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The Wasserstein (metric) space

Base space M: R? or Riemannian manifold
P(M) Space of probability measures (with [, d?(o, x)u(dx) < o0)
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The Wasserstein (metric) space

Base space M: R? or Riemannian manifold
P(M) Space of probability measures (with [, d?(o, x)u(dx) < o0)

v

The Wasserstein metric on P(M)
dy : P(M) x P(M) — R

d? = inf d? M(dx, d
W(,U,,V) HEPI(?V/XM)///\\/[XM (Xay) ( X, .y)

Ml=p;M2=v
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The Wasserstein (metric) space

Base space M: R? or Riemannian manifold
P(M) Space of probability measures (with [, d?(o, x)u(dx) < o0)

The Wasserstein metric on P(M)
dy : P(M) x P(M) — R

d? = inf d? M(dx, d
W(/’Lvy) HEPI(?\/IXM)///\/]XM (Xay) ( X, .y)

Ml=p;M2=v

Properties

dw metrizes weak topology
(P(M), dyy) is a complete geodesic metric space
(M, d) is embedded via M 5 x — §, € P(M)

Max von Renesse Schrédinger Equation and Newton’s Law on (P(M), dy,)



1°-order Riem. Calculus on P(M) (F. Otto, Comm. PDE '01)

The continuity equation

@ Let X € (M) vector field inducing flow (x,t) — ®(x,t) € M
@ Acts on p € P(M) via push forward pp = (). (1)

@ Infinitesimal variation

ft = Ojp—optr = — div(X - )
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1°-order Riem. Calculus on P(M) (F. Otto, Comm. PDE '01)

The continuity equation

@ Let X € (M) vector field inducing flow (x,t) — ®(x,t) € M
@ Acts on p € P(M) via push forward pp = (). (1)

@ Infinitesimal variation

ft = Ojp—optr = — div(X - )

Riemannian Structure of (P(M), dw)

Riemannian tensor (gj)

TWP(M) = {n = —div(uVe) [¢ € C=(M)}
N7, = Ju VY Pdp

N
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1°-order Riem. Calculus on P(M) (F. Otto, Comm. PDE '01)

The continuity equation

@ Let X € (M) vector field inducing flow (x,t) — ®(x,t) € M
@ Acts on p € P(M) via push forward pp = (). (1)

@ Infinitesimal variation

ft = Ojp—optr = — div(X - )

Riemannian Structure of (P(M), dw)

Riemannian tensor (gj)

TWP(M) = {n = —div(uVe) [¢ € C=(M)}
N7, = Ju VY Pdp

Intrinsic metric (J. Benamou & Y. Brenier, Numer. Math '00)

d(g,])(u7 V) = dW(M? V)

N
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1°-order Riem. Calculus on P(M) (F. Otto, Comm. PDE '01)

The continuity equation

@ Let X € (M) vector field inducing flow (x,t) — ®(x,t) € M
@ Acts on p € P(M) via push forward pp = (). (1)

@ Infinitesimal variation

ft = Ojp—optr = — div(X - )

Riemannian Structure of (P(M), dw)

Riemannian tensor (gj)

TWP(M) = {n = —div(uVe) [¢ € C=(M)}
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Intrinsic metric (J. Benamou & Y. Brenier, Numer. Math '00)

d(g,])(u7 V) = dW(M? V)

N

Max von Renesse Schrédinger Equation and Newton’s Law on (P(M), dy,)



Gradient flows
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Gradient flows

The L2-Parametrization/'Chart’

o Curves: u e Lz;fM udx =0
Yu(t) =p+tu
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Gradient flows

The L2-Parametrization/'Chart’

o Curves: u e Lz;fM udx =0
Yu(t) =p+tu

@ Inner product

s W) T2 = (U, (—A*)7IV) 20y
AF(f) = div(uV )
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Gradient flows

The L2-Parametrization/'Chart’

o Curves: u e Lz;fM udx =0
Yu(t) =p+tu

@ Inner product

s W) T2 = (U, (—A*)7IV) 20y
AF(f) = div(uV )

@ Riemannian metric matrix/operator
gi(u): 2 — L% gy(p) = (-A")7"
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Gradient flows
The L2-Parametrization/'Chart’

o Curves: u e Lz;fM udx =0
Yu(t) =p+tu

@ Inner product

s W) T2 = (U, (—A*)7IV) 20y
AF(f) = div(uV )

@ Riemannian metric matrix/operator
gi(u): 2 — L% gy(p) = (-A")7"

Riemannian gradient

For F: P(M) — R
VWF(u) = —A*(DF)|.(.)) = — div(uVM(DF) (1))
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(Negative) Gradient flows - Example

