
On the variable stepsize
performance of

SAFERK methods.

S. González-Pinto, D. Hernández-Abreu∗

(Univ. La Laguna, Spain)

and B. Simeon

(TU Kaiserslautern, Germany).

SciCADE 2011 University of Toronto

July 12th, 2011.
– p. 1/43

�

�

�

�

�

�

�

�

�

OUTLINE

– p. 2/43

�

�

�

�

�

�

�

�

�

OUTLINE

SAFERK methods: algebraic order and linear stability.

Convergence on non-stiff problems and stiff semilinear systems.

Convergence on index one/two DAEs.

Implementation issues.

Numerical illustrations.

Concluding remarks and acknowledgements.

– p. 3/43

�

�

�

�

�

�

�

�

�

SAFERK methods

– p. 4/43

�

�

�

�

�

�

�

�

�

SAFERK methods

A new family of collocation Runge-Kutta methods

{
Yn,i = yn + hn

∑s
j=1 aijf(tn + cjhn, Yn,j), 1 ≤ i ≤ s,

yn+1 = yn + hn
∑s

j=1 bjf(tn + cjhn, Yn,j),

with good stability and convergence properties has been
recently introduced in

An efficient family of strongly A-stable Runge-Kutta

collocation methods for stiff systems and DAEs.

Part I: Stability and order results. JCAM 2010.

Part II: Convergence results. To appear in APNUM.

– p. 5/43

�

�

�

�

�

�

�

�

�

SAFERK methods

A new family of collocation Runge-Kutta methods

{
Yn,i = yn + hn

∑s
j=1 aijf(tn + cjhn, Yn,j), 1 ≤ i ≤ s,

yn+1 = yn + hn
∑s

j=1 bjf(tn + cjhn, Yn,j),

with good stability and convergence properties has been
recently introduced in

An efficient family of strongly A-stable Runge-Kutta

collocation methods for stiff systems and DAEs.

Part I: Stability and order results. JCAM 2010.

Part II: Convergence results. To appear in APNUM.

The so-called SAFERK methods are competitive regarding
RadauIIA methods with the same number of implicit stages for
stiff systems and index one/two DAEs.

– p. 5/43

�

�

�

�

�

�

�

�

�

SAFERK methods

For s ≥ 3, a uniparametric family of s-stage RK methods is
obtained. For each parameter value α, the corresponding
SAFERK(α, s) method possesses the following features:

– p. 6/43

�

�

�

�

�

�

�

�

�

SAFERK methods

For s ≥ 3, a uniparametric family of s-stage RK methods is
obtained. For each parameter value α, the corresponding
SAFERK(α, s) method possesses the following features:

it is Stiffly Accurate method with a First Explicit stage:

c A

bT
eT1 ·A = 0T ⇒ Yn,1 = yn

eTs ·A = bT ⇒ Yn,s = yn+1

– p. 6/43

�

�

�

�

�

�

�

�

�

SAFERK methods

For s ≥ 3, a uniparametric family of s-stage RK methods is
obtained. For each parameter value α, the corresponding
SAFERK(α, s) method possesses the following features:

it is Stiffly Accurate method with a First Explicit stage:

c A

bT
eT1 ·A = 0T ⇒ Yn,1 = yn

eTs ·A = bT ⇒ Yn,s = yn+1

it has stage order q = s, i.e, it is a collocation method based
on a certain interpolatory quadrature {bi, ci}s

i=1, with c1 = 0
and cs = 1;

– p. 6/43

�

�

�

�

�

�

�

�

�

SAFERK methods

For s ≥ 3, a uniparametric family of s-stage RK methods is
obtained. For each parameter value α, the corresponding
SAFERK(α, s) method possesses the following features:

it is Stiffly Accurate method with a First Explicit stage:

c A

bT
eT1 ·A = 0T ⇒ Yn,1 = yn

eTs ·A = bT ⇒ Yn,s = yn+1

it has stage order q = s, i.e, it is a collocation method based
on a certain interpolatory quadrature {bi, ci}s

i=1, with c1 = 0
and cs = 1;

√
2s+ 1(P ∗

s (x)−P ∗
s−2(x))+α

√
2s− 1(P ∗

s−1(x)−P ∗
s−3(x)) = 0

(P ∗
n(x) normalized Legendre polynomials on [0, 1], P ∗

n(1) = 1).

– p. 6/43

�

�

�

�

�

�

�

�

�

SAFERK methods

For s ≥ 3, a uniparametric family of s-stage RK methods is
obtained. For each parameter value α, the corresponding
SAFERK(α, s) method possesses the following features:

it is Stiffly Accurate method with a First Explicit stage:

c A

bT
eT1 ·A = 0T ⇒ Yn,1 = yn

eTs ·A = bT ⇒ Yn,s = yn+1

it has stage order q = s, i.e, it is a collocation method based
on a certain interpolatory quadrature {bi, ci}s

i=1, with c1 = 0
and cs = 1;

it has algebraic order p = 2s− 3, for all α 6= 0;

it is computationally equivalent to the (s− 1)-stage RadauIIA
method (similar implicitness over each integration step).

– p. 6/43

SAFERK methods

γs−γs 0− s−2

s
γs

s−2

s
γs

α ∈ (−γs, γs)

ci ∈ [0,1]

ci ∈ [0,1]

γs =

√
2s+ 1

√
2s− 1

(2s− 3)

bi > 0

bs < 0 b1 < 0

Nodes and weights for

and

b bbb b

b b

b b

b b b b

– p. 7/43

�

�

�

�

�

�

�

�

�

SAFERK methods

For each s ≥ 3, the linear stability function

R(z) = 1 + zbT (I − zA)−1e, e = (1, . . . , 1)T ∈ R
s,

of a SAFERK(α, s) method fulfils:

– p. 8/43

�

�

�

�

�

�

�

�

�

SAFERK methods

For each s ≥ 3, the linear stability function

R(z) = 1 + zbT (I − zA)−1e, e = (1, . . . , 1)T ∈ R
s,

of a SAFERK(α, s) method fulfils:

|R(z)| ≤ 1, ∀z ∈ C
− (i.e, A-acceptability) if only if α ≤ 0 and

α 6= −γs;

A-acceptability + |R(∞)| < 1 if only if α < 0 and α 6= −γs.

R(∞) = (−1)s+1 γs + α

γs − α
.

– p. 8/43

�

�

�

�

�

�

�

�

�

SAFERK methods

For each s ≥ 3, the linear stability function

R(z) = 1 + zbT (I − zA)−1e, e = (1, . . . , 1)T ∈ R
s,

of a SAFERK(α, s) method fulfils:

|R(z)| ≤ 1, ∀z ∈ C
− (i.e, A-acceptability) if only if α ≤ 0 and

α 6= −γs;

A-acceptability + |R(∞)| < 1 if only if α < 0 and α 6= −γs.

