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Introduction
Towards jump-adapted schemes

Weak approximation of Lévy-driven SDEs

We are interested in numerical evaluation of
t
E[f(X1)], where X; :Xo+/ h(Xs—-)dZs, X eR"
0

where Z € R9 is a pure-jump Lévy process:

t t
Zy =yt + / / yN(dy, ds) —i—/ / yN(dy, ds)
0 Jy|<1 0 Jly|>1
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Discretization with constant time step

The Euler scheme with constant time step
Ry = X0+ h(XD)(Zia — Z0)

has the convergence rate (Protter and Talay '97)
|[E[f(X1)] — E[f(X{)]] < % but suffers from two difficulties

@ The increments of Z cannot usually be simulated in closed
form;

@ A large jump in Z between two discretization dates may lead
to a large discretization error.
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Jump-adapted discretization

A natural idea to solve both problems, due to Rubenthaler '03, is

@ Approximate Z with a compound Poisson process

t
Z; = 7€t+/ / yN(dy, ds), - 27—/ yv(dy).
0 Jlyl>e e<|y|<1

@ Apply the Euler scheme at every jump time of Z°.

The convergence rate may be computed in terms of expected
number of discretization dates, proportional to . = f\y\za v(dy).

This rate may range from very good to very bad (for Z of infinite
variation) because
@ The variance of small jumps may go to zero very slowly;

@ The drift 7. may explode as ¢ — 0.
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Taking into account the structure of Z

@ View the Lévy process between the jumps of Z¢ as a
deterministic ODE perturbed by noise (small jumps).

@ Approximate small jumps by Brownian motion (Asmussen and
Rosinski '’

01):
</Ot/||< yﬂ/(dy,ds)> =~ (Wts)ogtgl

0<t<1

where W*¢ is a d-dimensional BM with covariance
X :/ yiyjv(dy).
lyl<e

@ Solve the deterministic ODE explicitly, or with a higher-order
scheme, which is easy to construct.

@ Expand the solution to the SDE around the explicit solution of
the ODE
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Constructing the approximating process

@ Start by replacing the small jumps of Z with a Brownian

motion:

where W¥€ is a d-dimensional Brownian motion with
covariance matrix X°. This process can also be written as

t

(nt) + /t h(X(s)) dWe(s) + / h (X(s)) =ds,

X(Tfa)=X(T?—ch()?(Tf—))AZ(Tf), |

X1

X(t) =
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A scheme for multidimensional SDEs - b
Rates of convergence

Expanding the solution

o Consider a family of processes (Y *)o<q<1 defined by

t

Y(t) = )_<(77t)+oz/th(Y°‘(s)) dWE(s)—&-/ h(Y%(s))7eds

e Our idea is to replace the process X := Y1 with its first-order
Taylor approximation:

X(t) = YO(t) + ;)[Y“(t)\a_o.
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The approximation

The new approximation X is defined by

X(t) = Yo(t) + Ya(t), t>mn,
(

X(T7) = X(T; =)+ h(X(T;=)AZ(T?),
Yot) = X+ [ hYo(t)cds
Mt
t ah . t
Y, = — (Yo(s)) Yi{(s)y.ds h(Yo(s)) dWe(s
(0= [ g (606 Yilpos + | h((e) wi(s)

where we used the Einstein convention for summation over
repeated indices.
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A scheme for multidimensional SDEs - b
Rates of convergence

Computing Yp and Y;

@ Y is the solution of an ODE and can be computed, e.g., by a
4th order Runge-Kutta scheme.

e Conditionally on (77 );>1, the random vector Yi(t) is Gaussian

with mean zero, and we only need its terminal covariance.

@ Its covariance matrix Q(t) satisfies the linear equation
t
Q(t) = [ (Qs)M(s) + M*(s)QH(s) + N(s))ds
Nt

where M+ denotes the transpose of the matrix M and

y(e) = T and () = HOYG(OIE B (Yo(0)

@ In one dimension, the solution is Q(t) = h?(Y2)(t — n:).
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A scheme for multidimensional SDEs
Rates of convergence

The convergence rate

(Hy) feC" he C" f%) and h(K are bounded for 1 < k < n and
[ 22"v(dz) < oo.

(H.) fe C", he C" hY are bounded for 1 < k < n, f(K) have at
most polynomial growth for 1 < k < n and [ |z|*v(dz) < oo
for all kK > 1.

@ Assume (H3) or (H3). Then

EIF)—F ()] < € (”ze”(ufw +hel)+ [

A Iy|<e

!y\3V(dy))

o Assume (Hg) or (H}) and v(dy) = (1 + &(y))vo(dy), where
v is a symmetric measure and {(y) = O(y). Then

~ ye
ElF(R) — Foa)) < ¢ (IE [ wivtan).
Ae ly|<e



Constructing the approximation

A scheme for multidimensional SDEs
Rates of convergence

Worst-case bounds

For general Lévy measures,

1

E[f(X1) = f(X0)]] < o(A< 2),
and in the locally symmetric case,
E[F(X0) = F(XD)] < o(A).

