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Abstract The super node algorithm performs model order reduction based on physi-
cal principles. Although the algorithm provides us with compact models, its stability
has not thoroughly been studied yet. The loss of stability is a serious problem be-
cause simulations of the reduced network may encounter artificial behavior which
render the simulations useless. The question is whether the method can be remedied
in such a way that stability, and also passivity, are guaranteed.

1 Introduction

Model order reduction is of high importance within the electronics industry, as it
allows much more realistic simulations. An example is the coupled simulation of
an electronic circuit with its interconnects (see Figure 1) that affects the circuit be-
haviour considerably at high frequencies. In this case the Maxwell equations are
used to describe the behaviour of the interconnect structure, leading to a large sys-
tem of equations. The latter is reduced to obtain a low order model that describes
the dominant behaviour, and this compact model is then coupled to the electronic
circuit.

Although model order reduction for linear problems is quite mature, there are
still many unsolved problems. Currently, research focuses on linear problems with
many inputs or specific structures, parameterized model order reduction, techniques
for coupled problems, and methods for nonlinear problems (see [1] for an extensive
overview). Most of these methods are based on Krylov subspace techniques or trun-
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Fig. 1 Interconnect structure

cated balanced realization, originating from the fields of numerical linear algebra
and systems and control theory, respectively.

There are also physically inspired methods, and one of these is the so-called
super node algorithm. This method can be used to capture the behaviour of a printed
circuit board into a compact model. After a boundary element discretisation on a
relatively fine mesh, only a set of super nodes is kept whose distance is determined
by the maximum frequency considered, making it very efficient [2]. The problem
is that the resulting system is not always stable and passive, which means that time
domain simulations with the reduced order model could explode at some point in
time. Indeed, this phenomenon is observed, and is one of the reasons the super node
algorithm is not used. We feel that it should be possible to remedy the super node
algorithm, and come up with a stable and passive version.

An additional constraint is that the reduced order model should be in the form
of an RLC circuit, so that it can easily be incorporated into a circuit simulator. The
latter question also holds more generally for reduced order models obtained via
more traditional approaches (Krylov, TBR), but remains unsolved till now. It would
be very advantageous if reduced order models, both for the super node algorithm
and for Krylov subspace algorithms, could be cast into the form of an electronic
circuit consisting of resistors, capacitors and inductors. A combination of methods
from graph theory, optimization and numerical analysis could lead to the solution
of this problem, is our feeling.



NXP problem for MITACS-Fields workshop 3

2 Derivation of the model used in FASTERIX

In the design of electronic systems, the electromagnetic field concept is replaced by
the electric circuit concept. This implies that the electromagnetic field in an elec-
tronic system is locally described by voltages and currents that satisfy Kirchhoff’s
laws. Circuit simulations that play an important role in circuit design make use of
this electronic concept.

FASTERIX is a layout simulation tool for EMC (electromagnetic compatibility)
modelling. It transforms PCB properties into an equivalent RLC circuit model which
is then reduced into a compact one with approximately the same behavior. As a
reduction technique it uses the so called ’super node algorithm’.

The approach of compact equivalent circuits makes FASTERIX an excellent and
fast program for the frequency analysis of the electromagnetic behavior for PCB’s.
Although the super node algorithm provides us with compact models, the problem
of carrying out simulations in the time domain still exists. One can think of using
another reduction techniques instead of the super node algorithm, which can pre-
serve stability and passivity. The advantage of the super node algorithm is that it
is inspired by physical insight into the models, and produces reduced RLC circuits
depending on the maximum predefined frequency. This fact makes the algorithm an
attractive technique for EMC modelling.

FASTERIX translates electromagnetic properties of a PCB into a circuit model
which is described by the system of Kirchhoff’s equations�

R � sL � I � PV � 0 (1)

PT I � sCV � J (2)

where R � ℜε � ε is the resistance matrix, L � ℜε � ε is the inductance matrix,
P � ℜε � η is an incidence matrix, C � ℜη � η is the capacitance matrix, I � Cε is
the vector of currents flowing in the branches, V � Cη is a vector of voltages at the
nodes. Vector J � Cε collects the terminal currents flowing into the interconnec-
tion system. Value s is a complex number with negative imaginary part: s ��� jω .
Matrices R, L, C are symmetric and positive definite.

