## LOCAL COHOMOLOGY AND SHEAF COHOMOLOGY

## QUESTIONS

- (1) Let G be a graph, and let  $I \subset S$  be the corresponding edge ideal (i.e. generated by quadric monomials  $x_i x_j$ , where (i, j) is an edge of the graph). Feel free to also try other Stanley-Reisner ideals too.
  - (a) Compute, using local duality and approximation, the local cohomology modules of S/I (and/or their graded k-duals), for specific choices of graphs G.
  - (b) These modules are  $\mathbb{Z}^n$ -graded (*n* the number of variables). Find their multigraded hilbert series.
  - (c) Consider the Cech complex (tensored with S/I). Consider the d-th graded piece (d a multidegree). Is this complex over k recognizable as the complex corresponding to some simplicial complex? Can you find a formula for the dimensions of the multi-graded parts of the local cohomology modules?

*Hint.* Use the DegreesRank or Degrees options when creating a polynomial ring, if you wish to compute multigraded Hilbert series.

- (2) Continuing with edge ideals, we investigate the cohomology of the normal sheaf  $N = Hom_S(I, S/I)$ .
  - (a) For your examples, find  $H^0(\widetilde{N})$ , and  $H^1(\widetilde{N})$ , and the other  $H^i$  too. Can you find a formula in terms of the properties of G?
  - (b) Is  $N = H^0_*(\widetilde{N})$ ? If not, find it.
- (3) Write a Macaulay2 function which takes an S-module M as input and returns the list  $\{\dim H^0(\widetilde{M}), \ldots, \dim H^n(\widetilde{M})\}$ . Try your function on the following modules, (where e.g.  $(n,d,p)=(3,4,1),(3,4,2),(3,5,1),\ldots$ ). Can you find  $H^0_*$  of these modules? What are their resolutions.

```
om = (n,d,p) -> (
   S = ZZ/32003[x_0..x_n];
   I = ideal random(S^1, S^{-d});
   M = omega I;
   exteriorPower(p,M))
```

Date: 25 July 2006.

- (4) Write a function to compute, for a variety of dimension 2 (or 3 if you prefer, or even in general) the Hodge diamond. Apply it to ideals generated by random degree d forms in 4 or 5 variables, or to Fermat hypersurfaces (sum of the d-th powers of all of the variables).
- (5) Let X = V(f) be a hypersurface. Try to find in terms of f a presentation of the module M which defines  $\Omega_X^1$ .
- (6) [Mystery variety] Castelnuovo proved a great theorem: Let X be a smooth projective surface. Then X is rational if and only if  $H^0(\omega_X \otimes \omega_X) = H^1(\mathcal{O}_X) = 0$ , where  $\omega_X$  is the sheaf corresponding to the module  $Ext^{codimX}(S/I, S(-n-1))$ .
  - (a) Use this to investigate whether the ideal in the file "mystery.m2" defines a rational surface (you may assume that the ideal defines a smooth projective surface).
  - (b) Extra credit: can you identify this surface, and/or compute its Hodge diamond?

