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• Consider the oscillatory IVP

dy

dt
= f (y ,

t

ε
; ε), t0 ≤ t ≤ t0 + L, y(t0) = y0 ∈ Rd ,

where f (y , τ ; ε) is 2π-periodic in τ = t/ε. (ie f is 2πε-prdc in t).

• We are interested in the case ε� 1, L = O(1) (solution
computed over many periods). Direct numerical solution may be
very costly.

• In some applications and for the analysis, system may appear in
re-scaled format:

dy

dτ
= εf (y , τ ; ε)

with integration interval of length L/ε.
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• Denote by ϕt0,t the solution operator y0 7→ y(t). Note
dependence on t0 and t (system is not autonomous). It satisfies
the property

ϕt1,t2 ◦ ϕt0,t1 = ϕt0,t2 .

• Ψt0 = ϕt0,t0+2πε is the one-period or Poincaré map. Its n-th
power satisfies Ψn

t0 = ϕt0,t0+2πnε, ie advances the solution over n
periods starting from t = t0.

• Attention restricted to cases where f = O(1/ε) and Ψt0 is an
O(ε) perturbation of the identity as ε ↓ 0.

• Next slide shows two situations covered by our approach.
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• Left: f = O(1). Solution undergoes O(ε) changes along one
period of length O(ε). Right: f = O(1/ε). Solution changes along
one period are O(1) but Ψt0 = Id +O(ε)
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• Changes in solution when t is increased by 2πε
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• Method of (analytic) averaging. Directly applicable only to
situations as in left picture. Try to describe ‘smooth’ evolution of
the system without tracking the fast, period O(ε), oscillations of
true solution y(t).

• y(t) approximated by a ‘smooth’ Y (t). Usually Y is understood
as average of y over one period of the fast oscillations.

• Here we look at true solution y with a stroboscopic light that
flashes every 2πε units of time. Both ‘left’ and ‘right’ situations
covered:
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• Stroboscopic samples y(t0), y(t0 + 2πε), y(t0 + 4πε),. . . of y
(circles) appear to come from ‘smooth’ function Y (t). Which
Y (t)?
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• Since Ψt0 = Id +O(ε), there exist an autonomous modified eqn.

(d/dt)Y = Fε(Y ), with t-flow Φ
(ε)
t , sch tht Ψt0 = ϕt0,t0+2πε

coincides (formally) with Φ
(ε)
2πε.

• Hence the n-th power Ψn
t0 (map that advances y over n periods)

coincides with the n-th power of Φ
(ε)
2πε ie with Φ

(ε)
2πnε.

• Conclusion: the values

y(t0), y(t0 + 2πε), . . . y(t0 + 2πnε), . . .

of the highly oscillatory solution of (d/dt)y = f (y , t/ε; ε) coincide
with the values

Y (t0), Y (t0 + 2πε), . . . Y (t0 + 2πnε), . . .

of the solution of (d/dt)Y = Fε(Y ) such that Y (t0) = y(t0).
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Two remarks:

• Coincidence is as formal power series in ε. Truncating the formal
series of the ‘exact’ Fε, one obtains averaged systems with O(ε),
O(ε2), . . . errors. These issues are ignored in presentation.

• If the initial condition were prescribed at a different value of t0,
then the Poincaré operator y0 7→ y(t0 + 2πε) changes and one
obtains a different Fε. (Broken lines in next figure.)
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y
0

y*

Red wiggly lines: solutions of ivp’s corresponding to two initial
conditions, y0 and y∗ imposed at t = t0. Solid blue lines: solutions
of (d/dt)Y = Fε(Y ) with same initial data.
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Chartier, Murua, SS, FoCM 2010 show:

• Possible to find systematically the explicit analytic expression for
Fε in terms of f by using ideas from the modern analysis of
numerical methods —trees, B-series, . . . —.

• Such an explicit expression is useful on its own right to obtain
analytically averaged system of high order of accuracy and to
systematized the method of averaging.

• Furthermore, may be used to analyze numerical methods
. . . (idea not pursued here).
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• We shall compute the smooth interpolant Y (t) by integrating
the averaged equation dY /dt = Fε(Y ) with a numerical method
(macro-solver) with macro-step size H (much) larger than the fast
period 2πε.

• In the spirit of the Heterogeneous Multiscale Methods of E and
Engquist, our algorithm does not require the explicit knowledge of
the analytic form of Fε. Info. on Fε is gathered on the fly by
integrating [with micro-step size h] the original system dy/dt = f
in small time-windows of length O(ε).

• There is much freedom in the choice of the macro-solver and
micro-solver, including standard variable-step/order codes.
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• How to compute Fε at a given value Y ∗ of its argument?

• Recall that the t-flow of the vector field Fε is Φ
(ε)
t :

Fε(Y ∗) =
d

dt
Φ
(ε)
t (Y ∗)

∣∣∣∣
t=0

.

• In algorithm, derivative approximated by differences, such as

Fε(Y ∗) =
1

2δ
[Φ

(ε)
δ (Y ∗)− Φ

(ε)
−δ(Y ∗)] + O(δ2).

• Choosing δ = 2πε, results in Φ
(ε)
±δ = ϕt0,t0±δ (stroboscopic

effect) and

Fε(Y ∗) ≈ (1/(4πε))[ϕt0,t0+2πε(Y ∗)− ϕt0,t0−2πε(Y ∗)].
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• ϕt0,t0±2πε(Y ∗) computed by solving the originally given
dy/dt = f (y , t/ε; ε), over t0 − 2πε ≤ t ≤ t0 + 2πε, with initial
condition y(t0) = Y ∗.

• Of course, one may use other finite-difference formulae such as
the fourth-order based on t0 + 2πkε, k = 0,±1,±2.

