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Bifurcation in an Expanding Pipe

Incompressible, viscous fluid satisfying Navier-Stokes equations

∂u

∂t
− 1

Re
∇2u +∇ · (u⊗ u) +∇p = 0,

∇ · u = 0.

Re is the non-dimensional Reynolds number

Re =
vL

ν
,

where v is a typical velocity, L a typical length scale and ν the fluid
viscosity.

Edward Hall (University of Nottingham) Bifurcation Phenomena in Open Systems SciCADE 2011 4 / 41



Bifurcation in an Expanding Pipe

Problems:
3 spatial dimensions.

Length of recirculation region varies linearly with Re.

Bifurcations occur at high Re, therefore very long pipe is required.

Solutions:

Utilize symmetry of the pipe.

Use mesh adaptivity.
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Bifurcation Phenomena in Open Systems

Flow through a sudden expansion in a channel.
Fearn, Mullin and Cliffe 1990.

Steady, Z2 symmetry-breaking bifurcation.
(Rec ≈ 40 for a 1 : 3 expansion ratio)

Flow past a cylinder in a channel.
Jackson 1987; Cliffe and Tavener 2004.

Z2 symmetry-breaking Hopf bifurcation.
(Rec ≈ 123 for a 1 : 2 blockage ratio)

Flow past a sphere in a pipe.
Tavener 1994; Cliffe, Spence and Tavener 2000.

Steady, O(2) symmetry-breaking bifurcation.
(Rec ≈ 359 for a 1 : 2 blockage ratio)

Flow in a pipe with a stenotic region.
Sherwin & Blackburn 2005, 2007, Sherwin, Blackburn & Barkley 2008.

Steady, O(2) symmetry-breaking bifurcation.
(Rec ≈ 721 for a 75% occlusion)
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Channel with a Sudden Expansion

Re = 25

Re = 30

Re = 35

Re = 40
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Channel with a Sudden Expansion - Re = 45
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Channel with a Sudden Expansion - Re = 55
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Bifurcation Problems

Nonlinear Problem

Consider the solution of the following nonlinear problem:

∂u

∂t
+ F (u, λ) = 0,

where

u is the state variable(s);

λ is a parameter (or set of parameters) of physical interest.

F is a differential operator.

Fundamental questions include:

How many solutions exist as λ is varied?

Are the steady state solutions linearly stable?

At what critical parameter value does a bifurcation occur?
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Bifurcation Problems

A (steady) bifurcation occurs at λ∗ when the Jacobian

Fu(u∗, λ∗; ·)

is singular, i.e has a zero eigenvalue.

A Hopf (unsteady) bifurcation occurs if a (non-zero) conjugate pair of
eigenvalues of Fu(u∗, λ∗; ·) cross the imaginary axis with non-zero
speed.

The eigenvalues of Fu(u, λ; ·) tell us whether a solution is stable or
unstable.

If all eigenvalues have positive real part then the solution is linearly
stable.
If any eigenvalue has negative real part, the solution is linearly unstable.
The eigenvalues with smallest real part are termed the most dangerous
eigenvalues.
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Bifurcation Problems

We have two options:

For a particular λ solve the eigenvalue problem: find u := (u, φ, µ)
such that

E(u) ≡

 F (u, λ)
Fu(u, λ;φ)− µφ
〈φ, g〉 − 1

 = 0,

for some appropriate g .

Locate the critical parameter by solving directly:

In the case of a steady bifurcation: find uc := (uc , φc , λc) such that

G(uc) ≡

 F (uc , λc)
Fu(uc , λc ;φc)
〈φc , g〉 − 1

 = 0,

for some appropriate g .
Hopf bifurcation, similar but larger extended system.
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Bifurcation in the presence of O(2) Symmetry

Exploit the underlying group structure within a physical system in
order to rigorously justify the study of (equivalent) simplified
problems.

⇒ Leads to significant computational savings.

Bifurcation with O(2) symmetry.
Vanderbanwhede 1982; Golubitsky & Schaeffer 1985; Golubitsky, Stewart & Schaeffer 1988; Healey & Treacy 1991;

Aston 1991; Cliffe, Spence & Tavener 2000.

O(2) Group

O(2) is a group generated by

Rotations rα, α ∈ R;

A Reflection s.

