ− µ), (γ, δ)).

(i) An elliptic operator A ∈ Aµ(M, g) for dim Y = 0 induces a Fredholm oper-
ator

A : Hs,(γ,δ)(M)→ Hs−µ,(γ−µ,δ−µ)(M)

for every s ∈ R, and A has a parametrix P ∈ A−µ(M, g−1).
(ii) An elliptic operator A ∈ Aµ(M, g,v) for dimY > 0 v := (J−, J+), induces

a Fredholm operator

A : Hs,(γ,δ)(M)⊕Hs(Y, J−)→ Hs−µ,(γ−µ,δ−µ)(M)⊕Hs−µ(Y, J+)
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for every s ∈ R, and A has a parametrix P ∈ A−µ(M, g−1,v−1), v−1 :=
(J+, J−).

3.3 Weighted spaces. In the preceding sections we employed various kinds
of weighted spaces on X∆, X ∈ Mk−1 or M ∈ Mk, called Ks,(γ,δ)(X∆) and
Hs,(γ,δ)(M), respectively (in the second case we assume that M is compact, other-
wise we need corresponding ‘comp’ and ‘loc’ analogues). We will sketch here some
of the main aspects of the construction, also in an inductive manner. For k = 1 we
have the spaces Hs,γ(X∆), Hs

cone(X
∆), and Ks,γ(X∆), Ks,γ(X∆), see the notation

in (4), (5) and Remark 1.6. In the following Theorems 3.12 and 3.13 the manifold
X is assumed to be closed and compact.
Theorem 3.12 (i) For every s ∈ R there exists a parameter-dependent elliptic

element Rµ(%) ∈ Lµcl(X ;R) such that

Rµ(%) : Hs(X)→ Hs−µ(X)

is an isomorphism for every s ∈ R.
(ii) The space Hs,γ(X∆) for s, γ ∈ R can equivalently be defined as the comple-

tion of C∞0 (R+ ×X) with respect to the norm

{ 1

2πi

∫

Γn+1
2
−γ

‖Rs(Imw)(Mu)(w)‖2L2(X)dw
}1/2

;

here Rs(%) is as in (i), and M is the Mellin transform applied to u with
respect to r as an element in C∞0 (R+, C

∞(X)).
In particular, we can set

Hs,γ(X∆) = op
γ−n2
M (R−s)H0,0(X∆),

where H0,0(X∆) = r−
n
2 L2(R+ ×X), and R−s is regarded as a function on

Γn+1
2 −γ 3 w, % = Imw, with values in L−scl (X).

Theorem 3.13 There exists a parameter-dependent elliptic p̃µ(%̃, η̃) ∈ Lµcl(X ;R1+q
%̃,η̃ )

such that when we set pµ(r, %, η) := p̃µ([r]%, [r]η) for a strictly positive function
[r] ∈ C∞(R) with [r] = |r| for |r| > C for a C > 0, the operator

[r]−µ Opr(p
µ)(η) : Hs;g(X�)→ Hs−µ;g(X�)

is an isomorphism for every s, g ∈ R and every fixed η 6= 0. In particular, we can
set Hs;g(X�) = 〈r〉−g [r]s Op(p−s)(η)([r]−

n
2 L2(R×X)) for any η 6= 0.

Remark 3.14 Taking into account Remark 2.20 we can define Ks,γ;g(X∆) equiva-
lently as

Ks,γ;g(X∆) := {ωu+ (1− ω)v : u ∈ Hs,γ(X∆), v ∈ Hs;g(X�)}
for any cut-off function ω (with 1− ω := 0 on the negative half-axis).

Recall that Definition 1.30 gave us the Hs,γ-spaces on a manifold M with edge
and subspaces with asymptotics of type P .

For the higher calculus k ≥ 2 we can generate the weighted spaces and subspaces
with asymptotics in a similar manner, using theorems of the following type.
Theorem 3.15 Let X ∈ Mk−1 be compact, and let γ ∈ Rk−1. For every µ ∈ R
there exists a parameter-dependent elliptic element Rµ(%) ∈ Aµ(X, (γ, γ − µ);R)
such that

Rµ(%) : Hs,γ(X)→ Hs−µ,γ−µ(X)

is an isomorphism for every s ∈ R.
By (IA) we already know the spaces Hs,γ(X) for (compact) X ∈Mk−1. Also

the spaces Hs,γ;g(X�) for s, g ∈ R, γ ∈ Rk−1, are assumed to be constructed (in
contrast to the case X ∈ M0 we have here the weights γ along the base X of
X� = R×X).
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Theorem 3.16 There exists a parameter-dependent elliptic p̃(%̃, η̃) ∈ Aµ(X, (γ, γ−
µ);R1+q

%̃,η̃ ) such that, when we define p(r, %, η) similarly as in Theorem 3.13, the
operator

[r]−µ Opr(p)(η) : Hs,γ;g(X�)→ Hs−µ,γ−µ;g(X�)

is an isomorphism for every s, g ∈ R and every fixed η 6= 0.
Similarly as in Theorems 3.12, 3.13 we can define the spaces Hs,(γ,δ)(X∆) and

Hs,γ;g(X�), knowing the spaces for s = 0, g = 0 as weighted L2-spaces on R+×X
and R×X , respectively. We then define