R(∞) = (−1)s+1 γs + α

γs − α
.

Although SAFERK(α, s) are strongly A-stable iff α < 0,
α 6= −γs, there are not L-stable methods (|R(∞)| = 0):

|R(∞)| ∈
[

1
s−1 , 1

)
for − s−2

s γs ≤ α < 0.

– p. 8/43

�

�

�

�

�

�

�

�

�

The Principal Error Term

– p. 9/43

�

�

�

�

�

�

�

�

�

The Principal Error Term

The principal term of local error for a Runge-Kutta method

yRK(t+ h; t, y(t)) − y(t) = PTLE(t, h) + O(hp+2)

PTLE(t, h) =
hp+1

(p+ 1)!

∑

τ∈LTp+1

(1 − ω(τ))F (τ)(y(t))

– p. 10/43

�

�

�

�

�

�

�

�

�

The Principal Error Term

The principal term of local error for a Runge-Kutta method

yRK(t+ h; t, y(t)) − y(t) = PTLE(t, h) + O(hp+2)

PTLE(t, h) =
hp+1

(p+ 1)!

∑

τ∈LTp+1

(1 − ω(τ))F (τ)(y(t))

For non-stiff problems, those methods with a smaller l2−norm
of the error coefficients are preferred:

ECp(RK) :=
1

(p+ 1)!

√ ∑

τ∈LTp+1

(1 − ω(τ))2.

We shall require

Ks(α) :=
EC2s−3(SAFERK(α, s))

EC2s−3(RadauIIA(s-1))
< 1.

– p. 10/43

�

�

�

�

�

�

�

�

�

The Principal Error Term

Theorem. For an s−stage Runge–Kutta method fulfilling
B(p), C(q) and D(r), with p ≤ min{q + r, 2q + 1} we have

1 − ω(τ) = K(τ ; q, r)(1 − (p+ 1)bT cp), ∀τ ∈ LTp+1.

– p. 11/43

�

�

�

�

�

�

�

�

�

The Principal Error Term

Theorem. For an s−stage Runge–Kutta method fulfilling
B(p), C(q) and D(r), with p ≤ min{q + r, 2q + 1} we have

1 − ω(τ) = K(τ ; q, r)(1 − (p+ 1)bT cp), ∀τ ∈ LTp+1.

For SAFERK(α, s) and RadauIIA(s− 1) methods, we have

Ks(α) = |α|
(
s− 2

s
γs

)−1
√ ∑

τ∈LT2s−2
K(τ ; s, s− 3)2

∑
τ∈LT2s−2

K(τ ; s− 1, s− 2)2
,

– p. 11/43

�

�

�

�

�

�

�

�

�

The Principal Error Term

Theorem. For an s−stage Runge–Kutta method fulfilling
B(p), C(q) and D(r), with p ≤ min{q + r, 2q + 1} we have

1 − ω(τ) = K(τ ; q, r)(1 − (p+ 1)bT cp), ∀τ ∈ LTp+1.

For SAFERK(α, s) and RadauIIA(s− 1) methods, we have

Ks(α) = |α|
(
s− 2

s
γs

)−1
√ ∑

τ∈LT2s−2
K(τ ; s, s− 3)2

∑
τ∈LT2s−2

K(τ ; s− 1, s− 2)2
,

Theorem. For s ≥ 3, strongly A-stable SAFERK methods
with ratio Ks(α) < 1 are obtained if and only if αs < α < 0

– p. 11/43

�

�

�

�

�

�

�

�

�

The Principal Error Term

Theorem. For an s−stage Runge–Kutta method fulfilling
B(p), C(q) and D(r), with p ≤ min{q + r, 2q + 1} we have

1 − ω(τ) = K(τ ; q, r)(1 − (p+ 1)bT cp), ∀τ ∈ LTp+1.

For SAFERK(α, s) and RadauIIA(s− 1) methods, we have

Ks(α) = |α|
(
s− 2

s
γs

)−1
√ ∑

τ∈LT2s−2
K(τ ; s, s− 3)2

∑
τ∈LT2s−2

K(τ ; s− 1, s− 2)2
,

Theorem. For s ≥ 3, strongly A-stable SAFERK methods
with ratio Ks(α) < 1 are obtained if and only if αs < α < 0,

where αs fulfils Ks(αs) = 1 and −γs < αs < − s−2
s γs.

– p. 11/43

�

�

�

�

�

�

�

�

�

The Principal Error Term

Theorem. For an s−stage Runge–Kutta method fulfilling
B(p), C(q) and D(r), with p ≤ min{q + r, 2q + 1} we have

1 − ω(τ) = K(τ ; q, r)(1 − (p+ 1)bT cp), ∀τ ∈ LTp+1.

For SAFERK(α, s) and RadauIIA(s− 1) methods, we have

Ks(α) = |α|
(
s− 2

s
γs

)−1
√ ∑

τ∈LT2s−2
K(τ ; s, s− 3)2

∑
τ∈LT2s−2

K(τ ; s− 1, s− 2)2
,

Theorem. For s ≥ 3, strongly A-stable SAFERK methods
with ratio Ks(α) < 1 are obtained if and only if αs < α < 0,

where αs fulfils Ks(αs) = 1 and −γs < αs < − s−2
s γs.

Hence, strongly A-stable SAFERK(α, s) methods, with
ci ∈ [0, 1] and bi > 0 (1 ≤ i ≤ s) fulfil Ks(α) < 1.

– p. 11/43

�

�

�

�

�

�

�

�

�

Convergence on stiff semilinear problems

– p. 12/43

�

�

�

�

�

�

�

�

�

Convergence on stiff semilinear problems

y′(t) = Jy + g(t, y), µ[J] = O(1), Lg(y) = O(1).

– p. 13/43

�

�

�

�

�

�

�

�

�

Convergence on stiff semilinear problems

y′(t) = Jy + g(t, y), µ[J] = O(1), Lg(y) = O(1).

The global error yn − y(tn) fulfils

LobattoIIIA(s) RadauIIA(s− 1) SAFERK(α, s)

O(hmax{4,s}) O(hs) O(hmin{s+1,2s−3})

– p. 13/43

�

�

�

�

�

�

�

�

�

Convergence on stiff semilinear problems

y′(t) = Jy + g(t, y), µ[J] = O(1), Lg(y) = O(1).

The global error yn − y(tn) fulfils

LobattoIIIA(s) RadauIIA(s− 1) SAFERK(α, s)

O(hmax{4,s}) O(hs) O(hmin{s+1,2s−3})

Optimal B-convergence O(hq+1): for A−, AS− and ASI−
stable methods fulfilling B(q + 1) and C(q), such that ψ(z)

remains uniformly bounded on C
−.