• Note lack of synchrony between macro and micro integrations.
Micro-integration always start from t0. Starting micro-integratns
from current value of t in macro-integration will not do: refer to
preceding figure.
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• Algorithm presented evolved from our study of Heterogeneous
Multiscale Method (E, Engquist, Tsai, Sharp, Ariel, . . . )
• Basic underlying idea has appeared several times in the literature
over the last fifty years (in particular, in astronomy and circuit
theory): envelope-following methods, multirevolution methods,
Taratynova, Mace/Thomas, Graff/Bettis, Gear/Petzold/Gallivan,
Calvo/Jay/Montijano/Rández, . . . (outer integrator has to be
built on purpose).
• Kirchgraber 1982, 1988 uses high-order RKs. Recovery of
macro-field not from numerical differentiation.
• For comparison refer to:
M.P. Calvo, Ph. Chartier, A. Murua and J.M. Sanz-Serna,
Numerical stroboscopic averaging for ODEs and DAEs, Appl.
Numer. Math. (2011), doi: 10.1016/j.apnum.2011.06.007
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Three sources of errors:

1. Approximate true values of Fε by a finite difference
approximation F̃ε. Error is O(ε2) for 2nd order differencing.

2. Use in difference formula of ϕt0,t0±2πε(Y ∗) obtained via
micro-integration. Error in ϕt0,t0±2πε(Y ∗) is
O((∆τ)p) = O((h/ε)p), where p is the order of the
micro-integrator. Errors in Fε are then O(ε−1(h/ε)p).

3. Use of macro-integrator to solve averaged equation. Error
O(HP), where P is the order of the macro-integrator.
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• Summing up

O
(
ε2 + HP +

1

ε

(h

ε

)p)
= O

(
ε2 + HP +

1

ε
(∆τ)p

)
,

• In some cases, the micro-integration error is O(εν(∆τ)p) with
ν > 0 (ie errors vanish if ε ↓ 0 with h fixed). Then we have

O
(
ε2 + HP + εν−1

(h

ε

)p)
= O

(
ε2 + HP + εν−1(∆τ)p

)
.
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(A) A perturbed Kepler problem in the plane (from Kirchgraber):

d

ds
x = v ,

d

ds
v = − 1

r3
x + εG (x),

where

G (x) = −∇V (x), V (x) = − 1

2r3
+

3x2
1

2r5
, r =

√
x2
1 + x2

2 .

Use fictitious time τ = λ(x , v)s, with λ(x , v) = (−2E (x , v))−3/2

(E denotes energy), and system becomes

d

dτ
x = λ(x , v)v ,

d

dτ
v = λ(x , v)

(
− 1

r3
x + εG (x)

)
.

If ε = 0 (unperturbed) all solutions are 2π-periodic in τ .
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• x1(0) = 1, x2(0) = 0, v1(0) = 0, v2(0) = 1.

• ε = 2−12, 2−13, 2−14 (2−12 ≈ 2.4× 10−4).

• Integration interval 0 ≤ τ ≤ (π/8)ε−1.

• Constant-step classical RK4 as macro-integrator. Second-order
differences.
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(A1) Error vs. number of micro-steps, stars: SAM with RK4
micro-integrator 8 macro-steps, circles: standard RK4. Halving ε
doubles the error
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(A2) Error vs. number of micro-steps, stars: SAM with (Strang
like) splitting (Kepler+perturbation) micro-integrator 16
macro-steps, circles: standard splitting. Halving ε halves the error
(ν = 2).
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Summary: When ∆τ is kept fixed and ε is halved:

The standard RK integrator works twice as much and doubles
the error.

The standard splitting scheme works twice as much and
halves the error.

SAM with RK micro-integrations uses the same work and
doubles the error.

SAM with splitting micro-integration uses the same work and
halves the error.
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(B) Van der Pol:

d

dτ
q = p,

d

dτ
p = −q + ε(1− q2)p.

Perturbed harmonic oscillator. When the initial condition is away
from limit cycle, solution needs O(1/ε) time-interval to reach the
limit-cycle. In transient phase, solution changes by O(ε) between
consecutive stroboscopic times. Near limit cycle by O(ε2).

• q(0) = p(0) = 0.5, ε = 2−9, 0 ≤ τ ≤ τend = 32πε−1 ≈ 51, 000

M. P. Calvo, Universidad de Valladolid, Spain Numerical stroboscopic averaging for ODEs and DAEs



Highly oscillatory problems
Stroboscopic averaging

SAM: a numerical method based on stroboscopic averaging
Error analysis

Numerical results

The following runs yield roughly the same errors:

• SAM with (variable step-size) ode45 macro-integrator (40
macro-steps); Strang splitting micro-integration ∆τ = π/16

• SAM with the fifth-order formula of ode45, constant step-size
(128 macro-steps); Strang splitting micro-integration ∆τ = π/16

• Strang-splitting (260,000 steps), ∆τ = π/16
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• SAM: macro-step-length in ode45 as a function of τ and
macro-step-length in constant step-size implementation. Note H
may be 2, 000 or larger!
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(C) DAEs:

• Approach easily extended to DAEs.

• Eg: vibrated inverted pendulum and vibrated double inverted
pendulum formulated in cartesian coordinates. (Index 2 DAEs, if
GGL approach used.)

• Half-explicit RK method of order 3 (Brasey/Hairer (1993)) as
macro- and micro-integrator.
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• Error vs. number of micro-steps, ε = 10−4, 10−6, stars: SAM
with macro-step-size H = π/2500, circles: standard integration
(h = 2πε/n, n = 2j , j = 2, 3, . . .). Dividing ε by 100 does not
change the error (ν = 1).
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