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Fields Institute Summer Workshop on Mathematics of Antimicrobial Resistance 
Lectures: July 8, 2010, Sessions 3 & 4 

David Fisman, MD MPH FRCPC 
Dalla Lana School of Public Health, University of Toronto 

 
Introduction (Recapitulation) 
 
The materials presented below usually form part of a short course, and follow a 
session during which students evaluate the so-called “SIR” (susceptible-infectious-
recovered) or Kermack-McKendrick model qualitatively.  I assume that most of you 
are familiar with that material…in short, we explore the concept of basic and 
effective reproductive numbers for infectious diseases (“R0” and “Re”, respectively), 
the relationship between Re and the critical number of susceptibles necessary for an 
epidemic to emerge, and the relationship between R0 and the proportion of the 
population that needs to be vaccinated (or naturally immune) to prevent epidemics 
if an infectious individual arrives in the population.  At this point in the course, we 
have also discussed the role that “regeneration” of susceptible individuals, through 
birth, migration or loss of immunity, plays in driving cyclic oscillations in the 
incidence of infectious diseases.   
 
Students, however, often wish to fit models to data.  However, many of you wish to 
develop simple models that describe clinical or public health challenges that you face 
in your hospital or agency.  In Part A of this exercise, we will discuss how SIS, SIR, and 
SIRS models can be created using data that may be easily accessible in the clinical or 
public health settings (or which may be publicly available via the Web).  In Part B of 
this exercise, we will evaluate a model by Marc Lipsitch that is based on the “SIS” 
model, and which can be used to gain intuition into challenges we currently face 
related to control of antimicrobial resistant organisms (ARO) in hospitals and in the 
community. 
 
Part A: Introduction to Model Parameterization Using Available Data 
 
2. Fitting an SIR Model Using Surveillance Data 
 
This practical is based on a course taught by D.F. and John Edmunds at meetings of 
the Society for Medical Decision Making a few years ago.  The idea here is to allow 
you to “get your hands dirty” trying to come up with estimates for some key model 
parameters based on data that may be available to you via public health 
surveillance, epidemic curves, or other sources.  We will focus for the most part on 
estimating R0: as we saw last week, once we know R0 we can back into estimates of 
the “force of infection” (the transmission coefficient (), at least by making some 
simplifying assumptions about the nature of the population we are modeling.  
 
2.1 Estimating R0 when Disease is Endemic 

 
The basic reproduction number, R0, has such an influence on the epidemiology of 
infectious diseases that there are many ways we can use observed patterns of 
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infection to estimate its value. We will be concentrating here on some of the most 
common techniques used for vaccine preventable infections.  As should be apparent 
by now, the host-pathogen relationship approximated by the SIR model is a dynamic 
system that tends to settle at (or oscillate around) an equilibrium.  Think back to our 
session yesterday where we showed that: 
 

Re = R0 x s* 
 
where s* was the fraction (as opposed to the number) of susceptible individuals 
when the disease is at equilibrium.  At equilibrium, Re = 1. 
 

2.1.1. Write out an expression for R0 based on s*. 
 
 
 
 
2.1.2. What data sources could you use to estimate s* for typical childhood 

infections, such as measles or chickenpox? 
 
 
2.2 Estimating R0 Using Age at Infection and Age-Seroprevalence Data 
 
A. Average Age at Infection 

 
It turns out that, in an SIR-type system that includes age structure (i.e., individuals 
transition between age groups, as well as S, I, and R compartments), there is a 
relationship between the average age at first infection (A), life expectancy (L), and 
R0.  Assuming a “rectangular” demography (relatively little death until older age 
groups, as opposed to the “triangular” demography seen in less-developed 
countries): 

 
R0 = L/A 

 
2.2.1. This relation is derived using calculus, but can you come up with an intuitive 

explanation for this relation? Hint: think of what a serological profile would 
look like if everyone was infected exactly at the average age at infection. 