For any α, β ∈ R, the group actions satisfy

rα+2π = rα, rα+β = rαrβ = rβrα, s2 = r0 = r2π = I , srα = r−αs,

where I is the group identity.
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Bifurcation in the Presence of O(2) Symmetry

Assume that the problem has O(2) symmetry.

F is O(2) equivariant, i.e.,

ργF (u, λ) = F (ργ(u), λ) ∀γ ∈ O(2),

where ργ is the representation of γ on H.

Moreover, taking the Fréchet derivative, we note that for u ∈ HO(2)

ργFu(u, λ)φ = Fu(u, λ)ργ(φ) ∀γ ∈ O(2) ∀φ ∈ H,

where HO(2) = {v ∈ H : v = ργ(v) ∀γ ∈ O(2)}.
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Bifurcation in the Presence of O(2) Symmetry
Standard decomposition

H =
∞∑

m=0

⊕Vm, Vm ⊥ Vl , m 6= l .

where the Vm are O(2) invariant.

Theorem (Cliffe, Spence & Tavener 2000)

Let A be any O(2)-equivariant linear operator on the Hilbert space H, i.e.
ργA = Aργ for all γ ∈ O(2). Then,

A : Vm → Vm, m = 0, 1, 2, . . . .

Eigenvalue problem

Fu(u, λ)φ = µφ, φ ∈ H,

decouples into the infinite set of simpler eigenvalue problems

Fu(u, λ)φ = µφ, φ ∈ Vm, m = 0, 1, 2, . . .
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Bifurcation in the Presence of O(2) Symmetry

Navier-Stokes in cylindrical coordinates

Find u = (ur (r , θ, z), uθ(r , θ, z), uz(r , θ, z), p(r , θ, z))> ∈ H such that

F (u,Re) ≡


− 1

Re∇2uz +∇ · (uzu) + ∂p
∂z

− 1
Re

(
∇2ur − ur

r2 − 2
r2

∂uφ

∂φ

)
+∇ · (uru)− u2

φ

r + ∂p
∂r

− 1
Re

(
∇2uφ − uφ

r2 + 2
r2
∂ur

∂φ

)
+∇ · (uφu) +

uruφ

r + 1
r
∂p
∂φ

−∇ · u

 = 0,

where H = H1(Ω)3 × L2(Ω).

Can show O(2) equivariance of Navier-Stokes equations in cylindrical
coordinates.
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Bifurcation in the Presence of O(2) Symmetry

O(2) Invariant Subspaces of H

Vm = Span




um
r (r , z) cos(mθ)

um
θ (r , z) sin(mθ)

um
z (r , z) cos(mθ)

pm(r , z) cos(mθ)

 ,


um
r (r , z) sin(mθ)

um
θ (r , z) cos(mθ)

um
z (r , z) sin(mθ)

pm(r , z) sin(mθ)


 .
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Hence, the eigenvalue problems

Fu(u,Re)φ = µφ, φ ∈ Vm, m = 0, 1, 2, . . .

only have to be discretised in (r , z).

Can study stability to three dimensional disturbances using a
sequence of two dimensional problems.
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Bifurcation in the Presence of O(2) Symmetry
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Extended System

Seek ûc ∈ HO(2) × Vm × R,m = 1, 2, . . . such that

G(ûc) = 0.
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Bifurcation in the Presence of O(2) Symmetry
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Weak formulation:

Seek ûc ∈ HO(2) × Vm × R,m = 1, 2, . . . such that

N (ûc , v) = 0 ∀v ∈ HO(2) × Vm × R.
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Discontinuous Galerkin Methods

Method Construction

Employ local spaces of discontinuous piecewise polynomials;
Inter-element continuity weakly enforced.

⇒ Hybrid FE/FV Method
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Discontinuous Galerkin Methods

Robustness/stability.

Locally conservative.

Ease of implementation.

Highly parallelisable.

Flexible mesh design (hybrid grids, non-matching grids,
non-uniform/anisotropic polynomial degrees).

Wider choice of stable FE spaces for mixed problems.

Computational overhead/efficiency (increase in DoFs).
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Interior Penalty DG Method

Th = {κ} is a non-degenerate mesh;

For p = {pκ}, pκ ≥ 1, define the finite element space

Sh,p = {v ∈ L2(Ω) : v |κ ∈ Rpκ ∀κ ∈ Th},

where Rp is either Pp or Qp.