Boltzmann Entropy

F(u):{ Julog () du i:|:;<<dx
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(Negative) Gradient flows - Example

F(u) = i Iog(%)d,u if < dx
) else

Computation of Gradient field

DFj,, = log'(1) - p1+ log(u) - 1 = 1 + log() € L*(M)
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(Negative) Gradient flows - Example

F(u) = i Iog(%)d,u if < dx
) else

Computation of Gradient field

DFj,, = log'(1) - p1+ log(u) - 1 = 1 + log() € L*(M)

~VWF(u) = A*DF|, = div(uV(1 + log(1)))

. Vv
= div(u(0 + 7“) = Au
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(Negative) Gradient flows - Example

F(u) = i Iog(%)d,u if < dx
) else

Computation of Gradient field

DFj,, = log'(1) - p1+ log(u) - 1 = 1 + log() € L*(M)

~VWF(u) = A*DF|, = div(uV(1 + log(1)))

. Vv
= div(u(0 + 7“) = Au

Gradient Flow = Heat Equation

fo=—V"F(u) & 0= Ap
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Application: Ricci Curvature for Metric Measure Spaces
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Application: Ricci Curvature for Metric Measure Spaces

Theorem (v. R./Sturm, Comm. Pure Appl. Math. '05)
Let (M, g) be smooth Riem. Mf. then

Ricc >k e R
< dw(pep, prv) < e dw(p,v)

< Ent(rs) < sEnt(v1) + (1 — s)Ent(yo) — g s(1—5)
for all Wasserstein geodesics « : [0,1] — (P(M), d

V;}(%,%)
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Application: Ricci Curvature for Metric Measure Spaces

Theorem (v. R./Sturm, Comm. Pure Appl. Math. '05)
Let (M, g) be smooth Riem. Mf. then

Ricc >k e R
< dw(pep, prv) < e dw(p,v)

& Ent(vs) < sEnt(v1) + (1 — s)Ent(y) — 5s(1 —s)
for all Wasserstein geodesics v : [0,1] — (P(M), d

V;}(%,%)

Let (X, d, m) be a geodesic metric measure space. Then

Ricc(X,d, m) > k :<=> Ent(-|m) is k-konvex in P(M, dy).
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Application: Ricci Curvature for Metric Measure Spaces

Theorem (v. R./Sturm, Comm. Pure Appl. Math. '05)
Let (M, g) be smooth Riem. Mf. then
Ricc >k e R
& dw(pep, pev) < e *dw(p, v)

= Ent(1s) < sEnt() + (1 — 5)Ent(r0) — 55(1 — 5)dhw(70,71)
for all Wasserstein geodesics v : [0, 1] — (P(M), dy)

Let (X, d, m) be a geodesic metric measure space. Then

Ricc(X,d, m) > k :<=> Ent(-|m) is k-konvex in P(M, dy).

Ricci-Analogue of Cartan-Toponogov-Alexandrov curvature bound
for CAT(k) spaces.
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(Generalized) Ricci Curvature and Optimal Transport
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(Generalized) Ricci Curvature and Optimal Transport

Ricci Curvature for Metric Measure Spaces

@ K.-T. Sturm, 'On the geometry of metric measure spaces’,
Acta Math. '06

e C. Villani & J. Lott, 'Ricci curvature for metric-measure
spaces via optimal transport’, Ann. of Math. '09

@ Y. Ollivier 'Ricci curvature of Markov chains on metric
spaces’, J. Funct. Anal. '09
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(Generalized) Ricci Curvature and Optimal Transport

Ricci Curvature for Metric Measure Spaces

@ K.-T. Sturm, 'On the geometry of metric measure spaces’,
Acta Math. '06

e C. Villani & J. Lott, 'Ricci curvature for metric-measure
spaces via optimal transport’, Ann. of Math. '09

@ Y. Ollivier 'Ricci curvature of Markov chains on metric
spaces’, J. Funct. Anal. '09

Ricci Flow and Optimal Transport

(R. McCann & P. Topping, Amer. J. Math., to appear)

Theorem The t — g is a supersolution to the backward Ricci flow
iff

for all ug ),,ug ) with Gt,ug') = Agu, i€ {1,2}

(1) @)

s — dw, (s ', ps ) is non-increasing.
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2"9_order Riem. Calculus on P(M) (J. Lott, cMP "07)
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2"9_order Riem. Calculus on P(M) (J. Lott, cMP "07)