  
 
There is a slightly less intuitive relationship for populations with type II (constant 
hazard) mortality as may be seen in low-income countries.  Such countries have a 
more “triangular” age distribution, and in this context R0 can be approximated as  
 

R0 = 1+L/A 
 
 
B. Force of Infection 
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If we have a constant force of infection () (rate at which susceptibles become 
infected) we can describe infection over time using an exponential hazard function, 
such that the rate of infection can be approximated as: 


= 1/A 

 
Not infrequently, we have age-specific estimates of susceptibility and immunity; we 
refer to these as age-seroprevalence data.  If we assume that a disease is at 
equilibrium (such that changes in disease incidence by age groups are a function of 
disease biology, rather than “cohort effects”) we can back into estimates of 

Suppose we have the following age-seroprevalence data (black dots).  The black 
curve represents a fitted exponential hazard function with  = 0.03.  We can also 
estimate hazards using the relation: 
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 = -ln((Sn)/( Sn-1))/t 
 
2.2.2. Use this relation to estimate FOI for this disease, using seroprevalence of 14% 

at age 6.  Assume that seroprevalence at birth is 0%. 
 
 
 
 
2.2.3. Based on the FOI you estimated above, what would R0 be in a “rectangular” 

population with a life expectancy of 75 years?  In a “triangular” population 
with a life-expectancy of 50 years? 

 
 
 
Note that the relation  = pcI can also be useful (where p = probability of 
transmission conditional on contact, and c = contact rate per unit time).  Suppose we 
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have an estimate of the prevalence of infection in a population at any given time, 
and we estimate FOI from age-seroprevalence data.  This allows us to estimate pc as 
a composite quantity. 
 
Our approach above assumes that the force of infection in a given population is 
constant over time, but of course this is unlikely to be the case, for both behavioural 
and biological reasons.  We can derive age-specific estimates of l, and use these to 
evaluate “who acquired infection from whom” using matrix approaches, but such 
approaches are beyond the scope of what we will be able to cover today. 
 
 
2.3. Estimating R0 in Systems without Long-Lasting Immunity 
 
Thus far, we have discussed models where recovery from infection confers long-
lasting immunity, but there are many infectious diseases for which infection confers 
either short-term or effectively no immunity, and these include a number of 
common (or formerly common) pathogens such as S. pneumoniae, H. influenzae 
serogroup B (Hib), Chlamydia trachomatis, and N. gonorrhoeae.  We can create an 
“SIS” model, in which the I compartment would change at a rate: 
 

dI/dt = +SI-()I
 
Here we are letting “S” and “I” represent the proportion, rather than the number, of 
individuals susceptible or infected at a given point in time.  At equilibrium, the 
number of individuals moving into the infected state equals the number moving out, 
so: 

dI/dt = S*I*-()I* = 0 
 

S*=() 
 

() = 1/S* 
 

It turns out that the left hand side of this equation is equivalent to R0.  Since S* = (1-
I*), we can rewrite this as: 
 

R0 = 1/(1-I*) 
 
Where I*, is equilibrium prevalence of infection. 
 

2.3.1. It turns out that asymptomatic carriage of Neisseria meningitidis 
occurs in about 10% of the population every year.  What is the 
approximate R0 for N. meningitidis? 
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A recent DLSPH graduate (Laura Kinlin) published a manuscript showing that 
serogroup C meningococcal disease has almost disappeared in Ontario with the 
introduction of a conjugate vaccine that prevents meningococcal carriage (Kinlin 
L.M., Rapid identification of herd effects with the introduction of serogroup C 
meningococcal conjugate vaccine in Ontario, Canada, 2000-2006.  Vaccine 2009; 
27(11):1735-40).  The drop in cases appeared very shortly after the vaccine was 
introduced, and despite the fact only a small proportion of the population had been 
vaccinated against serogroup C meningococcus.  Think back to our last session: we 
derived the following relation for critical fraction to vaccinate for herd immunity: 

 
Pc = 1- (1/R0) 

 
2.3.2. Based on your estimate for R0 in (2.3.1), above, what fraction of the Ontario 

population would have to be vaccinated for herd immunity against N. 
meningitidis.  

