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This talk deals with the numerical solution of IVPs for ODE systems

y'(t) = f(t,y(#), ylto) = yo € RY, (1)

with oscillating or periodic solutions by means of explicit two-stage peer
methods.

We present a class of numerical methods called “fitted two-step peer
methods” for the numerical integration of periodic problems whose
frequency is approximately known in advance.

@ These methods combine the advantages of Runge-Kutta and
multistep ones to obtain high stage order.

@ Introduced by Weiner et al (2004, 2005, 2009), ... for parallel
computation and extended to sequential computation.
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A step of a RK method

Yo = y(to) — y1 ~ y(t1)
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A step of a Peer method

Y1 = AY, + hBF(Y,) + hRF (Y1)

}/0 ~ (y(to), y(to + Clh), .. ) — Y] ~ (y(tl), y(t1 -+ Clh), .l )

y(t)
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Functionally Fitted Peer

@ Standard methods for IVPs are fitted to a polynomial approximation
to the local solution. The fitting space is F = {1,t,12,...}.

o Exponential Fitted methods The fitting space is
F = {1 e:l:iwt e:tith }

o Functional Fitted methods The fitting space is
F =A{1,p1(t), p2(t),...}.

Ref: Bettis (1979), Paternoster (1998), Simos (1998), Vanden Berghe et
al (1999), Coleman et al (2000), Franco (2002), Ixaru et al (2004), ...
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Background

In Functionally Fitted s-stages RK methods the solution of the IVP (1)
advances to (tn,yn) — (tnt1 = tn + h, yns1) by means of the formulas

Unt1 = Y0 Yn+h Y by fta+cih, Yay), (2)

=1
S
ij = v yn+hZajk f(tn+ckh,yn7k), j = 1,...,8, (3)
k=1
where
C_(CJ) ‘ 7—(%)] 1 ‘ A= (aj;) € R%*®
‘ Yo ‘ bl = (bj)§:1
are the real coefficients that define the method.

(4)

In standard RK methods all 7; = 1 and the remaining coefficients are fixed
numbers. In fitted methods they depend in general on the time step h, the
starting time t¢,, and the space F of fitting functions.
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We will assume (g + 1)-dim. fitting spaces

F =Fg={po(t),p1(t), -, pq(t)),

of smooth linearly independent real functions in [to, o + 7] in the sense
that the Wronskian matrix

wo(t)  w1(t) ©q(t)

@o(t)  ¢a(t) ©q(t)
W (90,91, - 0g) () = 5

&0 o\ (2) o9 (2)

is non singular for all ¢ € [tg,to + T
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To have a RK method fitted to F;, the available coefficients a;;, ¢;, 7i, b;

are selected so that they satisfy the fitting conditions

Y0 (p(tn) + h Z b]’ go(tn + th),
7j=1

@(tn +h)

(P(tn = th) = Qp(tn) =+ hzajk ‘p(tn + Ckh)a Jj=1...

k=1

for all ¢ € F.

5 (6)

The above conditions imply by linearity that the corresponding RK method
integrates exactly any local solution y(¢;t,,y,) of ¥/ = f(t,y) such that

y(t§ tmyn) € ]:tI'
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Drawback

For explicit RK fitted methods ¢; = 0,71 = 1 and then the second one

@(tn + c2h) = y200(tn) + has1p(tn),

for a fixed node co, has only the two free parameters (72, az1) and ¢ < 1
and this implies serious restrictions in the dimensionality of the fitting
space.