## Macaulay 2 examples from the morning lecture

```
-- Example: rational quartic curve --
S = QQ[a..d]
P1 = QQ[s,t]
F = map(P1,S,\{s^4,s^3*t,s*t^3,t^4\})
I = \ker F
C = res (S^1/I)
C = res I
C.dd
codim I
degree I
genus I
Ext^1(S^1/I,S)
Ext^2(S^1/I,S)
Ext^3(S^1/I,S)
Ext^2(S^1/I,S^{-4})
Ext^3(S^1/I,S^{-4})
-- Local cohomology -----
S1 = QQ[x,y]
```

```
J = ideal(x^2, x*y)
M = comodule J
HH^0(M)
(saturate J)/J
prune oo
HH^O(module J)
-- Local cohomology II -----
_____
-- back to the rational quartic
use S
I = ideal"bc-ad,c3-bd2,ac2-b2d,b3-a2c"
N = Hom(I, S^1/I)
N = prune N
res N
HH^0(N)
HH^1(N, Degree=>-5)
HH<sup>2</sup>(N, Degree=>-5)
HH<sup>3</sup>(N, Degree=>-5)
Ext^1(N,S^{-4})
Ext^2(N,S^{-4})
Ext^3(N,S^{-4})
C = res N
regularity N
betti C
-- Useful function:
Ideal ^{\wedge} Array := (J,a) -> (
     ell := a#0;
     ideal apply(numgens J, i -> J_i^ell))
J = ideal vars S
J^[2]
-- Another handy function
HF = (M,lo,hi) \rightarrow (
     toList apply(lo..hi,
        i -> hilbertFunction(i,M)))
HF(N,-5,5)
```

```
-- Now let's look at approximation
E2 = Ext^2(N,S^{-4})
HF(00,0,10)
regularity N
  -- so the next line has same
  -- (inverted) HF in degrees \geq 0-(1-1)-1 = -1
prune Ext^2(S^1/J,N)
HF(00,-10,10)
HF(000,-10,0)
-- valid for degrees >= -2
prune Ext^2(S^1/J^[2],N)
HF(00,-10,0)
matrix apply(toList(1..10), i ->
  HF(Ext^2(S^1/J^[i],N),-10,0))
-- maybe powers of the ideal do better?
prune Ext^2(S^1/J^4,N);
HF(00,-10,0)
-- Omega1 of the Fermat quartic surface --
_____
kk = QQ
S = kk[a..d]
F = ideal(a^4+b^4+c^4+d^4)
R = S/F
p1 = (vars S) ** R
dj = jacobian F ** R
M = homology(p1,dj)
M = prune M
 -- sheaf assocuated to this is
  -- the cotangent sheaf
M = coker lift(presentation M,S)
ann M == F
res M
oo.dd
-- Therefore H^O(Omega1) = 0:
hilbertFunction({0},M)
E2 = Ext^2(M,S^{-4})
```

```
hilbertFunction({0},E2)
E1 = Ext^1(M,S^{-4})
hilbertFunction({0},E1)
X = Proj R
HH^0(00_X)
HH^1(00_X)
HH^2(00_X)
HH^0(sheaf M)
HH^1(sheaf M)
HH^2(sheaf M)
    _____
-- Omega2 of the Fermat quartic surface --
M2 = exteriorPower(2,M)
res M2
Omega2 = sheaf M2
HH^1(Omega2)
HH<sup>2</sup>(Omega2)
HH<sup>3</sup>(Omega2)
HH^0(Omega2(>=0))
use S
J = ideal vars S
ell = 2
E = Hom(J^{[ell]}, M2)
apply(0..10, i -> hilbertFunction(i,M2))
apply(0..10, i -> hilbertFunction(i,E))
apply(0..10, i -> hilbertFunction(i,R))
regularity M2
matrix toList apply(1..12, ell -> (
  HF(Hom(J^{[ell]}, M2), -5, 10)))
prune truncate(0,Hom(J^[7],M2))
prune truncate(-1,Hom(J^[8],M2))
apply(0..10, i -> hilbertFunction(i,R))
-- Hodge diamond of a quintic 3-fold --
```

```
omega = (I) \rightarrow (
     S := ring I;
     R := S/I;
     omegaX := prune homology(vars S ** R,
                         jacobian gens I ** R);
     coker lift(presentation omegaX,S)
     )
load "hodge.m2"
S = QQ[a,b,c,d,e]
I = ideal(a^5+b^5+c^5+d^5+e^5)
omegaX = omega I
res omegaX
cohom (S^1/I)
hodgeDiamond3 I
omega2 = exteriorPower(2,omegaX);
res omega2
betti oo
I = ideal random(S^1, S^{-5})
hodgeDiamond3 I
I = ideal random(S^1, S^{-6})
hodgeDiamond3 I
-- Let's improve the presentation of omega2:
betti omega2
om2sat = coker gens saturate image presentation omega2;
betti om2sat
res om2sat
betti oo
-- now let's improve it even more:
om2B = prune Hom((ideal vars S), om2sat);
betti res om2B
cohom om2B
-- om2B is the best answer.
```