 
 
2.4. Estimating R in Systems with Periodic Oscillation 
 
Last session we discussed the fact that SIR systems will oscillate around s* as the 
disease reaches an endemic equilibrium in the population.  What we saw in our SIR 
model with births and deaths was a gradual increase in the interval between 
epidemics, and a gradual decrease in the total number of cases in each successive 
epidemic.  However, the time between the first and second epidemic spikes in this 
system approximates the “intrinsic oscillatory period”.  The background reading for 
this session included a short paper by Jonathan Dushoff and colleagues (Dushoff J, et 
al.  Dynamical resonance can account for seasonality of influenza epidemics.  PNAS 
2004;101;16915-16916).  In this article, the authors point out that when a “forcing 
factor” (e.g., changes in transmission due to seasonally varying meteorological 
factors or behaviors) occurs at the same frequency as the “internal oscillatory 
frequency”, we get sustained oscillation in disease incidence.  Dushoff and 
colleagues note that the “internal oscillatory period” for an infectious disease (T) is: 
 

T = 2(DL/(R0-1))1/2 
 
Where D is duration of disease, and L is life expectancy (or, for diseases with 
transient immunity, time until immunity is lost). 
 
Rearranging this expression we get: 
 

R0 = (42DL/T2)+1 
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2.4.1. For pertussis, D is around 2 weeks; L is around 10 years.  Outbreaks of 
pertussis occur approximately every 3 years.  Estimate the 
approximate R0 for pertussis based on these data. 

 
 
 
 
2.4.2. Consider the statement above that L represents either life expectancy 

in the population or duration of immunity.  Why are these 
interchangeable from the point of view of incidence of infection in a 
SIR model? 

 
 
 
 

2.4.3. What does the above equation tell you about the impact of duration 
of immunity on estimates of R0 for a given interepidemic period?  
Does this make sense?  Can you explain this relation in words (try to 
include the concept of s* and Re in your explanation)?  Try to work 
through the same exercise for D. 

 
 
 
 

2.4.4. Would a disease with an interepidemic period of 8 years be estimated 
to have a higher or lower value for R0 than that estimated for 
pertussis, above? 

 
 
3. Estimation of R0 from Epidemic Curves: Example from SARS 
 
An extremely important and relatively straightforward means of estimating R0 comes 
from evaluation of epidemic curves.  This technique was used in real-time to 
estimate the R0 for SARS and such techniques would be used in the event of an 
influenza pandemic.  Open up the spreadsheet Session2.xls, and make sure that you 
are on the worksheet called “SARS”. 
 
The spreadsheet is organized as follows: there are 2 parameters in the top left 
corner that refer to the average incubation period, and the average duration of 
infection. We will assume that these are known (i.e. we will not be estimating them). 
We will also assume a constant infectious period and that each infected individual is 
equally infectious throughout their infectious period (this probably isn’t true, but it 
will make the calculations simpler). Thus, if the incubation period is about 5 days, 
and the duration of infection is 14 days then the average time from one generation 
of infections to the next is 12 days (5+14/2). At the very beginning of such an 
epidemic we can neglect to keep track of the depletion in susceptibles as the 
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epidemic progresses, as the number of individuals in the population that are not 
susceptible will be negligible. Under these circumstances a single case will generate: 
 

 R0 cases after the first generation  
 R0

2 cases in the 2 generation 
 R0

3 cases in the 3 generation 
 Etc., etc. 

 
So the number of cases t generations after the initial case (which we will call It) is: 
 

It = R0
t 

 
And the cumulative number of cases observed up to generation t is simply: 
 

 It 
 
We can utilize this to estimate R0 from the epidemic curve. In the example given we 
use “least squares” estimates to derive a best guess of R0. That is, we choose a value 
of R0, then compare the sum of the squared differences between the model and the 
data. We keep choosing values of R0 until we can minimise the sum of the squared 
differences between the data and the model. 
 
3.1. Change the values of R0 and see what happens to sum of the squared 

differences. Also observe how this affects the graph (which compares the model 
results with the data). Try and choose a value of R0 that minimizes the squared 
differences between the model and data. 

 
 
3.2.  Excel has an add-in program called Solver, which will run through lots of 

values of a cell and choose the one that fulfils certain criteria (either maximizes a 
value in another cell, or minimizes it, or sets it to zero). To get Excel to do this we 
must first run Solver tell it which cell it has to change, and which one it is trying 
to minimize (or maximize, or set to zero). In our case we want to minimize cell 
G16 (sum of the squared differences) by changing cell I18 (R0).   

 
Run solver: Tools menu then Solver. If Solver is not installed on your computer, 
then go to Tools | Add-ins, then tick the “Solver Add-in” option. If this still 
doesn’t work, then you should share with someone who has “Solver” working. 
Compare your value (from doing it manually) to that obtained by Solver. 