In order to obtain an equivalent network model, the set of all nodes in the circuit
described by (1)-(2) is subdivided into two subsets N and N 	 where N denotes the
subset of nodes which are retained in the reduced circuit, and N 	 is for all other
nodes. Due to this, vectors V , J and matrices P, C are partitioned into blocks, see
[2], chapter 8.

If we consider the voltages at the nodes (from the subset N) as an input v 
 p � , and
currents flowing into the system through the nodes as an output i 
 p � , we arrive at the
following system:
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PT

N � 0 �� ��� �
G

� s � L 0
0 CN � N � �� ��� �

C

������ x � � PN� sCN � N � v 
 p ��� (3)

i 
 p � � s ��� � PT
N sCT

N � N ! x � sCNN v 
 p � � (4)

where x � � I � VN � ! T . It should be noted that in (3) the matrix G is positive real,
and matrix C is positive semi-definite. It is enough to prove that the unreduced
system is stable.

The currents i 
 p � obtained each time under a unity voltage v 
 p � at a particular
input terminal, the others being grounded, constitute the columns of the desired
admittance matrix Y. The following holds

Yv � i � (5)

where the the matrix v �"� v1 #$#$# vN ! corresponds to the identity matrix; columns
of the matrix i are unknown vectors ip. Thus, matrix Y describes the reduced circuit
at a particular frequency ω .

3 Super Node Algorithm

The idea of the super node algorithm is to build a reduced circuit which consists
of frequency independent elements. Such circuit is described by approximation of
the admittance matrix Y. In the first step, the system (3)-(4) is subdivided into two
systems by introducing the following expansions of I and VN � in powers of

�
ik0h �

VN � � V0 � V1
�
ik0h � � (6)

I � I0 � I1
�
ik0h � � (7)

where k0 is the free space wave number, and h is the mesh size. Equations (6)-(7)
hold true when k0h % 1, see [2] for details. Pairs

�
I0
� V0 � and

�
I1
� V1 � are obtained

from two sets of equations which are found from (3)-(4) by gathering appropriate
terms with orders

�
ik0h � 0 and

�
ik0h � 1:�

R � sL � I0 � PN � V0 � PNVN
� (8)� PT

N � I0 � 0 � (9)�
R � sL � I1 � PN � V1 � 0 � (10)� PT

N � I1 � s
�
CN � N � V0 � CN � NVN �&# (11)

Thus, the expression for the admittance matrix is
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Y � PT
N
�
I0 � I1 �'� sCNN � V0 � sCNNVN # (12)

Depending on the frequency range of interest, three types of approximations of
Y can be distinguished. They are for low, high and full frequency range. We will
consider the last two of them in details. The reduced circuits described by some
approximation can be used in a circuit analysis program.

3.1 Admittance matrix for the high frequency range

To get an approximation of the admittance matrix for the high frequency range, the
following expressions for I0, V0, I1 and V1 through frequency independent quanti-
ties I00, V00, I01, V01, I10 and V10 are introduced:

I0 � s ( 1I00 � s ( 2I01
� (13)

V0 � V00 � s ( 1V01
� (14)

I1 � sI10 � I11
� (15)

V1 � s2V10 � sV11
� (16)

where the pairs
�
I00
� V00 � , � I01

� V01 � , � I10
� V10 � , � I11

� V11 � are found from four
linear systems of equations. These equations can be easily found from (8)-(11) by
gathering appropriate terms with coefficients

�
s0 � s ( 1 � , � s ( 1 � s ( 2 � , � s2 � s ( 1 � , � s1 � s0 � ,

see [?] for details. Thus the approximation of Y in the frequency range ω ) Ω is

Yh f * � s � ( 2YR � � s � ( 1YL � YG � � s � YC # (17)

Each pair of nodes in the reduced circuit contains a branch, Fig. 5. Resistance
R, inductance L, capacitance C, and resistance of conductance G can be found from
the admittance matrices YR, YL, YG and YC in (17).

L            R

C

G

i                                  j

Fig. 2 High frequency branch between two nodes
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3.2 Admittance matrix for the full frequency range

In [2], a method to obtain an approximation of the admittance matrix for the full
frequency range was suggested. It is based on the construction of the stable approx-
imation for the admittance matrix Yrl. By introducing the null space of PT

N � , from (3)
we can find:

PT
N �,+ � 0, CT PN � � 0 #

Then from (3) we can get:

I � + � + T � R � sL � + ! ( 1 + T PNVN # (18)

Let A � + T R + , B � + T L + and A, B � ℜn � n, where n �.- ε -/�0-N 	1- . + has full
column rank. Matrices A and B are symmetric positive definite.