– p. 13/43

�

�

�

�

�

�

�

�

�

Convergence on stiff semilinear problems

y′(t) = Jy + g(t, y), µ[J] = O(1), Lg(y) = O(1).

The global error yn − y(tn) fulfils

LobattoIIIA(s) RadauIIA(s− 1) SAFERK(α, s)

O(hmax{4,s}) O(hs) O(hmin{s+1,2s−3})

Optimal B-convergence O(hq+1): for A−, AS− and ASI−
stable methods fulfilling B(q + 1) and C(q), such that ψ(z)

remains uniformly bounded on C
−.

ψ(z) =
bT (I−zA)−1ζq

bT (I−zA)−1e
, with ζq := 1

q!

(
1

q+1c
q+1 −Acq

)
,

For SAFERK methods we have ψ(∞) = ζ
(s)
s

1−R(∞) .
– p. 13/43

�

�

�

�

�

�

�

�

�

Convergence on stiff semilinear problems

y′(t) = Jy + g(t, y), µ[J] = O(1), Lg(y) = O(1).

The global error yn − y(tn) fulfils

LobattoIIIA(s) RadauIIA(s− 1) SAFERK(α, s)

O(hmax{4,s}) O(hs) O(hmin{s+1,2s−3})

Optimal B-convergence O(hq+1): for A−, AS− and ASI−
stable methods fulfilling B(q + 1) and C(q), such that ψ(z)

remains uniformly bounded on C
−.

ASI−stability (resp. AS−stability): I − zA is regular,

z ∈ C
−, and (I − zA)−1 (resp. zbT (I − zA)−1) is uniformly

bounded on C
−.

– p. 13/43

�

�

�

�

�

�

�

�

�

Convergence on DAEs

– p. 14/43

�

�

�

�

�

�

�

�

�

Convergence on DAEs

1. Index 1 DAEs

y′(t) = f(y, z), 0 = g(y, z), det(gz(y, z)) 6= 0.

– p. 15/43

�

�

�

�

�

�

�

�

�

Convergence on DAEs

1. Index 1 DAEs

y′(t) = f(y, z), 0 = g(y, z), det(gz(y, z)) 6= 0.

For consistent initial values (y0, z0), i.e. g(y0, z0) = 0, the
advancing solution provided by a Runge-Kutta method fulfils

Yn,i = yn+h

s∑

j=1

aijf(Ynj , Znj), 0 = g(Yn,i, Zn,i), 1 ≤ i ≤ s,

with Yn,1 = yn, Zn,1 = zn, yn+1 = Yn,s and zn+1 = Zn,s.

– p. 15/43

�

�

�

�

�

�

�

�

�

Convergence on DAEs

1. Index 1 DAEs

y′(t) = f(y, z), 0 = g(y, z), det(gz(y, z)) 6= 0.

For consistent initial values (y0, z0), i.e. g(y0, z0) = 0, the
advancing solution provided by a Runge-Kutta method fulfils

Yn,i = yn+h

s∑

j=1

aijf(Ynj , Znj), 0 = g(Yn,i, Zn,i), 1 ≤ i ≤ s,

with Yn,1 = yn, Zn,1 = zn, yn+1 = Yn,s and zn+1 = Zn,s.

For stiffly accurate methods, the numerical solutions are
equivalent to those obtained from the ODE y′ = f(y,G(y)),
with z = G(y).

– p. 15/43

�

�

�

�

�

�

�

�

�

Convergence on DAEs

1. Index 1 DAEs

y′(t) = f(y, z), 0 = g(y, z), det(gz(y, z)) 6= 0.

For consistent initial values (y0, z0), i.e. g(y0, z0) = 0, the
advancing solution provided by a Runge-Kutta method fulfils

Yn,i = yn+h

s∑

j=1

aijf(Ynj , Znj), 0 = g(Yn,i, Zn,i), 1 ≤ i ≤ s,

with Yn,1 = yn, Zn,1 = zn, yn+1 = Yn,s and zn+1 = Zn,s.

For both components y and z we have full order p

LobattoIIIA(s) RadauIIA(s− 1) SAFERK(α, s)

O(h2s−2) O(h2s−3) O(h2s−3)

– p. 15/43

�

�

�

�

�

�

�

�

�

Convergence on DAEs

2. Index 2 DAEs

y′(t) = f(y, z), 0 = g(y), det(gy · fz)(y, z) 6= 0.

– p. 16/43

�

�

�

�

�

�

�

�

�

Convergence on DAEs

2. Index 2 DAEs

y′(t) = f(y, z), 0 = g(y), det(gy · fz)(y, z) 6= 0.

Since eT1A = 0T and the submatrix Ã is regular

Yni = yn + h
s∑

j=1

aijf(Ynj , Znj), 0 = g(Yni), 1 ≤ i ≤ s

admits a locally unique solution {(Yni, Zni)}s
i=1 such that

Yn1 = yn and Zn1 = zn.

We have that zn+1 = Zns and yn+1 = Yns, with g(yn+1) = 0.

– p. 16/43

�

�

�

�

�

�

�

�

�

Convergence on DAEs

2. Index 2 DAEs

y′(t) = f(y, z), 0 = g(y), det(gy · fz)(y, z) 6= 0.

L. Jay (BIT, 1993): global error estimates for the whole family
of stiffly accurate methods with a first internal stage of explicit

type and a regular submatrix Ã = (aij)2≤i,j≤s.

For consistent initial values (y0, z0), we get

LobattoIIIA(s) RadauIIA(s− 1) SAFERK(α, s)

O(h2s−2, hs−1) O(h2s−3, hs−1) O(h2s−3, hs)

– p. 16/43

�

�

�

�

�

�

�

�

�

Implementation Issues

– p. 17/43

�

�

�

�

�

�

�

�

�

Implementation Issues

1. Solving the stage equation:

– p. 18/43

�

�

�

�

�

�

�

�

�

Implementation Issues

1. Solving the stage equation:

Since A =

(
0 0T

A1 Ã

)
, the stage equation

Y = e⊗ yn + h(A⊗ I)F (tn, Y),

with Y = (Y T
1 , . . . , Y

T
4)T , Yi ≈ y(tn + hci), reduces to

Z − h(A1 ⊗ I)f(tn, yn) − h(Ã⊗ I)F (Z) = 0

with Z = (ZT
2 , Z

T
3 , Z

T
4)T , and Zi = Yi − yn.

– p. 18/43

�

�

�

�

�

�

�

�

�

Implementation Issues

1. Solving the stage equation:

Since A =

(
0 0T

A1 Ã

)
, the stage equation

Y = e⊗ yn + h(A⊗ I)F (tn, Y),

with Y = (Y T
1 , . . . , Y

T
4)T , Yi ≈ y(tn + hci), reduces to

Z − h(A1 ⊗ I)f(tn, yn) − h(Ã⊗ I)F (Z) = 0

with Z = (ZT
2 , Z

T
3 , Z

T
4)T , and Zi = Yi − yn.

