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Gaussian Process Regression: Model

We observe n training cases (x1, y1), ..., (xn, yn) where xi is a vector of
inputs of length p, and yi is the corresponding scalar response, which
we assume is a function of the inputs plus some noise:

yi = f(xi) + εi

where εi
iid∼ N(0, σ2)

In a Gaussian Process Regression model, the prior mean of the
function f is 0, and the covariance of the response is

Cov(yi, yj) = k(xi, xj) + σ2δij



Gaussian Process Regression: Covariance Function

Any covariance function that leads to non-negative definite covariance
matrices is allowed, such as the squared exponential:

k(xi, xj) = η2 exp(−β2||xi − xj ||2)

η, β are unknown parameters that are estimated from the data.

Illustration of GP data with different hyper-parameter values:
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Gaussian Process Regression: Prediction

We wish to predict the response y∗, for a test case x∗ based on the
training cases.The predictive distribution for the response y∗ is
Gaussian:

E[y∗|y] = kTC−1y

V ar[y∗|y] = v − kTC−1k

where C is the covariance matrix for the training responses, k is the
vector of covariances between y∗ and each of yi, and v is the prior
variance of y∗, [i.e. Cov(y∗, y∗)].

To do this in the Bayesian framework, we obtain a random sample
from the posterior density for the hyper-parameter θ:

π(θ|y) ∝ (2π)−
n
2 det(C)−1 exp

(
−1

2
yTC−1y

)
π(θ)

where π(θ) is the prior for θ.



Complexity for the GP Regression Model

The posterior density is

π(θ|y) ∝ (2π)−
n
2 det(C)−1 exp

(
−1

2
yTC−1y

)
π(θ)

The time needed to perform the following major computations are
(asymptotically, with an implementation-specific constant coefficient):

C pn2

det(C) n3

C−1 n3

yTC−1y n2

In practice we compute C (pn2), and the Cholesky decomposition of
C (n3), then we can cheaply obtain det(C) and yTC−1y.



Markov Chain Monte Carlo Methods

We construct a ergodic Markov Chain with transition T (x′|x) which
leaves the target distribution π(x) invariant, i.e.∫

π(x)T (x′|x)dx = π(x′)

Metropolis algorithm: propose to move from x to x∗ (according to a
proposal distribution S(x∗|x)), accept the proposal with probability
min[1, π(x∗)/π(x)]. This satisfies the detailed balance condition

π(x)T (x′|x) = π(x′)T (x|x′)

and thus the chain (called reversible) will leave the target distribution
π invariant.



MCMC with Temporary Mapping

We can combine three stochastic mappings T̂ , T̄ and Ť to form the
transition T (x′|x), as follows:

x
T̂−→ y

T̄−→ y′
Ť−→ x′

where x ∈ X is the original sample space and y ∈ Y is a temporary
space.
To leave the target distribution π invariant these mappings have to
satisfy ∫

π(x)T̂ (y|x)dx = ρ(y)∫
ρ(y)T̄ (y′|y)dy = ρ(y′)∫

ρ(y′)Ť (x′|y′)dy′ = π(x′)



Mapping to a Discretizing Chain

Suppose we have a Markov Chain which leaves a distribution π∗

invariant. We can map to a space of realizations of such a chain. The
current state x is mapped to a chain with one time step (whose value
is x) ‘marked’.
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We don’t actually compute everything beforehand, but simulate new
states (and save them for future re-use) when needed.



Mapping to a Discretizing Chain - Continued

We then attempt to “move” the marker along the chain to another
state (whose value is x′), with acceptance probability

min[1, π(x′)/π∗(x′)
π(x)/π∗(x) ]. We can do multiple such updates in this space

before mapping back to the original space.
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(Solid line segments are the updates that are actually simulated,
while the dashed segments are not).



Approximation: Dimension Reduction

There are mainly two classes of approximation methods. One class of
approximations is based on reducing the dimension of the data.

I Subset of data (SoD): π∗ is the “posterior” given only a subset
(of m observations) of (x1, y1), ..., (xn, yn). Need time
proportional to pm2 to compute C∗, and m3 to invert C∗.

I Linear combination of responses: Let ỹ = Ay where A is of rank
m. ỹ is also Gaussian, with lower dimension. π∗ is the posterior
based on the covariance matrix for ỹ, C̃ = ACAT , of rank m.

I Others: SoR, Bayesian Committe Machine, etc...



Approximation: Diagonal Plus Low Rank

The other class is based on approximating the covariance matrix C by
the sum of a diagonal matrix and a matrix of low rank.

C is usually of the form σ2I + C0, where C0 is non-negative definite.
If C0 can be approximated by some lower rank matrix Ĉ0, then with
the matrix inversion lemma and the matrix determinant lemma:

(D + UWV T )−1 = D−1 −D−1U(W−1 + V TD−1U)−1V TD−1

det(D + UWV T ) = det(W−1 + V TD−1U) det(W ) det(D)

the computation can be reduced. Thus we can approximate the
likelihood by substitute C with Ĉ = Ĉ0 + σ2I in the posterior:

(2π)−
n
2 det(Ĉ)−1 exp

(
−1

2
yT Ĉ−1y

)



Approximation: Diagonal Plus Low Rank - Continued

I Eigen-method: Ĉ = σ2I +BΛmB
T , where Λm is the diagonal

matrix with eigenvalues λ1 ≥ λ2, ...,≥ λm of C on its diagonal,
and B is an n×m matrix whose columns are the corresponding
orthonormal eigenvectors. Need to compute C (pn2) and the first
m eigenvalues and eigenvectors of C (mn2, with a large constant
factor).

I Nyström methods: Ĉ = σ2I + C0
(n,m)[C

0
(m,m)]

−1C0
(m,n) where

C0
(n,m) is a n×m matrix, whose m columns are m randomly

selected columns from C0. Need to compute C0
(n,m) (pmn), then

find the Cholesky decomposition of some m×m matrix, (m3).



Example: Use SoD to form the π∗

We generate a synthetic dataset as follows:

y = 3 sin(x2) + 2 sin(1.5x+ 1) + ε

where x ∼ Unif(0, 3) and ε ∼ N(0, 0.52). We generated 500
observations as the training set, and another 300 for the testing set.

We use the a squared exponential co-
variance function:

102 + η2 exp

(
−

(x− x′)2

β2

)
+ δ·,′σ

2

and the priors are

log η2 ∼ N(3, 32)

log β2 ∼ N(2, 32)

log σ2 ∼ N(0, 32)
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Example: Use SoD to form the π∗ - Continued

The first 50 observations are used as the subset to form the π∗ to implement the

MCMC (with “mapping”), and compare the results to a Metropolis MCMC. The

sample ACFs are adjusted so that they reflect the same amount of evaluations of

π(x).
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