For all known examples, the convergence rates are better.
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A scheme for multidimensional SDEs
Rates of convergence

Stable-like behavior and other examples

@ Assume that v has a density v(z) = ‘f‘(ﬁ)a with g bounded

near zero. Then
EF(5) — FO)]| < o=V ER)y,

and if the Lévy measure is symmetric near zero (CGMY),

- _2
[E[F(X1) = F(X1)]] < O(A: *).
@ The NIG process has a symmetric stable-like Lévy measure
with a =1
= |E[f(X) — F(X0)]| < O(1/A2)

@ In the VG model, the convergence is exponential:

e—2)\6

E[f(X1) — f(X0)]l < € N
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market models

@ The Libor market model (general case of BGM model)
describes joint arbitrage-free dynamics of a set of forward
interest rates.

@ Libor market models with jumps were considered by
Jamshidian '99, Glasserman and Kou '03, Eberlein and Ozkan
'05, Papapantoleon and Skovmand '10 and others.

e let ;=T1+(i—1)5,i=1,...,n+1 be a set of dates
called tenor dates. The Libor rate Li is the forward rate
defined at t for the period [T}, Ti11]:

6 \ Be(Tit1)
where B¢(T) is the price at t of a zero-coupon bond with
maturity T.
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Introducing jumps

Following Jamshidian '99, an arbitrage-free dynamics of n forward
Libors L}, ..., L7 can be constructed via the multi-dimensional SDE

L : . Lo
al :U’(t)dZt—/ o'()z | ] P L OL DR PRy
L, RY =i 1+0L

where Z is a d-dimensional martingale pure jump Lévy process
with Lévy measure v under the terminal measure Q and o'(t) are
deterministic volatility functions.

Terminal measure: martingale measure for which the last
zero-coupon bond B¢(Tpy1) is the numéraire.
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Technicalities: computing the coefficients

We are interested in computing the quantities of the form

n

C"—/Rda"z H (14 ajz) — 1| v(dz)

Jj=i+1
Assume first d = 1. Then
n
i ij i J+1—i i _
C'= E Ala /z v(dz), A’ = g Akipy -+ - Ak
j=i+1 i+1<kii1<--<k<n

The coefficients AY can be computed in polynomial time

An—l,n = a,

An—2.n _ anan_1 AT—2n=1 — an+ an—1

A"_3v" = apan—_1ap—2 An—3,n—1 = apadn_1+ an—1an—2 + apan_»o
An73,n72 = dpdp—1dn-—2
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Technicalities: computing the coefficients

Assume the number of factors is arbitrary (usually d =2 or d = 3).

Introduce the symmetric tensor of moments of v:
k
My = / zj, ...z v(dz)
Rd

AY also becomes a symmetric tensor.

The number of independent coefficients of a symmetric tensor of

order n on a vector space of dimension d is (d+g_1).
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Monte Carlo option pricing

@ The price of any asset divided by B;(T,+1) is a martingale
and in particular the price of an option which pays
H = h(LY,,..., L% ) at time Ty (e.g. swaption) is given by

.
ft] |

= By(Tps1)E [h(LlTl, ) [+ 6Lk)
@ The price of any such option can therefore be computed by
Monte Carlo using the Libor dynamics.

h(LYy,, ... L)

7rt(H) = Bt(TI‘H-l)E [ BTl(Tn+1)

i=1
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Numerical implementation

@ We consider a Libor market model with tenor dates
{5,6,7,8,9,10}, a one-dimensional driving Lévy process and
constant volatilities of all Libors (o/(t) = 1).

@ The initial values are fixed to 15% to emphasize the non-linear
effects.

e The differential equations for Yp(t) and (t) are solved
simultaneously by fourth order Runge Kutta.

@ The Lévy measure is

e M1 + e A1, g

¢ |X’1+a

with A1 =10, A_ =20 and « = 0.5, C = 1.5 (Case 1) or
a =1.8, C =0.01 (Case 2). Both cases correspond to
annualized standard deviation of about 24%.
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Sanity check: pricing a zero-coupon
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Ratio of estimated to theoretical zero coupon bond price in Case 1
(left) and Case 2 (right). The theoretical convergence rate is A ™*
(case 1) and A~11! (case 2). For comparison we also give results
of the 0-order scheme (without Brownian approximation, in blue).
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Pricing ATM receiver swaption
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Estimated price of an ATM receiver swaption with maturity 5 years

in Case 1 (left) and Case 2 (right).
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Execution times

Execution time for 100,000 paths

¢ 0-thorder

10 -1 0 1
10 0 Ir%gnsny

Execution times for the swaption example on a Plll PC without
any code optimization.
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Application to the Lévy Libor model

Modeling and managing financial risks
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