Pricing algorithm for swing options based on Fourier Cosine Expansions

Bowen Zhang¹ Cornelis W. Oosterlee ^{1,2}

¹Delft University of Technology, Delft, the Netherlands. ²CWI, Center for Mathematics and Computer Science, Amsterdam, the Netherlands

Bachelier World Congress, Toronto, 2010

Outline

- Details of the swing option
 - Contract details
 - Pricing details
- Fourier Cosine algorithm for swing options
 - Recovery time-the penalty time between two consecutive exercises-plays an important role.
- Numerical results of option contracts varying in recovery time and upper bound of exercise.

Contract details Pricing details

swing options

- Swing options give contract holders the right to modify amounts of future delivery of certain commodities, such as electricity or gas.
- We deal with an American style swing options which can be exercised at any time before expiry and more than once, with the following restrictions
 - Recovery time between two consecutive exercises (τ). With exercise amount D we have τ_D = C or τ_D = f(D)
 - Upper bound of exercise amount |D|: |D| < L

Contract details Pricing details

Payoff of swing option

Payoff of a swing option with varying S and D reads

$$\begin{split} \mathsf{g}(S,T,D) = & D \cdot \left(\mathsf{max}(S-\mathsf{K}_{\mathsf{a}},0) - \mathsf{max}(S-\mathsf{S}_{\mathsf{max}},0) \right. \\ & \left. + \operatorname{max}(\mathsf{K}_{\mathsf{d}}-\mathsf{S},0) - \operatorname{max}(\mathsf{S}_{\mathsf{min}}-\mathsf{S},0) \right), \end{split}$$

Figure: Example of a payoff of a swing option with $S_{min} = 20$, $K_d = 35$, $K_a = 45$, and $S_{max} = 80$, and S and D varying.

Contract details Pricing details

Pricing details

Recovery time $\tau_R(D)$ is assumed to be an increasing function of exercise amount D. The shortest recovery time is when we only exercise one amount of the swing option.

• If $T - t < \tau_R(1)$, it is impossible to exercise more than once before expiry. If profitable to exercise, then exercise at $D_{max} = L$ amount. Therefore we are dealing with an American type option which reads at each step

$$v(s,t) = max(g(s,t,L),c(s,t))$$

Contract details Pricing details

Pricing details

If T − t ≥ τ_R(1), there exists multiple exercise opportunities before expiry. Apart from the optimal exercise time we also need to find the optimal exercise amount at each time step:

$$v(s,t) = \max_{D}(max(g(s,t,D) + \phi_{D}^{'}(s,t),c(s,t)))$$

Here g(s, t, D) is the instantaneous profit obtained from the exercise of a swing option and ϕ'_D is the continuation value from $t + \tau_R(D)$.

Algorithm for $t : T - t < \tau_R(1)$ Algorithm for $t : T - t \ge \tau_R(1)$

Option pricing based on Fourier Cosine expansions

Truncating the infinite integration range of the Risk-Neutral formula

$$v(x,t_0) = e^{-r\Delta t} \int_a^b v(y,T)f(y|x)dy$$

The conditional density function of the underlying is approximated as follows:

$$f(y|x) \approx \frac{2}{b-a} \sum_{k=0}^{N-1} \operatorname{Re}(\varphi(\frac{k\pi}{b-a};x) \exp(-i\frac{ak\pi}{b-a})) \cos(k\pi \frac{y-a}{b-a}),$$

Replacing f(y|x) by its approximation and interchanging integration and summation, we obtain the COS algorithm for option pricing

$$v(x, t_0) = e^{-r\Delta t} \sum_{k=0}^{\prime N-1} Re(\phi(\frac{k\pi}{b-a}; x)e^{-ik\pi \frac{a}{b-a}})V_k$$

where V_k is the Fourier Cosine coefficient of option value v(y, T).

Algorithm for $t : T - t < \tau_R(1)$ Algorithm for $t : T - t \ge \tau_R(1)$

Pricing outline for t: $T - t < \tau_R(1)$

The swing option is equivalent to an American option, which is can be obtained from Bermudan option values with differnt numbers of exercise dates, i.e. a 4-point repeated Richardson extrapolation. Pricing algorithm

- Initialization: Compute $V_k(t_M)$ at $t_M = T$.
- ▶ Backward recursion: For $m = M 1, \dots, 1$, recover $V_k(t_m) = \frac{2}{b-a} \int_a^b v(x, t_m) \cos(k\pi \frac{x-a}{b-a}) dx$ from $V_k(t_{m+1})$, where $v(x, t_m) = max(g(x, t_m), c(x, t_m))$.

• Last step: $v(x, t_0) = e^{-r(t_1-t_0)} \sum_{k=0}^{N-1} Re(\phi(\frac{k\pi}{b-a}; x)e^{-ik\pi\frac{a}{b-a}})V_k(t_1)$

In our implementation we set x = log(s).