DG Discretization

Sh,p = [Sh,p]2 × Sh,p−1 × [Sh,p]3 × Sh,p−1 × R.
DGFEM: Find ûc

h ∈ Sh,p, m = 1, 2, . . ., such that

Nh(ûc
h, vh) = 0 ∀vh ∈ Sh,p.

Schötzau, Schwab & Toselli 2003, 2004, Cockburn, Kanschat & Schötzau 2005

The numerical solution ûc
h is computed using Newton’s method,

together with a block elimination technique. Werner & Spence 1984
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DWR A Posteriori Error Estimation

Measurement Problem: Given a functional J(·) and a user–defined
tolerance TOL > 0, can we efficiently design Sh,p such that

|J(u)− J(uh)| ≤ TOL.

Fluid dynamics: drag and lift coefficients.
Electromagnetics: far field pattern.
Other examples: Eigenvalues, point value, flux, mean value, etc.

Becker & Rannacher 1996, 2001, Larson & Barth 2000, Heuveline & Rannacher 2001 Houston & Süli 2001, 2002

Bangerth & Rannacher 2003, Hartmann & Houston 2002, 2006, Cliffe, H., Houston 2010.
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Eigenvalue problem:

J(û) = µ.
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Bifurcation problem:

J(ûc) = Rec .
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DWR A Posteriori Error Estimation

Dual problem

Find z such that

M(u,uh; w, z) = J(w) ∀w.

Gâteaux derivative of Nh(·, ·):

N ′h,u[w](v, ·) = lim
ε→0

Nh(w + εv, ·)−Nh(w, ·)
ε

.

Linearization of Nh(·, ·):

M(u,uh; u− uh, v) = Nh(u, v)−Nh(uh, v)

=

∫ 1

0
N ′h,u[θu + (1− θ)uh](u− uh, v) dθ

≈ N ′h,u[uh](u− uh, v)
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DWR A Posteriori Error Estimation

Dual problem

Find z such that

M(u,uh; w, z) = J(w) ∀w.

Proposition (Error Representation Formula)

Assuming the dual problem is well–posed, the following result holds:

Rec − Rec
h = −Nh(ûc

h, z− zh) ≡
∑
κ∈Th

ηκ,

for all zh ∈ Sh,p.
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Find z such that

M(u,uh; w, z) = J(w) ∀w.

Proposition (Error Representation Formula)

Assuming the dual problem is well–posed, the following result holds:

Rec − Rec
h = −Nh(ûc

h, z− zh) ≡
∑
κ∈Th

ηκ,

for all zh ∈ Sh,p.

Linearize about ûc
h.

Approximate z with DG method.
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Error Estimation/Mesh Adaptivity

Adaptivity is carried out based on |ηκ|. We use a fixed fraction
strategy - 25%-refinement, 10%-derefinement.

We can use a purely h-refinement strategy, or an hp-refinement
strategy.

The choice of h- or p-refinement is based on the smoothness of both
the primal and dual solutions.

Smoothness determined via decay rate of Legendre coefficients.
Houston, Senior, Süli, 2003.
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Sudden Expansion in a Channel: Problem Setup

ΓOut

ΓIn

ΓWall

ΓWall

ΓWall

ΓCenter
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Sudden Expansion in a Channel: Error Effectivities

r : R = 3 : 1
Re = 35
Eigenvalue = 0.00613553131999

Mesh No No. Eles Eig. Dof Error Effectivity

1 760 16720 6.027E-05 1.92

2 1387 30514 1.540E-05 2.47

3 2479 54538 9.795E-06 1.98

4 4387 96514 6.327E-06 1.58

5 7645 168190 3.845E-06 1.33

6 13243 291346 2.231E-06 1.16

7 22585 496870 1.281E-06 1.00

Effectivity = |Error |/|∑κ∈Th ηκ|.
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Sudden Expansion in a Channel: Mesh under Refinement

Mesh after 5 refinement steps

Contour plot of zm
x
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Sudden Expansion in a Channel: Mesh Detail under
Refinement

Mesh detail near expansion Contour plot of z0
y near expansion
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Sudden Expansion in a Channel: Error Convergence
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Cylindrical Blockage in a Channel: Problem Setup
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Cylindrical Blockage in a Channel: Error Effectivities

r : R = 1 : 2
Re = 100
Eigenvalue = 0.114789963956350 + 2.116719676204527i

Mesh No No. Eles Eig. Dof Error Effecticity

1 816 17952 8.966E-02 1.08

2 1443 31746 2.229E-03 1.54

3 2577 56694 1.455E-04 1.31

4 4590 100980 4.089E-05 0.980

5 8190 180180 1.033E-05 1.01

6 14400 316800 3.870E-06 0.946

7 24843 546546 1.060E-06 1.00
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Cylindrical Blockage in a Channel: Mesh under Refinement

Full Mesh

Mesh Detail near Blockage Contour plot of z0
y near blockage
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Cylindrical Blockage in a Channel: Error Convergence
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Stenosis Problem

Critical Re ≈ 721.