The simplified Newton iteration then reads as

(I−h(Ã⊗J))∆Z(ν) = −Z(ν)+h(A1⊗I)f(tn, yn)+h(Ã⊗I)F (Z(ν))

J =
∂f

∂y
(tn, yn), ∆Z(ν) = Z(ν+1) − Z(ν).

– p. 18/43

�

�

�

�

�

�

�

�

�

Implementation Issues

Since T−1Ã−1T = Λ =




γ 0 0

0 δ −ω
0 ω δ


, the iteration process is

(h−1Λ ⊗ I − I ⊗ J)∆W (ν) = −h−1(Λ ⊗ I)W (ν)

+ΛT−1A1 ⊗ f(tn, yn)

+(T−1 ⊗ I)F ((T ⊗ I)W (ν))

with W (ν) := (T−1 ⊗ I)Z(ν) and ∆W (ν) = W (ν+1) −W (ν).

– p. 19/43

�

�

�

�

�

�

�

�

�

Implementation Issues

Since T−1Ã−1T = Λ =




γ 0 0

0 δ −ω
0 ω δ


, the iteration process is

(h−1Λ ⊗ I − I ⊗ J)∆W (ν) = −h−1(Λ ⊗ I)W (ν)

+ΛT−1A1 ⊗ f(tn, yn)

+(T−1 ⊗ I)F ((T ⊗ I)W (ν))

with W (ν) := (T−1 ⊗ I)Z(ν) and ∆W (ν) = W (ν+1) −W (ν).

In particular, this linear system requires a LU-decomposition

for the matrix (h−1γI − J) at each integration step.

The corresponding iteration for the RadauIIA method is
essentially the same as for SAFERK methods but with
A1 = 0.

– p. 19/43

�

�

�

�

�

�

�

�

�

Implementation Issues

(h−1Λ ⊗ I − I ⊗ J)∆W (ν) = −h−1(Λ ⊗ I)W (ν)

+ΛT−1A1 ⊗ f(tn, yn)

+(T−1 ⊗ I)F ((T ⊗ I)W (ν)).

The iterative scheme is stopped at the first iteration r, such
that

max
2≤i≤4

∥∥Zr
i − Zr−1

i

∥∥ ≤ c · Tol, c := 0′03.

– p. 20/43

�

�

�

�

�

�

�

�

�

Implementation Issues

(h−1Λ ⊗ I − I ⊗ J)∆W (ν) = −h−1(Λ ⊗ I)W (ν)

+ΛT−1A1 ⊗ f(tn, yn)

+(T−1 ⊗ I)F ((T ⊗ I)W (ν)).

The iterative scheme is stopped at the first iteration r, such
that

max
2≤i≤4

∥∥Zr
i − Zr−1

i

∥∥ ≤ c · Tol, c := 0′03.

For the first integration step n = 0 and the first iterate ν = 0

we consider Z(0) = 0 (i.e., W (0) = 0) and then

(h−1Λ ⊗ I − I ⊗ J)W (1) = (ΛT−1A1 + T−1ẽ) ⊗ f(t0, y0)

– p. 20/43

�

�

�

�

�

�

�

�

�

Implementation Issues

(h−1Λ ⊗ I − I ⊗ J)∆W (ν) = −h−1(Λ ⊗ I)W (ν)

+ΛT−1A1 ⊗ f(tn, yn)

+(T−1 ⊗ I)F ((T ⊗ I)W (ν)).

The iterative scheme is stopped at the first iteration r, such
that

max
2≤i≤4

∥∥Zr
i − Zr−1

i

∥∥ ≤ c · Tol, c := 0′03.

For subsequent time steps, extrapolated collocation initial
guesses are considered:

Z
(0)
i,n+1 = q(tn+1 + cihn+1) + yn − yn+1, 1 ≤ i ≤ 4,

with q(t) ∈ Π3 such that q(tn) = 0 and q(tn + cihn) = Zi,n,
2 ≤ i ≤ 4.

– p. 20/43

�

�

�

�

�

�

�

�

�

Implementation Issues

2. Embedded formula for the local error estimation:

– p. 21/43

�

�

�

�

�

�

�

�

�

Implementation Issues

2. Embedded formula for the local error estimation:

A fourth order formula cannot be embedded to a given
SAFERK(α, 4) method (of order 5).

– p. 21/43

�

�

�

�

�

�

�

�

�

Implementation Issues

2. Embedded formula for the local error estimation:

For each SAFERK(α, 4) method, a one-parameter family of
third order methods can be embedded.

0 0 0 0 0

c2 a21

c3 a31 Ã

c4 a41

(5) b1 b2 b3 b4

(3) d1 d2 d3 d4

– p. 21/43

�

�

�

�

�

�

�

�

�

Implementation Issues

2. Embedded formula for the local error estimation:

For each SAFERK(α, 4) method, a one-parameter family of
third order methods can be embedded.

0 0 0 0 0

c2 a21

c3 a31 Ã

c4 a41

(5) b1 b2 b3 b4

(3) d1 d2 d3 d4

The local error estimation for the RadauIIA(3) requires an
extra function evaluation at each integration point f(tn, yn)
(by adding a first stage of explicit type).

– p. 21/43

�

�

�

�

�

�

�

�

�

Implementation Issues

2. Embedded formula for the local error estimation:

For each SAFERK(α, 4) method, a one-parameter family of
third order methods can be embedded.

0 0 0 0 0

c2 a21

c3 a31 Ã

c4 a41

(5) b1 b2 b3 b4

(3) d1 d2 d3 d4

Hence, the local error estimation for both SAFERK(α, 4)
and RadauIIA(3) methods requires the same number of
function evaluations at each integration step.

– p. 21/43

�

�

�

�

�

�

�

�

�

Implementation Issues

From the stage equation for the SAFERK(α, 4) method:

hF (Z) = (Ã−1 ⊗ I) (Z − hA1 ⊗ f(tn, yn)) .

– p. 22/43

�

�

�

�

�

�

�

�

�

Implementation Issues

From the stage equation for the SAFERK(α, 4) method:

hF (Z) = (Ã−1 ⊗ I) (Z − hA1 ⊗ f(tn, yn)) .

The local error estimator

ŷn+1−yn+1 = h(d1−b1)f(tn, yn)+h

4∑

i=2

(di−bi)f (tn + cih, yn + Zi)

can be expressed as ŷn+1 − yn+1 = hf(tn, yn) · e1 +
4∑

i=2

ei · Zi,

with

e1 := (d1 − b1) − (d̃− b̃)T Ã−1A1,

(e2, e3, e4)
T := (d̃− b̃)T Ã−1.