- - E - b

Algorithm for $t : T - t < \tau_R(1)$ Algorithm for $t : T - t \ge \tau_R(1)$

At expiry

At $t_{\mathcal{M}} = T$ option value v equals the payoff g and we have for the Fourier cosine coefficients of the swing option value:

$$W_k(t_{\mathcal{M}}) = G_k(a, ln(K_d), L) + G_k(ln(K_a), b, L),$$

where

$$G_k(x_1, x_2, L) = rac{2}{b-a} \int_{x_1}^{x_2} g(x, t_M, L) \cos(k\pi rac{x-a}{b-a}) dx$$

is the Fourier cosine coefficient of the swing option payoff which has analytic solution.

B b d B b

Algorithm for $t : T - t < \tau_R(1)$ Algorithm for $t : T - t \ge \tau_R(1)$

Backward Recursion

At each time step $t_m, m = M - 1, \cdots, 1$

$$V_k(t_m) = \frac{2}{b-a} \int_a^b v(x, t_m) \cos(k\pi \frac{x-a}{b-a}) dx$$

where $v(x, t_m) = max(g(x, t_m), c(x, t_m))$. We identify the regions where v = c and those where v = g and split V_k accordingly. By Newton's method we find the early exercise points where c = g. For swing options there are two early exercise points, x_m^d and x_m^a . $V_k(t_m)$ can be split as

$$V_k(t_m) = G_k(a, x_m^d, D) + C_k(x_m^d, x_m^a, t_m) + G_k(x_m^a, b, D),$$

where C_k and G_k are the Fourier cosine coefficients of the continuation value and swing option payoff.

Algorithm for $t : T - t < \tau_R(1)$ Algorithm for $t : T - t \ge \tau_R(1)$

Calculation of G_k and C_k

At each time step $t_m, m = M - 1, \cdots, 1$, we have

- G_k has analytic solution with computation complexity O(N).
- ► *C_k* can be rewritten as a matrix-vector product representation:

$$\mathbf{C}(x_1, x_2, t_m) = \frac{e^{-r\Delta t}}{\pi} \operatorname{Im}\left\{ (M_c + M_s) \mathbf{u} \right\},\,$$

For Lévy processes the matrices M_s and M_c have a Toeplitz and Hankel structure, respectively and C_k can be calculated with the help of the Fast Fourier Transform, with computation complexity $O(Nlog_2N)$. For other processes, C_k is calculated with computation complexity of $O(N^2)$.

Algorithm for $t : T - t < \tau_R(1)$ Algorithm for $t : T - t \ge \tau_R(1)$

Pricing algorithm for $t : T - t \ge \tau_R(1)$

In the interval $\{t : T - t > \tau_R(1)\}$ the swing option can be exercised more than once before expiry and recovery time plays an important role. In this case we have

$$v(x,t) = \max(\max_{D} g(x,t,D) + \phi_{D}^{t}(x,t), c(x,t))$$

It is an American-style option with recovery time and multiple exercise opportunities.

- ► Due to recovery time, the payoff also includes φ^t_D(x, t), the continuation value from t + τ_R(D).
- Due to multiple exercise opportunities, we take the maximum over the resulting payoff for all possible values of *D*, and the continuation value from the previous time step.

Algorithm for $t : T - t < \tau_R(1)$ Algorithm for $t : T - t \ge \tau_R(1)$

Backward Recursion

With

- A_D, D = 1, · · · , L is the regions in which exercising the swing option with D commodity units results in the highest profit g(x, t_m, D) + φ^{t_m}_D(x, t_m).
- A_c is the region in which c(x, t) is the maximum. In other words, with the commodity price in A_c , it is profitable not to exercise the swing option.

Then for $m = M - 1, \cdots, 1$,

$$V_{k}(t_{m}) = \frac{2}{b-a} \left(\int_{A_{c}} c(x, t_{m+1}) \cos(\frac{k\pi(x-a)}{b-a}) dx + \sum_{D=1}^{L} \int_{A_{D}} g(x, t_{m}, D) + \phi_{D}^{t_{m}}(x, t_{m}) \cos(\frac{k\pi(x-a)}{b-a}) dx \right)$$

And $v(x, t_0) = e^{-r(t_1 - t_0)} \sum_{k=0}^{N-1} Re(\phi(\frac{k\pi}{b-a}; x) e^{-ik\pi \frac{a}{b-a}}) V_k(t_1)$

Algorithm for $t : T - t < \tau_R(1)$ Algorithm for $t : T - t \ge \tau_R(1)$

Calculation of V_k

At each time step t_m , $m = M - 1, \cdots, 1$, $V_k(t_m)$ can be rewritten as:

$$V_k(t_m) = \frac{2}{b-a} \left(\int_{A_c} c(x, t_{m+1}) \cos(\frac{k\pi(x-a)}{b-a}) dx \right)$$
$$+ \sum_{D=1}^{L} \int_{A_D} g(x, t_m, D) \cos(\frac{k\pi(x-a)}{b-a}) dx$$
$$+ \sum_{D=1}^{L} \int_{A_D} \phi_D^{t_m}(x, t_m) \cos(\frac{k\pi(x-a)}{b-a}) dx$$
$$\triangleq V_c + V_g + V_\phi$$

▶ A_D , $D = 1, \cdots, L$, and A_c are determined by Newton's method.