 
3.2.1. What do you think of the fit of the model to the data? How could you 

improve this fit?  Why do you think that, for an R0 value that provides 
a reasonable fit to the first few weeks of SARS data, later model 
estimates tend to be much higher than the observed case numbers 
(hint: think about the definition of R0 as opposed to Re? 
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3.2.2. Were we right to be worried about SARS? 
 
 
 
3.2.3. What is the relationship between the inter-generation period and our 

estimate of R0? 
 
 
 
3.3. A paper by Lipsitch et al1., on the approximate value of R0 for SARS in 

Singapore, describes the following relation between R0, generation time, latent 
period, and “force of infection” (estimated using the methods described in 
section 2.2, above), as: 

 
R0= 1+ v+f(1-f)(v)2 

 
Where  is FOI, f is the latent period (time period between infection and 
infectiousness), and v is the generation time (or serial interval, as it is called in 
the Lipsitch paper). 

 
The Impact of Control 
 
3.4. You may have noted that there is a tendency for a model that is well-fitted to 

earlier case counts to overshoot later case counts.  As noted above, this in part 
reflects the fact that individuals don’t tend to stand idly by when an epidemic is 
noted: public health authorities may institute control measures, concerned 
citizens may change their behaviour, alcohol-based hand sanitizer use may go up, 
and so on.  We can add a “discount factor” to our simple model to reflect the fact 
that R is “deflated” through behaviours and interventions as time goes on.  This 
simple fix changes the number of new cases in each generation to: 

 
It = R0

t/(1+d)t 

 
Here, d is simply a discount factor with a value between 0 and 1.  Run Solver again, 
but this time minimize cell G16 (sum of the squared differences) by changing both 
cell I18 (R0) and I19 (d).   
 
3.4.1. What happens to model fit when d is included in the model? 
 
3.4.2. What happens to the baseline value for R0 when d is included in the model? 
 
3.4.3. Try to articulate, in words, the difference between the model you fit without 

d and that fit with d. 
                                                
1 Lipsitch M, et al., Transmission Dynamics and Control of Severe Acute Respiratory Syndrome.  Science 
2003; 300: 1966-70. 
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4. The Richards Growth Model 
 

The Richards growth model is a type of logistic model first described in the 
1950s and intended for application to biological processes.  Professor Ying Hsieh has 
investigated the application of the model to infectious diseases2.  The model has 
some attractive properties; in particular, it can be fit to the kind of epidemic curves 
that are commonly publicly available on the web during outbreaks, it can be used to 
project the final epidemic size while the outbreak is still in progress, and it can also 
be used to identify “inflection points” (time points when epidemic growth moves 
from accelerating growth to decelerating growth). 
 
4.1 The basic model describes the number of infections in some generation (t) as: 
 

I(t) = K/[1+e(-r(t-tm))]1/a 
 

Here, r is the per capita growth rate of the infected population; K is the carrying 
capacity for total infections (i.e., the final epidemic size); and a is the exponent of 
deviation from the standard logistic curve (which basically defines how steep the 
logistic curve is).  The quantity tm is a parameter related to the “turning point” of the 
epidemic, which is basically the time point at which growth transitions from 
accelerating growth to decelerating growth (and which would be analogous to the 
time point where Re = 1 in an SIR model); it is possible to back into an expression for 
the turning point via the relation: 
 

tm = ti + ln(a)/r 
 
Thus tm equals ti if a = 1, ti can be calculated as tm-ln(a)/r for values of a close to 1. 
A second useful property of this model involves calculation of R, which is exp(rT) 
(with T = the generation time or time interval between succeeding generations of 
cases.  T is often approximated as the latent period + ½ the infectious period). 
 
4.1.1. Return to the spreadsheet and click on the tab labelled “SARS Richards”.  

You’ll see a table that looks very similar to that we used to fit our last model.  
However, at the right side of the data table, there is a smaller table labelled 
“Richards parameters”.  Try playing with the values for tm, r, a, and K and see 
what happens to model projections (red line). 

 
4.1.2. Now use Solver again.  Ask Solver to minimize the sum of squares (F17) by 

changing the values of cells I8:I11.  What is the sum of squares difference 
here, relative to what you obtained with the “discounted” model on the last 
worksheet? 