– p. 22/43

�

�

�

�

�

�

�

�

�

Implementation Issues

However, on linear problems y′ = λy, this local error estimator is
unbounded for z = hλ→ ∞

ŷn+1 − yn+1 ≈ e1zyn.

– p. 23/43

�

�

�

�

�

�

�

�

�

Implementation Issues

However, on linear problems y′ = λy, this local error estimator is
unbounded for z = hλ→ ∞

ŷn+1 − yn+1 ≈ e1zyn.

A filtering process is then considered

err = (I − hγ−1J)−1(ŷn+1 − yn+1)

Recall that an LU-decomposition for (h−1γI − J) is already
available.

– p. 23/43

�

�

�

�

�

�

�

�

�

Implementation Issues

However, on linear problems y′ = λy, this local error estimator is
unbounded for z = hλ→ ∞

ŷn+1 − yn+1 ≈ e1zyn.

A filtering process is then considered

err = (I − hγ−1J)−1(ŷn+1 − yn+1)

Recall that an LU-decomposition for (h−1γI − J) is already
available.

Observe that we still have err = O(h4) for h→ 0,
whereas for linear problems and z → ∞

err → −(e1γ)yn.

– p. 23/43

�

�

�

�

�

�

�

�

�

Implementation Issues

A second filtering is done after rejections with ‖err‖ > 1:

ẽrr = (I − hγ−1J)−1

(
e1hf(tn, yn + err) +

4∑

i=2

eiZi

)

– p. 24/43

�

�

�

�

�

�

�

�

�

Implementation Issues

A second filtering is done after rejections with ‖err‖ > 1:

ẽrr = (I − hγ−1J)−1

(
e1hf(tn, yn + err) +

4∑

i=2

eiZi

)

Now, for linear problems and z → ∞

ẽrr =
1 − z(γ−1 − e1)

1 − zγ−1
err → 0 ⇐⇒ e1 = γ−1.

– p. 24/43

�

�

�

�

�

�

�

�

�

Implementation Issues

A second filtering is done after rejections with ‖err‖ > 1:

ẽrr = (I − hγ−1J)−1

(
e1hf(tn, yn + err) +

4∑

i=2

eiZi

)

Now, for linear problems and z → ∞

ẽrr =
1 − z(γ−1 − e1)

1 − zγ−1
err → 0 ⇐⇒ e1 = γ−1.

This latter condition determines a unique embedded method
(i.e., the parameter d1) for the underlying SAFERK(α, 4)
method.

– p. 24/43

�

�

�

�

�

�

�

�

�

Implementation Issues

A second filtering is done after rejections with ‖err‖ > 1:

ẽrr = (I − hγ−1J)−1

(
e1hf(tn, yn + err) +

4∑

i=2

eiZi

)

Now, for linear problems and z → ∞

ẽrr =
1 − z(γ−1 − e1)

1 − zγ−1
err → 0 ⇐⇒ e1 = γ−1.

The filtered local error estimator is then computed from

(h−1γI − J)err = f(tn, yn) + h−1
4∑

i=2

(eiγ)Zi.

– p. 24/43

�

�

�

�

�

�

�

�

�

Implementation Issues

A second filtering is done after rejections with ‖err‖ > 1:

ẽrr = (I − hγ−1J)−1

(
e1hf(tn, yn + err) +

4∑

i=2

eiZi

)

Now, for linear problems and z → ∞

ẽrr =
1 − z(γ−1 − e1)

1 − zγ−1
err → 0 ⇐⇒ e1 = γ−1.

The filtered local error estimator is then computed from

(h−1γI − J)err = f(tn, yn) + h−1
4∑

i=2

(eiγ)Zi.

The stepsize prediction is done under the same conditions as
for the RADAU5 code, preferably Gustaffson’s controller:

‖errn+1‖ ≈ Cnh
4
n,

Cn+1

Cn
≈

Cn

Cn−1
.

– p. 24/43

�

�

�

�

�

�

�

�

�

Numerical experiments

– p. 25/43

�

�

�

�

�

�

�

�

�

Numerical experiments

We present efficiency plots for the RADAU5 code and a
RADAU5-based implementation for some selected 4-stage
SAFERK methods on several test problems.

Comparisons regarding the variable order code RADAU (based
on RadauIIA methods of orders 5,9,13) will be also drawn.

– p. 26/43

�

�

�

�

�

�

�

�

�

Numerical experiments

We present efficiency plots for the RADAU5 code and a
RADAU5-based implementation for some selected 4-stage
SAFERK methods on several test problems.

Comparisons regarding the variable order code RADAU (based
on RadauIIA methods of orders 5,9,13) will be also drawn.

The free parameter α defining the 4-stage SAFERK
methods can be substituted by β, standing for the node c3
(0 = c1 < c2(β) < c3 := β < 1 = c4):

R(∞, β) =
(β − 1)(5β − 2)

β(5β − 3)

K4(β) :=
EC5(SAFERK(β, 4))

EC5(RadauIIA(3))
= 2

√
58

103
· |1 − 5β + 5β2|

|1 − 2β| .

– p. 26/43

�

�

�

�

�

�

�

�

�

Numerical experiments

A-stable SAFERK methods with K4(β) ≤ 1 are obtained iff
β1 ≤ β ≤ β2, with

β1 = 5+
√

5
10

.
= 0′723, β2 = 1

2 + 1
10

√
248+

√
40479

29
.
= 0′893.

– p. 27/43

�

�

�

�

�

�

�

�

�

Numerical experiments

A-stable SAFERK methods with K4(β) ≤ 1 are obtained iff
β1 ≤ β ≤ β2, with

β1 = 5+
√

5
10

.
= 0′723, β2 = 1

2 + 1
10

√
248+

√
40479

29
.
= 0′893.

Depending on the kind of problem under consideration, it could
be preferred to have either more damping at infinity or smaller
error coefficients in the principal term of the local error.

– p. 27/43

�

�

�

�

�

�

�

�

�

Numerical experiments

A-stable SAFERK methods with K4(β) ≤ 1 are obtained iff
β1 ≤ β ≤ β2, with

β1 = 5+
√

5
10

.
= 0′723, β2 = 1

2 + 1
10

√
248+

√
40479

29
.
= 0′893.

Depending on the kind of problem under consideration, it could
be preferred to have either more damping at infinity or smaller
error coefficients in the principal term of the local error.

For numerical illustrations regarding fixed stepsize integrations,
in JCAM2010 we consider

METHOD β R(∞, β) K(β)

SAFERK1 0.73 −0.9388 . . . 0.0473 . . .

SAFERK2 0.74 −0.8532 . . . 0.1188 . . .

SAFERK3 0.75 −0.7777 . . . 0.1876 . . .