One remedy

We consider the so called explicit two-step peer methods, recently
introduced by R. Weiner, B. A. Schmitt et al as an alternative to classical
Runge—-Kutta (RK) and multistep methods attempting to combine the
advantages of these two classes of methods.
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Two-Step Peer Methods

Given a set of admissible fixed nodes {c;};_; in the sense that
€1,€2,...,Cs, 1 +c1,14+co,..., 1 +c4

is a non confluent set of nodes, and starting from known approximations
Yo,; to y(to + ¢jh), j =1,...,s we obtain the new approximations

Y1 ~y(ti +cjh) where t; =ty+h,

by means of

S S
ij= Z ajkYok +h Z bj.f (to + crh, Yor)

k=1 k=1
j—1 (7)
0 rf( ek Yig),  (G=1,...,8).
k=1

A, B € R%*5 full matrices and R € R**% strictly lower triangular are the
free parameters that define the method with Ae = e to ensure the
preconsistency condition.
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Extending the definition of fitted RK methods to PEER methods, we will
say that the explicit two-step peer method is fitted to F if

oty +ch) =3 ajr o(to + cxh) + b bix d(to + cxh)

k=1 k=1

A ®)
—{—hZT‘jkgb(tl—l—ckh), j=1,...,s

k=1

holds for all ¢ € F,.

@ At each stage we have at least 2s — 1 free parameters

@ It is possible to obtain explicit methods that attain high stage order

@ Are good candidates to obtain explicit methods fitted to spaces F,
with ¢ large.

@ The authors have derived in (2010), s stage methods with ¢ = 2s — 1
taking into account some stability and accuracy requirements
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In our study of the order of a Fitted Peer Methods it will be sufficient to
consider a scalar (non-linear) equation (m = 1), and they can be written
in the vector form

Y =AYy+hBFqg+hRFq, (9)
where
Yk = (Yk,lv s 7Yk,s)T € RS)
e = (1,....,1)T eRr®,
c = (cl,...,cs)T € R,
Fr. = f(tge+he,Yy) = (f(tx + hcijk,j));:1 e R*.
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0-Stability

For the zero stability we only consider Peer Methods with the stronger
requirement

M(A) =1,  N(A) =0, j=2....5 (10)
and take A with the form
A=P AP (11)
with P and A of type
1 0 ... 0 1 Gz ... Qi
P21 ]. e O 0 623 623
P = P31 P32 e 0 R A\ = . . s
: N I As—1,5
DPs1 Ds2 “ee 1 O

that satisfy (10). Note that the pre-consistency condition Ae = e implies
that Pe = e;.
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We associate to Y; = AYy + hBFy + hRF; the linear s-dim vector
valued operator L]p; h] defined by

Llp; h](t) = o((t + h)e + he) — A p(te + hc) (12)
—h B ¢(te + hc) —h R ¢((t + h)e + hc).

Definition
For a given set of admissible nodes and a fitting space
Fq=(po(t), 1(t),...,pq4(t)) the Peer Method is fitted to the linear

space F, with step size h at tg if

Llp;hl(to) =0, Ve Fy. (13)
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o If the starting values (Yp,;);_; belong to a solution of the differential
equation contained in the fitting space F,, then the Peer method
gives the exact values of the solution.

@ In the polynomial case, F;, =1II,, ¢ is the stage order and
Lly; h](t) = ORTTY) forall yeC™,
and this condition turns out to be independent of ¢.
o If Z(t) = P p(te + hc), we have L[p; h(to) = P~! L]y; h](to), with

Llp; h)(to) = Z(t + h) — A Z(t) — hB Z(t) — hR Z(t + h)

Then, the Peer method is fitted to F, iff L[p; h](to) = 0,V € F,.
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When the coefficients are independent of ¢,,?

We give sufficient conditions on the functions of F; that ensure that

L[p; h](to) is independent of ty and therefore the coefficients of the fitted
method can be chosen independent of ¢.

Theorem

Let F, be the (¢ + 1)-dim space of solutions of an homogeneous linear
differential equation with constant coefficients with order (q + 1). If the
linear operator L with A, B and R independent of t satisfies

Lp; h(to) =0, Vo € Fy

then
Llp;h](t) =0, VYoeF, Vtelto,to+T].
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Remarks

@ For fitting spaces of solutions of linear homogeneous solutions with
constant coefficients if the available coefficients A, B, R (that may
depend of the nodes and the step size h) are fitted for some particular
to then they are fitted for all ¢.