 
4.1.3. What is the final epidemic size projected by the model?  Does this match the 

observed data? 
                                                
2 You can find a good introductory reference at this url: 
http://www.cdc.gov/ncidod/eid/vol12no01/05-0396.htm.  The citation is Hsieh YS, Cheng YS.  Real-
time forecast of multiphase outbreak.  Emerging Infectious Diseases 2006. 
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4.1.4. The turning point for the epidemic is approximated in cell I13 (and is 

presented in days rather than generations in order to match the X-axis scale 
on the graph).  This point is represented as a blue “X” on the X-axis of the 
graph.  Recall that the change from R > 1 to R < 1 can be identified on a 
standard epidemic curve (incident cases per unit time) as the point where the 
curve peaks.  This corresponds to the transition from accelerating growth to 
decelerating growth of the epidemic.  Scroll down on the worksheet…you 
should see an epidemic curve there.  Does the turning point estimated by the 
Richards model fall where you expected?  Why or why not? 

 
4.1.5. As noted above, R0 can be approximated from the Richards model as R0 as 

exp(rT) where T = generation time.  This model is actually parameterized 
using single generations as time units, so r = R0.  What is the best-fit value for 
R0 in this model.  How does it differ from prior estimates derived during this 
session.  Is it a true “R0”? 

 
 
Part B: A Simple Mathematical Model of Antimicrobial Resistance 
 
1. A Simple Resistance Model 
 
This section is based (loosely) on a (simplified) version of the model published by 
Marc Lipsitch, Carl Bergstrom, and Bruce Levin in Proceedings of the National 
Academy of Sciences, 2000 (PNAS 2000; 97(4): 1938-43), which we will post on the 
Workshop website.  Marc alluded to this paper, which was really a landmark, in his 
lecture to us on Monday. 
 
Notation alert: if you’re like me, you may find that your brain has a tough time 
switching gears in terms of the arbitrary state names in Marc’s model: here, X 
represents those susceptible to colonization/infection with the microbe of interest, 
while S represents infection with a susceptible strain of the microbe, and R 
represents infection with an antibiotic resistant strain.  To avoid further confusion, I 
am going to leave this notation as is!  So: X = suxsceptible, S = colonized with 
susceptible microbe and R = colonized with resistant strain!  
 
We are going to work with a simplified version of this model; I have drawn the model 
compartments below (note that our model corresponds to only the lower half of the 
paper’s Figure 1B, as all individuals in our population can be treated).  Individuals 
enter the population either uncolonized with the microbe of interest, or colonized 
with a susceptible strain (in other words, we are assuming that resistant microbes 
are only acquired in the closed world of the hospital, the long-term care facility, the 
daycare, or whatever we are trying to represent with this simple model). 
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5.1 What are a few of the assumptions we are making in this model?  Are they 

realistic?  Do you think this model can provide any valuable insights without 
being more realistic (no right or wrong answer to the latter question, but 
perhaps a good time to think about what we are trying to achieve via 
modeling)? 

 
5.2 Let’s call our total population size N, where N = S + X + R.  Now that we have 

described allowed transitions in the model, let’s add some parameters (the 
rates at which individuals flow between compartments).  We will define our 
parameters as: 

 
a. mu (or the Greek letter ) = the rate at which individuals move in and 

out of the population.  You can think of this as the admission or 
discharge rate in a hospital, for example.  At steady state, the 
admission rate = the discharge rate. 

b. m = the equilibrium prevalence of colonization/infection in the 
community. 

c. beta (the Greek letter ) = the probability of transmission x the 
contact rate (we called this “pc” in our last exercise). 

d. cf = fitness cost associated with resistance.  This is the proportionate 
reduction in  associated with the ability of the bacterium to 
withstand infection with antibiotic #1.  

e. gamma (the Greek letter ) = 1/(duration of colonization or infection), 
or the rate that colonization or infection is lost in the absence of 
treatment. 

f. t1 (1 in the Lipsitch paper) = the rate at which infected individuals 
are exposed to antibiotic #1.  This antibiotic eradicates S type 
infections but not R type infections. 
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g.  t2 (2 in the Lipsitch paper) = the rate at which infected individuals 
are exposed to antibiotic #2.   Both strains are susceptible to this 
antibiotic. 