– p. 27/43

�

�

�

�

�

�

�

�

�

Numerical experiments

In order to balance the influence of the damping at infinity and
the principal term of local error, we consider the following
optimization options:

min
β∈[β1,β2]

|R(∞, β)| + K(β) →֒ SAFERK4;

min
β∈[β1,β2]

max{|R(∞, β)|,K(β)} →֒ SAFERK5

– p. 28/43

�

�

�

�

�

�

�

�

�

Numerical experiments

In order to balance the influence of the damping at infinity and
the principal term of local error, we consider the following
optimization options:

min
β∈[β1,β2]

|R(∞, β)| + K(β) →֒ SAFERK4;

min
β∈[β1,β2]

max{|R(∞, β)|,K(β)} →֒ SAFERK5

Summing up:

METHOD β R(∞, β) K(β)

SAFERK1 0.73 −0.9388 . . . 0.0473 . . .

SAFERK2 0.74 −0.8532 . . . 0.1188 . . .

SAFERK3 0.75 −0.7777 . . . 0.1876 . . .

SAFERK4 0.7566 . . . −0.7325 . . . 0.2317 . . .

SAFERK5 0.79997 . . . −0.5001 . . . 0.5001 . . .
– p. 28/43

�

�

�

�

�

�

�

�

�

Numerical experiments

The Ring Modulator:

The problem comes from electrical circuit analysis and
describes the behavior of the ring modulator for a given circuit
diagram with 7 capacitors and 8 inductors.

– p. 29/43

�

�

�

�

�

�

�

�

�

Numerical experiments

The Ring Modulator:

The problem comes from electrical circuit analysis and
describes the behavior of the ring modulator for a given circuit
diagram with 7 capacitors and 8 inductors.

– p. 29/43

�

�

�

�

�

�

�

�

�

Numerical experiments

The Ring Modulator:

The problem comes from electrical circuit analysis and
describes the behavior of the ring modulator for a given circuit
diagram with 7 capacitors and 8 inductors.

For nonzero values of a certain free-parameter associated to
the circuit, the problem reduces to a system of 15 ODEs

y′ = f(t, y), y ∈ R
15, t ∈ [0, 10−3].

– p. 29/43

�

�

�

�

�

�

�

�

�

Numerical experiments

The Ring Modulator:

The problem comes from electrical circuit analysis and
describes the behavior of the ring modulator for a given circuit
diagram with 7 capacitors and 8 inductors.

For nonzero values of a certain free-parameter associated to
the circuit, the problem reduces to a system of 15 ODEs

y′ = f(t, y), y ∈ R
15, t ∈ [0, 10−3].

For the work-precision diagrams, we have used:

rtol = atol = 10−(7+m/4), 0 ≤ m ≤ 20,

h0 = 10−2 · rtol.

– p. 29/43

�

�

�

�

�

�

�

�

�

Numerical experiments

The Ring Modulator:

The problem comes from electrical circuit analysis and
describes the behavior of the ring modulator for a given circuit
diagram with 7 capacitors and 8 inductors.

For nonzero values of a certain free-parameter associated to
the circuit, the problem reduces to a system of 15 ODEs

y′ = f(t, y), y ∈ R
15, t ∈ [0, 10−3].

For the work-precision diagrams, we have used:

rtol = atol = 10−(7+m/4), 0 ≤ m ≤ 20,

h0 = 10−2 · rtol.
The code RADAU failed at the tolerances for 0 ≤ m ≤ 15.

– p. 29/43

The Ring Modulator:

3 4 5 6 7 8 9 10
0.5

1

1.5

2

2.5

3

3.5

4
x 10

6

scd

fc
n

RING MODULATOR (ATOL=RTOL=10−7...10−12, H0=10−2⋅RTOL)

RADAU5
SAFERK1
SAFERK2
SAFERK3
SAFERK4
SAFERK5
RADAU

– p. 30/43

�

�

�

�

�

�

�

�

�

Numerical experiments

The two Transistor Amplifier:

The problem originates from electrical circuit analysis and it is
a model for a two transistor amplifier.

– p. 31/43

�

�

�

�

�

�

�

�

�

Numerical experiments

The two Transistor Amplifier:

The problem originates from electrical circuit analysis and it is
a model for a two transistor amplifier.

– p. 31/43

�

�

�

�

�

�

�

�

�

Numerical experiments

The two Transistor Amplifier:

The problem originates from electrical circuit analysis and it is
a model for a two transistor amplifier.

It is a stiff DAE of index 1 and dimension 8

My′ = f(t, y), y ∈ R
8, t ∈ [0, 0.2].

where the matrix M is tridiagonal and has rank 5. All
components of y are of index 1.

– p. 31/43

�

�

�

�

�

�

�

�

�

Numerical experiments

The two Transistor Amplifier:

The problem originates from electrical circuit analysis and it is
a model for a two transistor amplifier.

It is a stiff DAE of index 1 and dimension 8

My′ = f(t, y), y ∈ R
8, t ∈ [0, 0.2].

where the matrix M is tridiagonal and has rank 5. All
components of y are of index 1.

For the work-precision diagrams, we used:

rtol = atol = 10−(6+m/4), 0 ≤ m ≤ 16,

h0 = 10−2 · rtol.

– p. 31/43

The two Transistor Amplifier:

5 6 7 8 9 10 11
1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

scd

fc
n

TWO TRANSISTOR AMPLIFIER (ATOL=RTOL=10−6...10−10)

RADAU5
SAFERK1
SAFERK2
SAFERK3
SAFERK4
SAFERK5
RADAU

– p. 32/43

The two Transistor Amplifier:

5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5
1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

scd

fc
n

TWO TRANSISTOR AMPLIFIER (ATOL=RTOL=10−6...10−10)

RADAU5
SAFERK4
SAFERK5
RADAU

– p. 32/43

�

�

�

�

�

�

�

�

�

Numerical experiments

The water tube system:

The problem is an index 2 DAE of dimension 49, and models
the water flow through a tube system, by considering
turbulence and the roughness of the tube walls:

– p. 33/43

�

�

�

�

�

�

�

�

�

Numerical experiments

The water tube system:

The problem is an index 2 DAE of dimension 49, and models
the water flow through a tube system, by considering
turbulence and the roughness of the tube walls:

– p. 33/43

�

�

�

�

�

�

�

�

�

Numerical experiments

The water tube system:

The problem is an index 2 DAE of dimension 49, and models
the water flow through a tube system, by considering
turbulence and the roughness of the tube walls:

My′ = f(t, y), y ∈ R
49, t ∈ [0, 17 · 3600], M =



Mφ 0 0

0 0 0

0 0 Mp


 ,

– p. 33/43

�

�

�

�

�

�

�

�

�

Numerical experiments

The water tube system:

The problem is an index 2 DAE of dimension 49, and models
the water flow through a tube system, by considering
turbulence and the roughness of the tube walls:

My′ = f(t, y), y ∈ R
49, t ∈ [0, 17 · 3600], M =



Mφ 0 0

0 0 0

0 0 Mp


 ,

where Mφ ∈ R
18,18 is diagonal, and Mp ∈ R

13,13 only has nonzero
elements Mp

11 and Mp
22.