o For fitting spaces that satisfy the assumptions of the above Theorem,
if we take as basis point tg = —he; then L[p; h](—hc1) depends on
the nodes in the form of differences (ca — ¢1), ..., (cs — ¢1).
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We assume that F; = (po(t) = 1,01(t),...,¢q(t)) is a (¢ + 1)-dim basis
of solutions of the linear equation with constant coefficients

Q(D)u(t) = IV (#) 4+ agu@ () + ... + a;uD(t) = 0,
whose characteristic polynomial is
Qz) =27 +a2? + ... 4a1z=2% (z —w))? ... (2 —w,)P,

Withﬂo—i—ﬂl—i-...—f—,@r:q—l-l.
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In the polynomial case it has been shown that:

i) Given a set of admissible nodes ¢y, ...,¢cs, 1 +¢1,..., 1+ cs.

ii) Given a lower triangular matrix P = (p;;) with p;; = 1 and Pe = e;.

The parameters in A\, B and R can be obtained, under usual hypothesis,
as solutions of s independent sets of linear equations in the unknowns

Eql: | @2 @iz ... ais bin bz ... bis| O
Eq2 : 623 . 62 621 1)22 ‘e bg ?21

q s . .s : (14)
EqS : 0 bsl bsg PN bss 5"\51 PN ?375A1

It has been proved that if the free parameters are selected by attempting
its exactness for the polynomials () = t¥, k = 1,...,2s — 1 then the
corresponding method would have (stage) order p = 2s — 1.

We extend this situation to a more general case of spaces F;.
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Theorem

Suppose that for a given set of admissible fixed nodes and constant matrix
P the polynomially fitted two-step peer method with s stages has a unique
solution with stage order 2s — 1, then:

© For any linear space Fas—1 = (1,¢1(t), ..., p2s—1(t)) there exist a
unique s-stage two step peer method fitted to this space for h
sufficiently small. This peer method has the same nodes and P-matrix
as the polynomially fitted method to Ilos_1 and the coefficients

Ay = A(to,h), Br=B(to,h), Rr = Rl(to,h),

may depend (apart of the fitting space) on to and h.

Q IfFos_qisa baSIs of solutlons of a linear equation with constant
coefficients, A]:, B]:, R]:, are independent of ty and depend only on
the roots of Q(D).

© further when all the roots of the polynomial Q(D) tend to zero the
coefficients Axr, Br, Rr tend to those of the polynomial case.
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Two-stage Peer Methods

With s = 2 the pre consistency condition Pe = e; implies that

r=(40) (15)

On the other hand, the matrices E, E,J?i will have the form
- 1 @ 5 b bio = 0 0

A= , B=|~" "), R=|_. , 16

(0 0 > <b21 b22) <7"21 0> (16)

Z(t) = P p(te + he) = (SO " +‘ifz)+ fjgt e h)) (17)

and
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Since the linear operator Lis
Llo:h)(t) = Z(t + h) — A Z(t) — hB Z(t) — hR Z(t + h)

we have two order conditions and in each condition there are three free
parameters. The first equation with the parameters @19, b11,b12 can be
written in the form

[o(t + cah) — p(t + c1h)]a1s + ho(t + clh)gn
+ hp(t+ eah) — @t + c1h)]bia = p(t + h + c1h) — (t + c1h),
and the second one with the parameters 321,322,?21 is
h(t + erh)bar + hlp(t + cah) — o(t + e1h)]bag
ho(t + h+ cih)Tar = o(t + h+ coh) — p(t + h + c1h).