 
5.2.1. Now let’s try to describe movement between model compartments 

using the parameters described above.  Let’s start with individuals 
susceptible to infection (X).  Write out expressions for the number of 
individuals who move in to this group as a result of hospital 
admission, and the number of individuals who move out of this group 
due to hospital discharge, per unit time.  Write these expressions on 
the appropriate arrows in the figure above (and feel free to crib from 
the Lipsitch paper if you need a bit of help getting started): 

 
 
 
 
 

 Now write expressions for the number of individuals who move out of 
the X compartment per unit time as a result of contact with 
individuals in the S and R compartments (note that these expressions 
should look very similar (but cf will be present in only one of them!).  
Again, write these expressions on the appropriate arrows above. 

 
 
 
 
 
 Lastly, write out the expressions for the rate at which 

infected/colonized individuals return to the X compartment following 
either treatment or natural clearance of the microbe.  Again, these 
two expressions should look similar (and should be written on the 
appropriate arrows above, yet again). 

 
 
 
 
 

5.2.2. Now sum up the three groups of expressions you have written down 
in response to the questions above.  The sum of these expressions is 
dX/dt, or the rate of change in the X per time increment. 

 
 
dX/dt =  

 
 

5.2.3. Can you perform the same exercise for dS/dt and dR/dt?  Again, write 
out the expressions that describe flow into and out of these 
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compartments, and write them in the appropriate place on the figure 
above.  Sum them up for both states and write the formulae for dS/dt 
and dR/dt below: 

 
 
 

dR/dt = 
 
 

dS/dt =  
 

 
 
 
6. Numerical Example 
 
Click on the worksheet entitled “abx model”.  You will see several rows of parameter 
values on a yellow background; these correspond to the model parameters listed in 
section 5, above.  Below the parameter values, on a green background, are the initial 
conditions of the hospital population; the way the model is set up, there is a single 
case of antibiotic resistant infection in the population. 
 

6.1 Look at the initial prevalence of colonization/infection.  Ideally, the 
prevalence (green curve) you see on the bottom graph should match the 
value for m.  Try changing the value of m: what happens?  What level does 
prevalence of infection settle out at over time?  What happens to the 
prevalence of resistance (bottom graph, orange curve) over time? 

 
6.2 Set prevalence back to 0.30.  Now change the initial number of individuals 

with resistant infection to 150.  What happens to prevalence over time?  
What happens to the proportion of individuals with resistant infection over 
time?  Given that all individuals entering the population have susceptible 
infections, and the individuals with resistant infection at baseline are long 
gone, where do the new resistant infections come from? 

 
6.3 Keep the number of individuals with resistant infection at baseline high.  Now 

turn your attention to the value for cf (fitness cost) which has been set to 
zero.  Change this value to 0.01.  This will result in the value of for 
individuals in the R class being reduced by 1% (i.e., 99% of the value for 
individuals in the S class).  Now what happens to the number of individuals in 
the R group over time?  Try experimenting with different values for cf?  How 
do these affect prevalence of resistance over time?  What happens if you use 
a negative value for cf (in other words, resistant strains are more 
transmissible than susceptible strains over time)? 

 
Note About “Dynamic Equilibria” 
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You may have noticed above that when there is no fitness cost associated with 
resistance, the proportion of individuals in the R state stay approximately where 
they are at baseline (on the time scale we are using here; it is true that this 
proportion will drop gradually on a longer time scale due to importation of 
individuals in only the S and X classes).  We refer to this type of situation as a 
“dynamic (because people are coming and going) equilibrium”.  When a fitness cost 
is added, in the absence of selective pressure from antibiotic therapy, the proportion 
of individuals in R drops from its initial value, and settles at or near zero.  Thus in the 
presence of a fitness cost, an equilibrium value for R is zero, but in the absence of 
such a cost, an equilibrium value is whatever R is at baseline.  In the presence of a 
“negative” fitness cost (that is, the resistant strain is more transmissible than the 
susceptible strain) we get almost total replacement of susceptibles by resistant 
infections, which assume the equilibrium prevalence previously occupied by 
susceptibles (or slightly more than that equilibrium prevalence due to slightly higher 
). 
 