– p. 33/43

�

�

�

�

�

�

�

�

�

Numerical experiments

The water tube system:

The problem is an index 2 DAE of dimension 49, and models
the water flow through a tube system, by considering
turbulence and the roughness of the tube walls:

My′ = f(t, y), y ∈ R
49, t ∈ [0, 17 · 3600], M =



Mφ 0 0

0 0 0

0 0 Mp


 ,

The first 38 components of y are of index 1, whereas the last
11 are of index 2.

– p. 33/43

�

�

�

�

�

�

�

�

�

Numerical experiments

The water tube system:

The problem is an index 2 DAE of dimension 49, and models
the water flow through a tube system, by considering
turbulence and the roughness of the tube walls:

My′ = f(t, y), y ∈ R
49, t ∈ [0, 17 · 3600], M =



Mφ 0 0

0 0 0

0 0 Mp


 ,

The first 38 components of y are of index 1, whereas the last
11 are of index 2.

The problem has been integrated with

rtol = 10−(6+m/4), h0 = atol = rtol, 0 ≤ m ≤ 24.

RADAU failed for m = 0, . . . , 6, 8, 9, 11, . . . , 14, 16, . . . , 20, 24.

– p. 33/43

The water tube system:

1 2 3 4 5 6 7
0

2000

4000

6000

8000

10000

12000

scd

fc
n

WATER TUBE (ATOL=RTOL=10−6...10−12)

RADAU5
SAFERK2
SAFERK3
SAFERK4
SAFERK5

– p. 34/43

�

�

�

�

�

�

�

�

�

Numerical experiments

The Plate Problem:

utt + ωut + σ∆∆u = f(x, y, t), (x, y) ∈ Ω, 0 ≤ t ≤ 7,

– p. 35/43

�

�

�

�

�

�

�

�

�

Numerical experiments

The Plate Problem:

utt + ωut + σ∆∆u = f(x, y, t), (x, y) ∈ Ω, 0 ≤ t ≤ 7,

Ω = {(x, y)/ 0 ≤ x ≤ 2, 0 ≤ y ≤ 4/3}

u|∂Ω=0, ∆u|∂Ω=0, u(x, y, 0) = 0, ut(x, y, 0) = 0.

f(x, y, t) =

{
200(e−5(t−x−2)2 + e−5(t−x−5)2), if y = 4/9, 8/9,

0, otherwise.

– p. 35/43

�

�

�

�

�

�

�

�

�

Numerical experiments

The Plate Problem:

utt + ωut + σ∆∆u = f(x, y, t), (x, y) ∈ Ω, 0 ≤ t ≤ 7,

We consider the grid xi = iτ (0 ≤ i ≤ 9), yj = jτ

(0 ≤ j ≤ 6), with τ = 2/9, whereas ∆∆ is discretized by
means of

1

2 −8 2

1 −8 20 −8 1

2 −8 2

1

– p. 35/43

�

�

�

�

�

�

�

�

�

Numerical experiments

The Plate Problem:

utt + ωut + σ∆∆u = f(x, y, t), (x, y) ∈ Ω, 0 ≤ t ≤ 7,

An ODE of dimension 80 with Jacobian eigenvalues in the
wedge {z/ Arg(−z) ≤ 71o, −500 ≤ Re z < 0} is obtained for
ω = 1000 and σ = 100.

– p. 35/43

�

�

�

�

�

�

�

�

�

Numerical experiments

The Plate Problem:

utt + ωut + σ∆∆u = f(x, y, t), (x, y) ∈ Ω, 0 ≤ t ≤ 7,

An ODE of dimension 80 with Jacobian eigenvalues in the
wedge {z/ Arg(−z) ≤ 71o, −500 ≤ Re z < 0} is obtained for
ω = 1000 and σ = 100.

This problem has been integrated in the interval [0, 7] with
tolerances

rtol = 10−(2+m/4), atol = 10−3 · rtol, 0 ≤ m ≤ 32,

h0 = 10−2 · rtol.

– p. 35/43

The Plate Problem:

2 3 4 5 6 7 8 9 10 11
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

scd

fc
n

PLATE (ATOL=10−3⋅ RTOL, RTOL=10−2...10−10)

RADAU5
SAFERK1
SAFERK2
SAFERK3
SAFERK4
SAFERK5
RADAU

– p. 36/43

The Plate Problem:

2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

scd

fc
n

PLATE (ATOL=10−3⋅ RTOL, RTOL=10−2...10−10)

RADAU5
SAFERK4
SAFERK5
RADAU

– p. 36/43

�

�

�

�

�

�

�

�

�

Numerical experiments

The Robertson reaction:





y′1(t) = −0.04y1(t) + 104y2y3, y1(0) = 1,

y′2(t) = 0.04y1(t) − 104y2y3 − 3 · 107y2
2, y2(0) = 0,

y′3(t) = 3 · 107y2
2, y3(0) = 0.

– p. 37/43

�

�

�

�

�

�

�

�

�

Numerical experiments

The Robertson reaction:





y′1(t) = −0.04y1(t) + 104y2y3, y1(0) = 1,

y′2(t) = 0.04y1(t) − 104y2y3 − 3 · 107y2
2, y2(0) = 0,

y′3(t) = 3 · 107y2
2, y3(0) = 0.

This problem has an initial transient phase close to t = 0.
Moreover, it has a semi-stable equilibrium, which gives rise to
unstable integrations in large intervals for non Strongly
A-stable methods.

– p. 37/43

�

�

�

�

�

�

�

�

�

Numerical experiments

The Robertson reaction:





y′1(t) = −0.04y1(t) + 104y2y3, y1(0) = 1,

y′2(t) = 0.04y1(t) − 104y2y3 − 3 · 107y2
2, y2(0) = 0,

y′3(t) = 3 · 107y2
2, y3(0) = 0.

This problem has an initial transient phase close to t = 0.
Moreover, it has a semi-stable equilibrium, which gives rise to
unstable integrations in large intervals for non Strongly
A-stable methods.

It has been integrated in t ∈ [0, 1011] with

rtol = 10−(4+m/4), 0 ≤ m ≤ 32,

atol = 10−2 · rtol, and atol = 10−4 · rtol,
h0 = 10−2 · rtol.