Standard Vector fields on P(M)
p— Vo(p) = —div(uVe)
[Vir, Vo l(11) = — div(1u(V¢2 - V1 — V21 - Vib2))
V¢1<V¢27 V¢3> = f/\/]<v¢17 v2¢2 Vs + v2¢3 c V¢2>du
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2"9_order Riem. Calculus on P(M) (J. Lott, cMP "07)

Standard Vector fields on P(M)
p— Vo(p) = —div(uVe)
[Vir, Vo l(11) = — div(1u(V¢2 - V1 — V21 - Vib2))
V¢1<V¢27 V¢3> = f/\/]<v¢17 v2¢2 Vs + v2¢3 c V¢2>du

A\

Levi-Civita-Connection (Koszul ldentity)

(Vi Vo, V3) = 3(Vi(Va, V3) + Vo(V5, Vi) — V5( V4, V5)
+ (V3, [V1, Vo]) — (W2, [V4, V3]) — (V4, [V, V3)]))
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2"9_order Riem. Calculus on P(M) (J. Lott, cMP "07)

Standard Vector fields on P(M)
p— Vo(p) = —div(uVe)
[Vir, Vo l(11) = — div(1u(V¢2 - V1 — V21 - Vib2))
V¢1<V¢27 V¢3> = f/\/]<v¢17 v2¢2 : V(Z)3 ol v2¢3 . v¢2>du

Levi-Civita-Connection (Koszul ldentity)

(Vi Vo, V3) = 3(Vi(Va, V3) + Vo(V5, Vi) — V5( V4, V5)
+ (V3, [V1, Vo]) — (W2, [V4, V3]) — (V4, [V, V3)]))

For t — u(t), p(t) = —div(u(t)Vy(t)) and V(t) = Vi
ViVy = —div(u(Vi + V25 - Vi)
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Remark on the Geodesic Equation

For t — p(t) with supp(u) = M then

t — p(t) geodesic < v + %|V¢]2 =c = c(t).
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Remark on the Geodesic Equation

For t — p(t) with supp(u) = M then

t — p(t) geodesic < v + %|V¢]2 =c = c(t).

Geodesic equation Vi1 = 0. Using Lott's lemma with 1 = ¢

Vik = — div(i(V + V3 - Vb))
= — AWV + 5| VP)) =0
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Remark on the Geodesic Equation

For t — p(t) with supp(u) = M then

t — p(t) geodesic < v + %|V¢]2 =c = c(t).

Geodesic equation Vi1 = 0. Using Lott's lemma with 1 = ¢

Vik = — div(i(V + V3 - Vb))
= — AWV + 5| VP)) =0

Test with (¢ + 3|V|?) yields [, |V(¥ + 3|V¥[?)[2du = 0.

Ol
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Lagrangian flows on TP(M)

State space

TP(M) = {—div(uVf)|peP(M), fe C®M)}

Action Functional on curves s — n(s) = —div(usVf;) € TP(M)

Am) = fy Le(n(s))ds, Le((=div(uV)) = [y, [VF2dp— F()

v
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Lagrangian flows on TP(M)

State space

TP(M) = {—div(uVf)|peP(M), fe C®M)}

Action Functional on curves s — n(s) = —div(usVf;) € TP(M)

Am) = fy Le(n(s))ds, Le((=div(uV)) = [y, [VF2dp— F()

v

'Theorem’
The flow 7 : s — —div(usV£s) € TP(M) is critical for A

& Vi =—V"F(u)

o [ 0 + LIV — DF(u) = c(t)
Ot = —div(pVr)
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Example - The Madelung flow

Augmented Mechanical Potential

Fl) = /M V() + 1),

where V € C®(M), I(1) = [,,|V In u|>dp (Fisher information).

Max von Renesse Schradinger Equation and Newton’s Law on (P(M), dy,)



Example - The Madelung flow

Augmented Mechanical Potential
h2
F) = | Vol + 1),

where V € C®(M), I(1) = [,,|V In u|>dp (Fisher information).

| A

Corollary
Let s — us € P(M) solve VZV,[L = —V"WF(u), then

S + = yvsF +V4+— (!VIn,u|2 — —Au) =0
Ot + dIV(/LVS) =0.

where 5(x,t) = S(x, t) + [y LF(Ss., pto)do and S(x, t) is the
velocity potential, i.e. [,, Sdyu =0 and fi; = — div(VSp).
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Mapping to the Schrodinger equation

Lemma (Madelung '27)
Let t — (¢, St) satisfy

@5+|Vﬂ?+v+ ﬂvmuf——Am_ﬂ

Ot + dIV(/,LVS) =0.

then t — ,/uteésf =: W, solves the Schrodinger equation

ihoyV = —h2 20V + W V
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Mapping to the Schrodinger equation

Lemma (Madelung '27)
Let t — (¢, St) satisfy

0:S + = |vsy2 +V+— (|Vlnu|2 — —Au) =0
Ot + dlv(uVS) =0.
then t — \//Tteé-sf =: W, solves the Schrodinger equation

ihoyV = —h2 20V + W V.