These parameters will be determined by imposing that the above
equations hold for the functions ¢;(t),j = 1,2,3 of the fitting space

F3 = (1,t, coswt, sin wt).
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Solving the equations for 721, @12, b11, b12, ba1, boo we obtain

P —1+ cosv + cos(dv) — cosv cos(dv) + vsin(dv) — sin v sin(dv)
12 = Al ’
~ (=2 +d —dcosv)(1 — cos(dv) + dsinvsin(dv)
bu = A ;
1
7 v —dv + dvcosv — vcos(dv) — sinv + sin(dv) sin(v — dv)
12 = - )
VAl

with d = co — ¢, ¥ = hw and Ay = —2 + 2 cos(dv) + dv sin(dv).
In a similar way, we get

. sin(dv/2) (dvcos(dv/2) — 2 cos vsin(dv/2))
ro1 = A, ;
By = sin(dv/2) (dv cos(v — dv/2) — 2 cos v sin(dv/2))
Ao ’
B - ~ sin(v/2) (dv cos(v/2) + sin(v/2) — sin(dv + v/2))
22 A )
2

with Ag = 2vsin(dv/2) sin(v/2) sin((v — dv)/2).
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Three-stages Peer Methods

In the case of three stages Peer Methods, we have several possibilities,

o F, = {1,t,coswt,sinwt, cos 2wt, sin 2wt}
o F,={1,t,t* 13 coswt,sinwt}
e F, ={1,t,coswit,sinwit,coswat,sin wot}

e F,={1,t,coswt,sinwt,tcoswt,tsinwt}

For the sake of simplicity, we derive the fitted method associated to the
3-stage method developed by the authors (2010) and given by the
coefficients:

0.000855 0.692006 0.307138 | 0.000172 0.041579 —0.01777

[A|B] = | 5.04047 6.19552 —10.236 | 1.11675  41.799  21.9221
2.63153  3.56484 —5.1963 | 0.593029  20.477  10.6664
0 | 0.000172 0 0

[c|R] = | 0.904 | —56.8554 0 0

1.141 | —27.3595 0.470412 0
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Test Problems

Duffing’s equation

Y+ (A2 4+ kYy = 2k%y3, t €[0,20]
y(0) =0, ¥(0) =,
with £ = 0.035 and A = 5. The analytic solution is given by:

y(t) = sn (M, (%)2) .

where sn represents the elliptic Jacobi function. We choose w = 5, and
the numerical results have been computed with the integration steps

At =

m=1,...,6.

5 x 2m’
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—@— standard s = 2 —J— fitted s = 2
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The Euler equations

y' = () = (o = B)yays, (1—a)ysys, (B—Dyige)’
with the initial values y(0) = (0,1,1)7.
o It possesses two quadratic invariants: G1 = % + y3 + y3 and
G2 = yf + Bys + ay3
@ Parameter values a = 1 + —-— and B =1 — %3L = 27/T, with

V1.51 V151
T = 7.45056320933095. The exact solution of this IVP is given by

T
y(t) = <\/1.51 sn(t,0.51), cn(¢,0.51), dn(t,0.51)> ,

where sn, cn, dn are the elliptic Jacobi functions.

@ The integration is carried out on the interval [0, 40] with step sizes
h=1/(5x272),j=1,...,5 and w = 2r/T.
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Figure: Intersection of the quadratic invariants G; and G4
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—@— standard s = 3 —— fitted s = 3
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A perturbed Kepler's problem

The Hamiltonian function is

1 _ ~
H(p,q)zi(p?er%)—(Q%Jrqg) Y2 @e+ed)3(@+a) Y,

@ Initial conditions:
q1(0) =1, ¢2(0) =0, p1(0) =0, p2(0) =1+¢, O0<e<<l1
@ The exact solution of this IVP is given by
q1(t) = cos(t +et), qt) =sin(t+et), pi(t) =d(t), i=1,2.
@ The numerical results have been computed with the integration steps

At = 10 7T2m, m =0,...,3. We take the parameter values

e =1073, A =i and the problem is integrated up to te,q = 107.
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—@— standard s = 3 —J— fitted s = 3
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Conclusions

@ In our numerical experiments, we have considered fitted methods for
systems of equations with all components fitted to the same given
frequency w.

o It appear that an accurate estimation of the frequency is essential for
the integrators based on fitted methods. This fact was already
recognised by Vanden Berghe et a/ (2001)

@ The accuracy of the fitted methods is in general superior to the non
fitted ones of the same order.
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Thanks for your attention
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