Then we can define

YRL � PT
N I0 � PT

N + � A � sB �2( 1 + T PNVN � n

∑
i 3 1

ri�
s � λi � � (19)

where ri � � PT
N + xi � � yT

i + T PN � are residuals and λi are generalized eigenvalues
of the generalized eigenvalue problem Ax � λBx.

It is supposed that the contributions YG and YC are taken from the high frequency
range. Then

Y � YRL � YG � sYC # (20)

It means that now a branch between any pair of super nodes consists of n �
2 connections: n of them have a resistor in series with an inductance; two others
contain conductance and capacitor.

Thus, if n is large, evidently it can be time-consuming process to model circuit
in a circuit analysis program. Also the numerical computations of all eigenvalues
and eigenvectors of the generalized eigenvalue problem becomes expensive as soon
as n becomes lager than a few hundreds. Thus, in practice an approximation of the
admittance matrix can be obtained. In view of the expression (20), it is natural to
look for an approximation of Yrl with a number of terms m 454 n.

In a computer program, it can be done as follows: calculating m low and high
eigenvalues λi of the generalized eigenvalue problem and some admittance matrices
Yk, for an appropriate chosen set of m � 2 negative real values s. The set of these
matched frequencies, sk, consists of some large negative values and some small
negative values.

An element of the branch admittance matrix is approximated by

yi j � yG 6 i j � syC 6 i j � m

∑
l 3 1 7rl 6 i j�

s � λl � (21)

where the coefficients yG 6 i j, yC 6 i j and 7rl 6 i j are obtained by solving the following
set of m � 2 equations:
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yG 6 i j � syC 6 i j � m

∑
l 3 1 7rl 6 i j�

s � λl � � yi j
� k=1,...m+2. (22)

An equivalent circuit which represents the admittance matrix consists of branches
between every pair of circuit nodes. Each branch consists of m parallel connections
of a series resistor R and inductor L, in parallel with a capacitor C, and a resistor of
conductance G. Thus for the branch between the circuit nodes i and j

Rl � λl 7r ( 1
l 6 i j
�

Ll � 7r ( 1
l 6 i j
�

C � yC 6 i j
�

G � yG 6 i j #
3.2.1 Stability

For carrying out reliable simulations in the time domain, first it should be checked
that the system is stable. The high frequency range model described by (17) is not
stable, and it is usually used for simulations in the frequency domain. To show
instability of it, we can show it through BIBO stability (bounded input - bounded
output). The condition for BIBO stability is that the impulse response be absolutely
integrable. The impulse response is the inverse Laplace transform of a given transfer
function: 8 ( 1 9 Y � s �/:;� YR < 1

s2 = � YL < 1
s = � 9 YG :>� YCL ( 1 9 s : � (23)

Since this condition must apply to each element of Y
�
s � , it is easy to show that

the inverse Laplace transform of the first element is not bounded, and corresponds
to a ramp function which is in fact not bounded:8 ( 1 < 1

s2 = � tu
�
t �&# (24)

From the other side, the full frequency model (20) is stable (but generally not
passive). Thus, it can be already used for the simulations in the time domain.

3.2.2 Experiment

An illustration of possible stability violation is given below. The example consists
of two printed striplines, which are parallel to each other. The striplines are 1 mm
wide and 15 mm long. The maximum frequency for modeling the strips is 1MHz.
The mesh is shown in Figure 1. The black dots are the super nodes, defined with the
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mesh. A voltage source is at the two ports of the lower strip. The voltage is measured
over the upper strip. The input pulse has a rise time of 1 picoseconds.

Fig. 3 High frequency branch between two nodes

In Figure 4, the simulation of the full non-reduced circuit in time domain is pre-
sented. All poles of the corresponding model are stable and stay in the right half
plane. Hence the reduced circuit behaves unstable, see Figure 5 and contains a few
unstable poles. This problem is currently under investigation. Observation shows
that a few artificial large resistances and inductances appear at the step of finding
residuals yi j in (22). At this point the fact that passivity is not preserved does not
play crucial role because of the reduced circuit already contains unstable poles.

Fig. 4 Time domain simulation of the nonreduced citcuit
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Fig. 5 Time domain simulation of the reduced circuit
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