Corollary
Any flow t — e € P(M) with V)V = =V F(u) solves the
Schrodinger equation via W = \/ﬁeﬁs.
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Comparison of Hamiltonian Structures

Identify /compute the symplectic structure on TP(M) and relate
the Hamiltonian structure of VZV,LL = —V"WF(u) to that of the
Schrodinger equation.
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Comparison of Hamiltonian Structures

Aim
Identify /compute the symplectic structure on TP(M) and relate

the Hamiltonian structure of VZV,LL = —V"WF(u) to that of the
Schrodinger equation.

Reminder: Symplectic form associated to Riem. metric

Standard symplectic form on the tangent bundle of a Riemannian
manifold:
w=do,

with canonical 1-form ©

@(X) = <£77T*(X)>T7r§7 X e TE(TM)’

and where 7 : TM — M projection map.
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The Symplectic Form on TP (M)

Definition (Standard Vector Fields on TP(M))

Each pair (1, ¢) € C*(M) x C*°(M) induces a vector field Vi,
on TP(M) via
Vi.s(—=div(VEp)) =5

where t — y¥¢(t) = y(t) € TP(M) is the curve satisfying

v(t) = —div(u(t)V(f + t¢))
e = exp(tV).p
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The Symplectic Form on TP (M)

Definition (Standard Vector Fields on TP(M))

Each pair (1, ¢) € C*(M) x C*°(M) induces a vector field Vi,
on TP(M) via

V(= div(Vip)) =+
where t — y¥¢(t) = y(t) € TP(M) is the curve satisfying

v(t) = —div(u(t)V(f + t¢))
e = exp(tV).p

Lemma

Let wyy € N2(TP(M)) be the standard symplectic form associated
to the Wasserstein Riemannian structure on P(M), then

ww (Vi Vg 3) (= di(V ) = (Vo) V) — (V, Vo),
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OV 5)(— div(VFp)) = (VF, V).
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OV 5)(— div(VFp)) = (VF, V).

ww( V.o, Vi 5) = Vip,e®(V 5) — Vi 50(Vye) — O([Vier V51D,
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OV 5)(— div(VFp)) = (VF, V).

ww( V.o, Vi 5) = Vip,e®(V 5) — Vi 50(Vye) — O([Vier V51D,
d
= Vy,0(0(V 5)) = %tzo@(\/& 5)(*(1))

= (Vo, Vi), / V(VF - Vi) Vipdp
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O(Vy 5)(— div(VFu)) = (VF, V).

ww( V.o, Vi 5) = Vip,e®(V 5) — Vi 50(Vye) — O([Vier V51D,
+ Viol®WV ) = 5. OV ) 4(e)

=(V$, V), / V(VF - V§)Vipdu

[V Vi 31)(— div(V 1)) = (VF, [V, Vi),
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O(V; 3)(— div(VFi)) = (VF, V),

ww( V.o, Vi 5) = Vip,e®(V 5) — Vi 50(Vye) — O([Vier V51D,

+ Viol®WV ) = 5. OV ) 4(e)

=(V$, V), / V(VF - V§)Vipdu

[V Vi 31)(— div(V 1)) = (VF, [V, Vi),

/M V(VF-V§)Vipdu— /M V(VEV)VEdu—(VE, [V, VD), =

Schrédinger Equation and Newton's Law on (P(M), dy)



O(Vj 5)(— div(Vn)) = (VF, Vi),

ww( V.o, Vi 5) = Vip,e®(V 5) — Vi 50(Vye) — O([Vier V51D,
+ Viol®WV ) = 5. OV ) 4(e)

=(V$, V), / V(VF - V§)Vipdu

[V Vi 31)(— div(V 1)) = (VF, [V, Vi),

| V9E)Vedu- | V(T Idu—(V (70, Vi) =
M M

Putting formulas together yields the claim.
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Hamiltonian Structure for Newton's Law on P(M), dyy)

Corollary

The curve t — p: € P(M) solves the equation VEV,u = —VWF iff
if it is an integral curve for the Hamiltonian vector field on Xr
induced from wyy and the energy function Hg : TP(M) — R,

He((— dv(uV ) = /M IV + F(u).
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Definition of 'Madelung Transform’