- V_c and V_g are calculated the same way as G_k and C_k .
- V_φ is calculated similarly as G_c, but from V_k(t_m + τ_R(D)) instead of V_k(t_{m+1}). This implies we need to store intermediate values of V_k.

Algorithm for $t : T - t < \tau_R(1)$ Algorithm for $t : T - t \ge \tau_R(1)$

Constant recovery time

In this case additional profit is not connected to an extra penalty. We have either D = L or D = 0. Two early-exercise points x_m^d and x_m^a are to be determined, so that

$$c(x_m^d, t_m) = g(x_m^d, t_m, L) + \phi_L^{t_m}(x_m^d, t_m),$$

and

$$c(x_m^a, t_m) = g(x_m^a, t_m, L) + \phi_L^{t_m}(x_m^a, t_m),$$

And $V_k(t_m)$ is split into three parts,

$$V_k(t_m) = G_k(a, x_m^d, L) + C_k(x_m^d, x_m^a, t_m) + G_k(x_m^a, b, L).$$

Constant Recovery time Dynamic Recovery time

Numerical results

We discuss two types of recovery time functions:

- Constant recovery time: If D ≠ 0, we set τ_R(D, t) = ¹/₄. In other words, the option holder needs to wait three months between two consecutive swing actions, independent of the time point of exercise or the size D.
- State-dependent recovery time: We assume $\tau_R(D, t) = \frac{D}{12}$ which implies that if the option holder exercises the swing option with D units, he/she has to wait D months before the option can be exercised again.

In our numerical examples presented here, the underlying follows the CGMY model (exponential Lévy process) with Y = 1.5.

Convergence over M and estimation of American option

Two approximation methods are compared:

- Direct approximation: Bermudan-style options with $\mathcal{M} = N/2$.
- Richardson 4-point extrapolation technique.

$n = \log_2 N$	P(N/2)		Richardson	
	option value	CPU time	option value	CPU time
7	137.423	0.27	137.395	0.59
8	137.408	0.53	137.390	0.99
9	137.399	2.00	137.390	1.79
10	137.394	8.39	137.390	3.40
11	137.392	39.55	137.390	6.68
12	137.391	203.27	137.390	13.21

Table: Convergence over M and comparison between two approximation methods for American-style swing option, with t = T - 0.5, $\tau_R(D) = 0.25$, C = 1, G = 5, M = 5, Y = 1.5

Constant Recovery time Dynamic Recovery time

American style swing option value

Figure: American-style swing option values under the CGMY processes with constant recovery time, $\tau_R(D) = 0.25$.

Jumps are observed at T - t = 0.25, T - t = 0.5 and T - t = 0.75, where the maximum number of remaining exercise possibilities is reduced by 1.

Constant Recovery time Dynamic Recovery time

Swing contracts with varying flexibility

(a) Varying upper bound L (b) Varying recovery time $\tau_R(D)$

Figure: CGMY process, T - t = 1; Left: Different values for *L*, and fixed $\tau_R(D, t) = \frac{1}{12}D$; Right: Different Recovery time, and fixed L = 5.

- ▶ Higher values of *L* give rise to higher option values.
- Longer recovery time gives lower option prices

Constant Recovery time Dynamic Recovery time

The optimal exercise amount D_{opt}

Below is a figure of D_{opt} over different underlying prices, with $\tau_R(D) = \frac{1}{12}D$.

- As S goes beyond K_d and K_a, D_{opt} tends to increase, because in this region instantaneous profit g(x, t, D) tends to dominate in the payoff g(x, t, D) + φ^t_D(x, t).
- ▶ Between S = 20 and S = 25, D_{opt} = 0, since g(x, t, D) = 0 for all D > 0 in this interval.

Constant Recovery time Dynamic Recovery time

Convergence of the algorithm

With N the number of Fourier Cosine expansion terms, and L the upper bound of exercise amount,

	N	256	512
L=2	option price	136.8724	136.8724
	CPU time	0.1669	0.2466
L=5	option price	150.0041	150.0041
	CPU time	0.6505	1.1660
L=10	option price	199.6870	199.6870
	CPU time	2.4115	4.3819

- ▶ With N = 256 the swing option algorithm reaches basis point accuracy.
- ▶ The algorithm is flexible regarding the variation in parameter *L*.

Conclusions

- We presented an efficient pricing algorithm for swing options with early-exercise features, based on Fourier Cosine Expansions.
- It performs well for different swing contracts with varying flexibility in upper bounds of exercise amount and different recovery times.
- ▶ For Lévy processes the Fast Fourier Transform can be applied in the backward recursion procedure, which gives us Bermudan-style swing option prices accurate to one basis point in milli-seconds for constant recovery time, and in less than one, to three seconds for dynamic recovery time with different values of *L*.
- The Richardson 4-point extrapolation technique is efficient in pricing American-style swing options.