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Towards jump-adapted schemes

Weak approximation of Lévy-driven SDEs

We are interested in numerical evaluation of

E [f (X1)], where Xt = X0 +

∫ t

0
h(Xs−)dZs , X ∈ Rn

where Z ∈ Rd is a pure-jump Lévy process:

Zt = γt +

∫ t

0

∫
|y |≤1

yN̂(dy , ds) +

∫ t

0

∫
|y |>1

yN(dy , ds)
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Towards jump-adapted schemes

Discretization with constant time step

The Euler scheme with constant time step

X̂ n
i+1
n

= X̂ n
i
n

+ h(X̂ n
i
n

)(Z i+1
n
− Z i

n
)

has the convergence rate (Protter and Talay ’97)
|E [f (X1)]− E [f (X̂ n

1 )]| ≤ C
n but suffers from two difficulties

The increments of Z cannot usually be simulated in closed
form;

A large jump in Z between two discretization dates may lead
to a large discretization error.
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Towards jump-adapted schemes

Jump-adapted discretization

A natural idea to solve both problems, due to Rubenthaler ’03, is

Approximate Z with a compound Poisson process

Z ε
t := γεt +

∫ t

0

∫
|y |>ε

yN(dy , ds), γε = γ−
∫
ε<|y |≤1

yν(dy).

Apply the Euler scheme at every jump time of Z ε.

The convergence rate may be computed in terms of expected
number of discretization dates, proportional to λε =

∫
|y |≥ε ν(dy).

This rate may range from very good to very bad (for Z of infinite
variation) because

The variance of small jumps may go to zero very slowly;

The drift γε may explode as ε→ 0.
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Towards jump-adapted schemes

Taking into account the structure of Z

View the Lévy process between the jumps of Z ε as a
deterministic ODE perturbed by noise (small jumps).

Approximate small jumps by Brownian motion (Asmussen and
Rosinski ’01):(∫ t

0

∫
|z|≤ε

yN̂(dy , ds)

)
0≤t≤1

≈ (W ε
t )0≤t≤1

where W ε is a d-dimensional BM with covariance

Σε
ij =

∫
|y |≤ε

yiyjν(dy).

Solve the deterministic ODE explicitly, or with a higher-order
scheme, which is easy to construct.

Expand the solution to the SDE around the explicit solution of
the ODE
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Constructing the approximating process

Start by replacing the small jumps of Z with a Brownian
motion:

dX̄t = h(X̄t−){γεdt + dW ε
t + dZ ε

t },

where W ε is a d-dimensional Brownian motion with
covariance matrix Σε. This process can also be written as

X̄ (t) = X̄ (ηt) +

∫ t

ηt

h
(
X̄ (s)

)
dW ε(s) +

∫ t

ηt

h
(
X̄ (s)

)
γεds,

X̄ (T ε
i ) = X̄ (T ε

i −) + h(X̄ (T ε
i −))∆Z (T ε

i ),
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Expanding the solution

Consider a family of processes (Y α)0≤α≤1 defined by

Y α(t) = X̄ (ηt) +α

∫ t

ηt

h (Y α(s)) dW ε(s) +

∫ t

ηt

h (Y α(s)) γεds

Our idea is to replace the process X̄ := Y 1 with its first-order
Taylor approximation:

X̄ (t) ≈ Y 0(t) +
∂

∂α
Y α(t)|α=0.
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The approximation

The new approximation X̃ is defined by

X̃ (t) = Y0(t) + Y1(t), t > ηt ,

X̃ (T ε
i ) = X̃ (T ε

i −) + h(X̃ (T ε
i −))∆Z (T ε

i ),

Y0(t) = X̃ (ηt) +

∫ t

ηt

h(Y0(t))γεds

Y1(t) =

∫ t

ηt

∂h

∂xi
(Y0(s)) Y i

1(s)γεds +

∫ t

ηt

h (Y0(s)) dW ε(s)

where we used the Einstein convention for summation over
repeated indices.
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Computing Y0 and Y1

Y0 is the solution of an ODE and can be computed, e.g., by a
4th order Runge-Kutta scheme.

Conditionally on (T ε
i )i≥1, the random vector Y1(t) is Gaussian

with mean zero, and we only need its terminal covariance.

Its covariance matrix Ω(t) satisfies the linear equation

Ω(t) =

∫ t

ηt

(Ω(s)M(s) + M⊥(s)Ω⊥(s) + N(s))ds

where M⊥ denotes the transpose of the matrix M and

Mij(t) =
∂hik(Y0(t))

∂xj
γkε and N(t) = h(Y0(t))Σεh⊥(Y0(t)).

In one dimension, the solution is Ω(t) = Σεh2(Y 0
t )(t − ηt).
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Constructing the approximation
Rates of convergence

The convergence rate

(Hn) f ∈ Cn, h ∈ Cn f (k) and h(k) are bounded for 1 ≤ k ≤ n and∫
z2nν(dz) <∞.

(H′n) f ∈ Cn, h ∈ Cn, h(k) are bounded for 1 ≤ k ≤ n, f (k) have at
most polynomial growth for 1 ≤ k ≤ n and

∫
|z |kν(dz) <∞

for all k ≥ 1.

Assume (H3) or (H′3). Then

|E [f (X̂1)−f (X1)]| ≤ C

(
‖Σε‖
λε

(‖Σε‖+ |γε|) +

∫
|y |≤ε

|y |3ν(dy)

)
Assume (H4) or (H′4) and ν(dy) = (1 + ξ(y))ν0(dy), where
ν0 is a symmetric measure and ξ(y) = O(y). Then

|E [f (X̂1)− f (X1)]| ≤ C

(
‖Σε‖
λε

+

∫
|y |≤ε

|y |4ν(dy)

)
.
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Worst-case bounds

For general Lévy measures,

|E [f (X̂1)− f (X1)]| ≤ o(λ
− 1

2
ε ),

and in the locally symmetric case,

|E [f (X̂1)− f (X1)]| ≤ o(λ−1
ε ).