Ks,(γ,δ);g(X∆) := {ωu+ (1− ω)v;u ∈ Hs,(γ,δ)(X∆), v ∈ Hs,γ;g(X�)} (76)

for any cut-off function on the half-axis.
The scheme of the definition of Hs,(γ,δ)-spaces on an M ∈ Mk is similar to

Definition 1.30 (i), now based on Ks,(γ,δ)(X∆) := Ks,(γ,δ);s−δ(X∆) with the group

action u(r, x) → λ
1+dimX

2 +(s−δ)u(λr, x), λ ∈ R+. The notion of subspaces with
(continuous) asymptotics of type P for r → 0 is completely analogous to the one
for k = 1. In an iterative manner we can also formulate asymptotics of a similar
structure along the other occurring distance-variables.

3.4 Concluding remarks. The calculus of operators that we sketched here
is motivated by different concrete tasks in partial differential equations, especially
boundary value problems, occurring in models of the applied sciences or mathemat-
ical physics, and by the desire to foresee the qualitative behaviour of solutions, also
in order to launch numerical processes. For instance, knowing solvability, regular-
ity, and parametrices of ‘standard’ elliptic boundary value problems in a smooth
domain in the framework of the pseudo-differential calculus with the transmission
property at the boundary (say, of Dirichlet or Neumann problems for second or-
der equations) (see [6] or [63]) we can ask what has to happen in a calculus that
solves mixed or crack problems in a non-smooth domain, for instance, in a cube
or another configuration with ‘polyhedral’ geometry. An example is the Zaremba
problem, where we have a jump from Dirichlet to Neumann conditions along an
interface on the boundary of codimension 1 (see [13], [27]). By crack problems we
understand boundary value problems in a domain with a slit representing a crack
(e.g., a removed hypersurface of codimension 1 which itself has a boundary, smooth
or non-smooth) at which we pose boundary conditions from both sides.

It turns out that, if we follow in a consequent manner the way of observing
all the symbolic structures that play a role in boundary value problems in the
smooth case, we are automatically led to what we perform here in our operator
calculus, with conormal, edge, etc., symbols. To be more precise, we then have
to take into account also conormal, edge, etc. symbols taking values in operators
with the transmission property at the boundary of the base of some model cone,
see [31], [28] [38]. In this connection we see that parameter-dependent variants of
the already achieved calculi play an enormous role. In the process of constructing
higher operator algebras the parameters are interpreted as covariables along singu-
lar strata in the next generations of operators. Parameter-dependent theories have
been elaborated in a very ‘early’ stage of the development in PDE, see the work of
Agranovich and Vishik [1], or Seeley [86].

Another source of motivation for our calculus is the study of geometric operators
on manifolds with singularities, connected with operator algebras with symbolic
structures, index theory, Hodge theory, or spectral theory. Let us mention in this
context the new monograph [56] and refer to the bibliography there. In the present
exposition we focused on the ‘analytic content’ of operator algebras with symbolic
hierarchies, contributed by the singularities, and on ellipticity. It is possible to study
parabolicity in a similar framework, see [34], [35], [36], [37], although there are some
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‘unexpected’ difficulties. Also hyperbolic problems should be studied in the context
of singularities of the spatial configurations. The geometric and topological aspects
are interesting as well, and there are many new challenges and open problems,
especially in respect to the scenario with global projection conditions in non-smooth
situations see Remark 3.6, or the papers [43], [44] in an analogous spirit. There
are many other beautiful branches of research, for instance, around parameter-
dependent theories and the structure of resolvents, see the papers [17], [18], [33].

It seems altogether that the analysis on manifolds with singularities (although
well established in some aspects through the work of different schools during the
past decades) is at a new beginning, with many deep and fascinating problems.
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Birkhäuser Verlag, Boston, 1996.
[26] G. Harutjunjan and B.-W. Schulze, The relative index for corner singularities, Integral Equa-

tions Operator Theory 54, 3 (2006), 385–426.
[27] G. Harutjunjan and B.-W. Schulze, The Zaremba problem with singular interfaces as a corner

boundary value problem, Potential Analysis 25, 4 (2006), 327–369.
[28] G. Harutjunjan and B.-W. Schulze, Elliptic mixed, transmission and singular crack problems,

European Mathematical Soc., Zürich, to appear.
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[91] M.A. Shubin, Pseudodifferential operators in Rn, Dokl. Akad. Nauk SSSR 196 (1971), 316–
319.

[92] N. Teleman, Global analysis on PL-manifolds, Trans. A.M.S. 256 (1979), 49–88.
[93] N. Teleman, Combinatorial Hodge theory and signature operator, Invent. Math. 61 (1980),

227–249.
[94] F. Treves, Introduction to pseudo-differential and Fourier integral operators, vol. 1 and 2,

Plenum, New York, 1985.
[95] I. Witt, On the factorization of meromorphic Mellin symbols, Advances in Partial Differential

Equations (Parabolicity, Volterra Calculus, and Conical Singularities) (S. Albeverio, M. De-
muth, E. Schrohe, and B.-W. Schulze, eds.), Oper. Theory Adv. Appl., vol. 138, Birkhäuser
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