7. Fitness and Selective Pressure 
 
7.1. Set cf back to zero, and set the initial number of individuals in the R state back 

to 1.  Now add treatment with antibiotic #1 by changing t1 to 1.  Remember 
that antibiotic #1 is the agent to which class S is susceptible, but class R is 
resistant.  What happens to the proportion of resistant strains now?  What 
happens to the prevalence of infection overall (S+R) over time? 

 
 
 
7.2. Without changing the proportion of individuals treated with antibiotic #1, 

add a fitness cost for resistance, by changing cf to 0.02.  What happens to the 
prevalence of infection and resistant infection?  What happens to the 
proportion of infections caused by R strains? 

 
 
 
7.3. Try changing cf  and the rate of treatment with antibiotic #1 in parallel.  What 

is the relationship between these two parameters and the prevalence of 
resistant infection?  As cf  increases, what do you need in order to maintain 
resistant infections at a high level? 

 
 
 
7.4. You have the option of adding a second antibiotic treatment (t2).  Do so now.  

What happens to prevalence of infection as you increase the rate of 
treatment with this second agent?  What happens to the proportion of 
strains resistant to antibiotic 1? 
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7.5. In the original manuscript by Lipsitch and colleagues, the model was 
structured so that individuals’ treatment histories could be tracked.  The 
authors pointed out that, paradoxically, increased use of antibiotic #2 was 
associated with a decline in the prevalence of resistant infections, but 
exposure to antibiotic #2 increased the risk of individuals acquiring resistant 
infection.  Can you reconcile these two findings?  Why is this an important 
insight for those interested in a nuanced interpretation of the epidemiologic 
literature related to antibiotic resistance?  (Hint: how would a case-control 
study of risk factors for antibiotic resistance be performed?)3 

 
 
 
8. More About Dynamic Equilibria 
 
8.1. As you saw above in Section 2.3, it is possible to estimate numerical values 

for the number of individuals in a given class at equilibrium by setting the 
differential equations that characterize the system to zero, and solving for values 
in terms of model parameters; this involves relatively straightforward algebra but 
nonetheless is beyond the scope of what we hope to achieve this morning.  
However, turning back to the manuscript by Lipsitch and colleagues, we see that 
they used this approach to identify non-zero equilibrium conditions for resistant 
bacteria in the population, under different degrees of ecological pressure from 
antibiotics 1 and 2, in the special case where there is no fitness cost to 
resistance.  In the manuscript, R will remain > 0 where: 

 
R0 > 1/(1-m) 

 
Note that this is the R0 for the resistant strain; recall that m is the probability of 
colonization with the susceptible strain among those admitted to the institution, 
and is the admission/discharge rate for a population of fixed size. 
 

8.1.1. Click on the worksheet entitled “equilibrium”.  You will see yellow cells with 
values for m and and green cells with values for R0 > 1.  You will also see a 
graph with values for R0 and 1 plotted against each other. 

 
8.1.1.1.  Qualitatively, what happens to 1 necessary for persistence as 

the R0 for resistant strains increases?  Is this a linear relationship?  
Why or why not?  What does this tell you about the potential 
contribution of transmissibility of a given strain to our ability to 
control antibiotic resistance via antibiotic stewardship? 

 

                                                
3 If you are interested in exploring this issue further, consider reading a classic paper by (ex-pat 
Canadian) Anthony D. Harris of University of Maryland on control selection in case-control studies of 
antimicrobial resistance.  The issues discussed are not identical, but are closely related.  See: Harris 
AD, Karchmer TB, Carmeli Y, Samore MH. Methodological principles of case-control studies that 
analyzed risk factors for antibiotic resistance: a systematic review. Clin Infect Dis. 2001; 32(7):1055-
61. 
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8.1.1.2.  Manipulate the values for m and   What happens to the 

scale on the Y-axis as you increase m?  What does this tell you about 
the role that normal “commensal” flora play in limiting the 
transmission of ARO?  How is this effect diminished as the rate of 
exposure to antibiotic #1 increases? 

 
 
 

8.1.1.3. Repeat this exercise, changing the value of What is the 
relationship between  and the threshold 1 for a given value of R0?  
What does this suggest about the relative importance of emergency 
rooms and long-term care facilities or rehab centers in the emergence 
of nosocomial AROs?  Can you explain this effect in words?  (Hint: 
given that individuals are admitted in either the S or X state, what 
needs to happen for them to transition to the R state?). 