• For all known examples, the convergence rates are better.
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Stable-like behavior and other examples

Assume that ν has a density ν(z) = g(z)
|z|1+α with g bounded

near zero. Then

|E [f (X̂1)− f (X1)]| ≤ O(λ
(1− 3

α)∨(− 2
α)

ε ),

and if the Lévy measure is symmetric near zero (CGMY),

|E [f (X̂1)− f (X1)]| ≤ O(λ
− 2
α

ε ).

The NIG process has a symmetric stable-like Lévy measure
with α = 1

⇒ |E [f (X̂1)− f (X1)]| ≤ O(1/λ2
ε)

In the VG model, the convergence is exponential:

|E [f (X̂1)− f (X1)]| ≤ C
e−2λε

λε
.
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Libor market models

The Libor market model (general case of BGM model)
describes joint arbitrage-free dynamics of a set of forward
interest rates.

Libor market models with jumps were considered by
Jamshidian ’99, Glasserman and Kou ’03, Eberlein and Özkan
’05, Papapantoleon and Skovmand ’10 and others.

Let Ti = T1 + (i − 1)δ, i = 1, . . . , n + 1 be a set of dates
called tenor dates. The Libor rate Li

t is the forward rate
defined at t for the period [Ti ,Ti+1]:

Li
t =

1

δ

(
Bt(Ti )

Bt(Ti+1)
− 1

)
,

where Bt(T ) is the price at t of a zero-coupon bond with
maturity T .
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Introducing jumps

Following Jamshidian ’99, an arbitrage-free dynamics of n forward
Libors L1

t , . . . , L
n
t can be constructed via the multi-dimensional SDE

dLi
t

Li
t−

= σi (t)dZt −
∫
Rd

σi (t)z

 n∏
j=i+1

(
1 +

δLj
tσ

j(t)z

1 + δLj
t

)
− 1

 ν(dz)dt,

where Z is a d-dimensional martingale pure jump Lévy process
with Lévy measure ν under the terminal measure Q and σi (t) are
deterministic volatility functions.

Terminal measure: martingale measure for which the last
zero-coupon bond Bt(Tn+1) is the numéraire.
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Technicalities: computing the coefficients

We are interested in computing the quantities of the form

C i =

∫
Rd

σiz

 n∏
j=i+1

(1 + ajz)− 1

 ν(dz)

Assume first d = 1. Then

C i =
n∑

j=i+1

Aijσi
∫

z j+1−iν(dz), Aij =
∑

i+1≤ki+1<···<kj≤n
aki+1

. . . akj

The coefficients Aij can be computed in polynomial time

An−1,n = an

An−2,n = anan−1 An−2,n−1 = an + an−1

An−3,n = anan−1an−2 An−3,n−1 = anan−1 + an−1an−2 + anan−2

An−3,n−2 = anan−1an−2
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Technicalities: computing the coefficients

Assume the number of factors is arbitrary (usually d = 2 or d = 3).

Introduce the symmetric tensor of moments of ν:

Mk
i1,...,ik

=

∫
Rd

zi1 . . . zikν(dz)

Aij also becomes a symmetric tensor.

The number of independent coefficients of a symmetric tensor of
order n on a vector space of dimension d is

(d+n−1
n

)
.
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Monte Carlo option pricing

The price of any asset divided by Bt(Tn+1) is a martingale
and in particular the price of an option which pays
H = h(L1

T1
, . . . , Ln

T1
) at time T1 (e.g. swaption) is given by

πt(H) = Bt(Tn+1)E

[
h(L1

T1
, . . . , Ln

T1
)

BT1(Tn+1)

∣∣∣∣∣Ft

]

= Bt(Tn+1)E

[
h(L1

T1
, . . . , Ln

T1
)

n∏
i=1

(1 + δLi
T1

)

∣∣∣∣∣Ft

]
.

The price of any such option can therefore be computed by
Monte Carlo using the Libor dynamics.
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Numerical implementation

We consider a Libor market model with tenor dates
{5, 6, 7, 8, 9, 10}, a one-dimensional driving Lévy process and
constant volatilities of all Libors (σi (t) ≡ 1).

The initial values are fixed to 15% to emphasize the non-linear
effects.

The differential equations for Y0(t) and Ω(t) are solved
simultaneously by fourth order Runge Kutta.

The Lévy measure is

C
e−λ+x1x>0 + e−λ−|x |1x<0

|x |1+α

with λ+ = 10, λ− = 20 and α = 0.5, C = 1.5 (Case 1) or
α = 1.8, C = 0.01 (Case 2). Both cases correspond to
annualized standard deviation of about 24%.
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Sanity check: pricing a zero-coupon
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Ratio of estimated to theoretical zero coupon bond price in Case 1
(left) and Case 2 (right). The theoretical convergence rate is λ−4

(case 1) and λ−1.11 (case 2). For comparison we also give results
of the 0-order scheme (without Brownian approximation, in blue).
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Pricing ATM receiver swaption
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in Case 1 (left) and Case 2 (right).
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Execution times
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Execution times for the swaption example on a PIII PC without
any code optimization.
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	Introduction
	Towards jump-adapted schemes

	A scheme for multidimensional SDEs
	Constructing the approximation
	Rates of convergence

	Application to the Lévy Libor model
	Introduction
	Implementing the scheme
	Numerical illustration