– p. 37/43

The Robertson reaction:

−1 0 1 2 3 4 5 6 7 8 9
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

scd

fc
n

ROBERTSON (RTOL=10−4...10−12, ATOL=10−2⋅ RTOL)

RADAU5
SAFERK2
SAFERK3
SAFERK4
SAFERK5

– p. 38/43

The Robertson reaction:

0 1 2 3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

10000

12000

14000

scd

fc
n

ROBERTSON (RTOL=10−4...10−12, ATOL=10−4⋅ RTOL)

RADAU5
SAFERK1
SAFERK2
SAFERK3
SAFERK4
SAFERK5

– p. 38/43

�

�

�

�

�

�

�

�

�

Concluding remarks

– p. 39/43

�

�

�

�

�

�

�

�

�

Concluding remarks

Adaptive strongly A-stable 4-stage SAFERK methods have
been shown to be competitive to the RadauIIA(3) method
when implemented in a similar fashion as in the RADAU5 code
by E. Hairer and G. Wanner.

– p. 40/43

�

�

�

�

�

�

�

�

�

Concluding remarks

Adaptive strongly A-stable 4-stage SAFERK methods have
been shown to be competitive to the RadauIIA(3) method
when implemented in a similar fashion as in the RADAU5 code
by E. Hairer and G. Wanner.

Adaptive SAFERK methods have been tested on 23
problems from the Test Set for IVP Solvers (Univ. Bari, Italy)

http://pitagora.dm.uniba.it/ testset/

and the Ernst Hairer’s website

http://www.unige.ch/ hairer/testset/testset.html.

SAFERKn

clearly improves

RADAU5

10/23

slightly improves 8/23

similar to 3/23

worse than 2/23
– p. 40/43

�

�

�

�

�

�

�

�

�

Concluding remarks

Regarding the variable order code RADAU, adaptive
SAFERK methods with enough damping at infinity turn out
to be competitive and perform similarly on most of problems
when considering medium tolerances.

– p. 41/43

�

�

�

�

�

�

�

�

�

Concluding remarks

Regarding the variable order code RADAU, adaptive
SAFERK methods with enough damping at infinity turn out
to be competitive and perform similarly on most of problems
when considering medium tolerances.

For stringent tolerances, the RADAU code reflects the
combination of higher order (RADAUIIA) methods, and it is
clearly advantageous over both SAFERK and RADAU5.

– p. 41/43

�

�

�

�

�

�

�

�

�

Acknowledgements

– p. 42/43

�

�

�

�

�

�

�

�

�

Acknowledgements

We are indebted to Professor E. Hairer for his suggestions and
for giving us permission to use and modify the code RADAU5
in order to test the performance of SAFERK methods.

– p. 43/43

�

�

�

�

�

�

�

�

�

Acknowledgements

We are indebted to Professor E. Hairer for his suggestions and
for giving us permission to use and modify the code RADAU5
in order to test the performance of SAFERK methods.

Many thanks

for your attention.

– p. 43/43

		extbf {OUTLINE}
		extbf {OUTLINE}
		extbf {$SAFERK$ methods}
		extbf {$SAFERK$ methods}
		extbf {$SAFERK$ methods}

		extbf {$SAFERK$ methods}
		extbf {$SAFERK$ methods}
		extbf {$SAFERK$ methods}
		extbf {$SAFERK$ methods}
		extbf {$SAFERK$ methods}

		extbf {$SAFERK$ methods}
		extbf {$SAFERK$ methods}
		extbf {$SAFERK$ methods}
		extbf {$SAFERK$ methods}

		extbf {The Principal Error Term}
		extbf {The Principal Error Term}
		extbf {The Principal Error Term}

		extbf {The Principal Error Term}
		extbf {The Principal Error Term}
		extbf {The Principal Error Term}
		extbf {The Principal Error Term}
		extbf {The Principal Error Term}

		extbf {Convergence on stiff semilinear problems}
		extbf {Convergence on stiff semilinear problems}
		extbf {Convergence on stiff semilinear problems}
		extbf {Convergence on stiff semilinear problems}
		extbf {Convergence on stiff semilinear problems}
		extbf {Convergence on stiff semilinear problems}

		extbf {Convergence on DAEs}
		extbf {Convergence on DAEs}
		extbf {Convergence on DAEs}
		extbf {Convergence on DAEs}
		extbf {Convergence on DAEs}

		extbf {Convergence on DAEs}
		extbf {Convergence on DAEs}
		extbf {Convergence on DAEs}

		extbf {Implementation Issues}
		extbf {Implementation Issues}
		extbf {Implementation Issues}
		extbf {Implementation Issues}

		extbf {Implementation Issues}
		extbf {Implementation Issues}

		extbf {Implementation Issues}
		extbf {Implementation Issues}
		extbf {Implementation Issues}

		extbf {Implementation Issues}
		extbf {Implementation Issues}
		extbf {Implementation Issues}
		extbf {Implementation Issues}
		extbf {Implementation Issues}

		extbf {Implementation Issues}
		extbf {Implementation Issues}

		extbf {Implementation Issues}
		extbf {Implementation Issues}
		extbf {Implementation Issues}

		extbf {Implementation Issues}
		extbf {Implementation Issues}
		extbf {Implementation Issues}
		extbf {Implementation Issues}
		extbf {Implementation Issues}

		extbf {Numerical experiments}
		extbf {Numerical experiments}
		extbf {Numerical experiments}

		extbf {Numerical experiments}
		extbf {Numerical experiments}
		extbf {Numerical experiments}

		extbf {Numerical experiments}
		extbf {Numerical experiments}

		extbf {Numerical experiments}
		extbf {Numerical experiments}
		extbf {Numerical experiments}
		extbf {Numerical experiments}
		extbf {Numerical experiments}

		extbf {The Ring Modulator:}
		extbf {Numerical experiments}
		extbf {Numerical experiments}
		extbf {Numerical experiments}
		extbf {Numerical experiments}

		extbf {The two Transistor Amplifier:}
		extbf {The two Transistor Amplifier:}

		extbf {Numerical experiments}
		extbf {Numerical experiments}
		extbf {Numerical experiments}
		extbf {Numerical experiments}
		extbf {Numerical experiments}
		extbf {Numerical experiments}

		extbf {The water tube system:}
		extbf {Numerical experiments}
		extbf {Numerical experiments}
		extbf {Numerical experiments}
		extbf {Numerical experiments}
		extbf {Numerical experiments}

		extbf {The Plate Problem:}
		extbf {The Plate Problem:}

		extbf {Numerical experiments}
		extbf {Numerical experiments}
		extbf {Numerical experiments}

		extbf {The Robertson reaction:}
		extbf {The Robertson reaction:}

		extbf {Concluding remarks}
		extbf {Concluding remarks}
		extbf {Concluding remarks}

		extbf {Concluding remarks}
		extbf {Concluding remarks}

		extbf {Acknowledgements}
		extbf {Acknowledgements}
		extbf {Acknowledgements}