DDmin

L

Lengths in ratio Dmin : D : L = 1 : 2 : 4
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Stenosis: Error Estimation

h-adaptivity
Base DOF Null DOF Rec

h Error Estimate
84480 119040 688.07858 27.337

148962 209901 717.87440 3.629
258588 364374 720.31797 7.739E-01
445830 628215 720.82707 2.280E-01
771408 1086984 720.93597 1.168E-01

1334916 1881018 720.97594 7.677E-02

hp-adaptivity
Base DOF Null DOF Rec

h Error Estimate
84480 119040 688.07858 27.337

146362 206090 708.96275 11.296
193518 271480 716.36055 4.680
259439 363362 721.0237123 3.575E-02
327537 456501 721.0519498 8.054E-04
398569 553522 721.0524660 5.477E-05
499025 691978 721.0524361 4.326E-05

Sherwin & Blackburn 2005: Rec
h ≈ 722.
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Stenosis Grid

Mesh distribution after 5 h-adaptive refinements

Mesh distribution after 6 hp-adaptive refinements
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Flow Through 1:2 Pipe Expansion

Re=372 Re=649

Re=1522 Re=1567

T. Mullin, J.R.T. Seddon, M.D. Mantle, and A.J. Sederman Phys. Fluids 21, 014110 (2009)
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Flow Through 1:2 Pipe Expansion

400 600 800 1000 1200 1400 1600 1800
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10


3

Reynolds number

A
sy

m
m

et
ry

 (m
m

2 )

Re
c
 = 1139±10 

400 600 800 1000 1200 1400 1600 1800
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Reynolds number

A
sy

m
m

et
ry

 (m
m

)

2:1 Expanding Pipe

Linear Plot of Measure

Squared Plot of Measure
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Steady bifurcation occurs at Re = 1139± 10.

Onset of time dependence at Re ≈ 1500.

T. Mullin, J.R.T. Seddon, M.D. Mantle, and A.J. Sederman Phys. Fluids 21, 014110 (2009)
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1:2 Pipe Expansion: Eigenvalues with Re
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1:2 Pipe Expansion: Eigenvalue Errors

Re = 1300, m = 1.

Mesh No. No. Eles Eig. Dofs Eigenvalue
∑

κ∈Th ηκ
1 20000 420000 0.167241E-02 1.741E-06

2 34565 725865 0.167194E-02 1.914E-06

3 65909 1384089 0.167218E-02 9.771E-07

4 111956 2351076 0.167243E-02 5.765E-07

Edward Hall (University of Nottingham) Bifurcation Phenomena in Open Systems SciCADE 2011 38 / 41



1:2 Pipe Expansion: Eigenvalues for m = 1

0 1000 2000 3000 4000 5000 6000
−2

0

2

4

6

8

10

12

14

16

Reynolds Number

E
ig

en
va

lu
e 

m
=

1

Edward Hall (University of Nottingham) Bifurcation Phenomena in Open Systems SciCADE 2011 39 / 41



1:2 Pipe Expansion: Bifurcation Location

hp-adaptive algorithm.

Mesh No. Base Dofs Null Dofs Rec
h Error Indicator

1 232755 325857 4925.5119 211.880

2 311300 434264 4708.2944 342.372

3 448495 624696 4996.9118 85.547

4 844468 1158267 5084.7897 1.663

5 995544 1363010 5084.9472 7.869E-02
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Summary and Outlook

Successfully applied DG and goal-oriented a posteriori error
estimation to bifurcation and stability analysis of incompressible
Navier-Stokes equations.

First mesh converged results for this problem.

There is a steady, supercritical, O(2)-symmetry-breaking bifurcation
at Reynolds number approximately 5080± 5.

This is the same phenomenon as witnessed in the numerical
experiments, but at a very different Reynolds number.

Is O(2) symmetry the wrong model for this problem?

Investigate effect of perturbations that destroy the O(2) symmetry.
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