Ci(M) ={V € C*(M;C) |lw(.)| >0}
M simply connected = W = |W|e7® with S unique up to a
constant.
Define Madelung transform by

o: CG(M) = TP(M);  o(¥) = —div(|V|?VS)
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Definition of 'Madelung Transform’

Ci(M) ={V € C*(M;C) |lw(.)| >0}
M simply connected = W = |W|e7® with S unique up to a
constant.
Define Madelung transform by

o: CG(M) = TP(M);  o(¥) = —div(|V|?VS)

Reminder: Hamiltonian Structure of Schrodinger equation

Schrodinger = flow on C, induced from 7 - we

we(F, G) = —2/M Im(F - G)(x)dx.

and Hamiltonian funzction
Hs(W) = 2 [ |VW2dx + [,, |W(x)[2V/(x)dx.
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Symplectic Submersion

Definition

A smooth map s : (M,w) — (N,n) between two symplectic
manifolds is a symplectic submersion if its differential

s« : TM — TN is surjective and 7(s. X, s, Y) = w(X, Y) for all
X, Y e TM.
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Symplectic Submersion

Definition

A smooth map s : (M,w) — (N,n) between two symplectic
manifolds is a symplectic submersion if its differential

s« : TM — TN is surjective and 7(s. X, s, Y) = w(X, Y) for all
X, Y e TM.

Proposition

Let s: (M,w) — (N,n) be a symplectic submersion and let

f e C®M), ge C®(N) with gos = f, then s maps Hamiltonian
flows associated to f on (M, w) to Hamiltonian flows associated to
g on (N,n).
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Symplectic Submersion

Definition

A smooth map s : (M,w) — (N,n) between two symplectic
manifolds is a symplectic submersion if its differential

s« : TM — TN is surjective and 7(s. X, s, Y) = w(X, Y) for all
X, Y e TM.

Proposition

Let s: (M,w) — (N,n) be a symplectic submersion and let

f e C®M), ge C®(N) with gos = f, then s maps Hamiltonian
flows associated to f on (M, w) to Hamiltonian flows associated to
g on (N,n).

Practical Purpose

If the system looks bad on N, solve it on a bigger space and then
project back to N.
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Precise Hamiltonian Relation

Theorem

Let M be simply connected. Then the Madelung transform
o:C(M) = TP(M),  o(|¥]er®) = —div([V[2VS)

defines symplectic submersion from (C.(M), k- we) to
(TP(M),wyy) which preserves the Hamiltonian, i.e.

HSZHFOU.
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Concluding Remarks

@ The last theorem represents the Schrodinger equation as a
'symplectic lift" of Newton's law on the Wasserstein space.
(Indeed, the the wave function has a free unphysical
parameter, the constant phase shift).
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Concluding Remarks

@ The last theorem represents the Schrodinger equation as a
'symplectic lift" of Newton's law on the Wasserstein space.
(Indeed, the the wave function has a free unphysical
parameter, the constant phase shift).

@ None of the computations above are proved yet rigorously.
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Concluding Remarks

@ The last theorem represents the Schrodinger equation as a
'symplectic lift" of Newton's law on the Wasserstein space.
(Indeed, the the wave function has a free unphysical
parameter, the constant phase shift).

@ None of the computations above are proved yet rigorously.

@ Some names (not complete) for the first part of the talk:
Ambrosio, Brenier, Cordero-Erausquin, Gigli, McCann, Otto,
Savare, Sturm, Villani
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Concluding Remarks

@ The last theorem represents the Schrodinger equation as a
'symplectic lift" of Newton's law on the Wasserstein space.
(Indeed, the the wave function has a free unphysical
parameter, the constant phase shift).

@ None of the computations above are proved yet rigorously.

@ Some names (not complete) for the first part of the talk:
Ambrosio, Brenier, Cordero-Erausquin, Gigli, McCann, Otto,
Savare, Sturm, Villani

@ For the second part of the talk compare also theory of
'Stochastic Mechanics' by Nelson
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Concluding Remarks

@ The last theorem represents the Schrodinger equation as a
'symplectic lift" of Newton's law on the Wasserstein space.
(Indeed, the the wave function has a free unphysical
parameter, the constant phase shift).

@ None of the computations above are proved yet rigorously.

@ Some names (not complete) for the first part of the talk:
Ambrosio, Brenier, Cordero-Erausquin, Gigli, McCann, Otto,
Savare, Sturm, Villani

@ For the second part of the talk compare also theory of
'Stochastic Mechanics' by Nelson and to the old controversy
about de Broglie-Bohm ('pilot wave') theory:

Max von Renesse Schradinger Equation and Newton’s Law on (P(M), dy,)



	

