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Plotting a function with a shock

Consider
e>\x o

er—1"
Boundary layer is difficult to resolve on a uniform grid.

u(x) = for large .
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A variable transformation
Transform the independent variable

X(©) = Lin(1 + (" - 1)0)

and we have,

(14 (" = DOM =1 _
er —1

u(§) = u(x(€)) =

Easy to represent on a uniform grid &; = ﬁ

The transformation gives us an appropriate mesh for the
original function:

X; = X(f,’) = 1;“’](1 + (e” — 1)5,)

~ &, forv =~ .
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r—Refinement

e r—refinement methods typically start with a uniform mesh
and then moves or relocates the mesh, keeping the
number of mesh points x;(t),i =0, ..., N and mesh
topology fixed.

e Solution and mesh locations are coupled and determined
simultaneously.



How is this done?

Solve
ur = L(u) O<x<1, t>0

by choosing a mesh transformation x = x(¢, t) so that a uniform
mesh )
§ =1 =01, N issufficient

Given some measure of the error M in the solution we require

Equidistribution Principle (EP) — DeBoor (1973)

xi(t) 1 1
/ M(t, x, u)dx =+ | M(t X, u)dx.
Xi—1(t) N Jo
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1D Differential Form

o 0]
6_5 {M(t, x(&, 1), u)a—gx(g, t)} =0.

subject to boundary conditions

x(0,£)=0 and x(1,f)=1.

Relaxed EP at t + 7

ox 10 (. ox
n-12 (Ma_g> (MMPDES)
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Grid Generation via DD
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An iterative approach

We partition £ € [0, 1] into two overlapping subdomains
Q4 = (0,8) and Qp = (o, 1) with a < 8. Let x{" and xJ solve

d axy d axg
dg(M(xf);(g) = 0 on d£<M(x2”)(;£2> = 0 onQ
x(0) = 0 B(a) = x'(a)

$B) = x7(0) B() = 1.
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Define f: (a b) = R by |[f[|oc := SUPye(ap) IF(X)]-

Theorem

Suppose 0 < a < M(x) < A. The overlapping (3 > a) parallel
Schwarz iteration converges for any initial guess x%(a), x2(8),
and we have the linear convergence estimates

A
[Ix =Xl < "5 1x(8) — X3(B)1,

A
=™ e < " Six(@) = (@),

with contraction factor p := %ﬂ < 1.

1—a
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Proof: Two approaches

* Write the subdomain solutions x{', implicitly and show
Xy = X
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Proof: Two approaches

* Write the subdomain solutions x{', implicitly and show
xﬂz — X
¢ Define the subdomain errors

X
e, = / M(%) d.
x1”’2
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Technique one

The solutions x{,(¢) are given implicitly as

X{’(E) ) X ‘(6) - 1
dx = X
o 5. W
and
! R -
M(x) dx = / M(x) dx. (2)
x3(€) 1= )i

This gives the iteration

IANES T

" M) dx - / M(%) d)"() +3 / M%) d%.
0 0

s (T
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If we let

xM(a) 1
K — / " M(x) dx and C = / M(%) dx
0 0

then we have a fixed point iteration of the form

25—1 (Kr2-c)+ 3

K1n — F1(K1n72) =

o Ifa < Bthen K" — K{

e If M>a > 0then MVT = x{(a) — x(a), BVP
well-posed implies x{'(£) — x(£).

C.
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Technique two
Define

and use

to obtain the BVP

de’ .
2 = C.e(0)=0.el(0) = &5 ()
Solving directly we have
efe) = Se3 ')

Likewise
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Combining we have

1
ef(@) = 51— e ?(a)

and the contraction results if o < S.
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If we compute sequentially (Alternating Schwarz) we obtain the
expected (improved) result

n_g5_1
Ki - Ba-—1

(K~ '-C)+ =C.

R
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Optimal Schwarz
We decompose € € [0, 1] into two non—overlapping subdomains
Q¢ =[0,8] and Q, = [B, 1] and consider the iteration

(MO =0, €€Q (MOG)xE)e =0, €€
x7(0) =0 Bo(x(6)) = Ba(x{™' (6))
By (x}(6)) = B+(x§™' (6)) x$(1) =1,

where the transmission operators B; and B, are given by
Bi(-) = M(-)o:() — B(:). Bao(-) = M(-)8:(-) - B()

and

1 ~ ()
B() = 1113/() M(x) dx, and B() = ;/0 M(x) dx.
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Optimal Schwarz
We decompose € € [0, 1] into two non—overlapping subdomains
Q¢ =[0,8] and Q, = [B, 1] and consider the iteration

(MO =0, €€Q (MOG)xE)e =0, €€
x7(0) =0 B(x4(6)) = B(x (6))
By (x}(6)) = B+(x§™' (6)) x$(1) =1,

where the transmission operators B; and B, are given by
Bi(-) = M(-)o:() — B(:). Bao(-) = M(-)8:(-) - B()

and
1 ~ ()
B(-) = 1113/() M(x) dx, and B() = ;/0 M(x) dx.

Convergence is obtained in two iterations!!
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Optimized Schwarz

We decompose € € [0, 1] into two non—overlapping subdomains
Q¢ =[0,8] and Q, = [B, 1] and consider the iteration

x1”(0)v: 0
M(x7") 3¢ x7 +pX1n‘g:13 = M(x3)0exg " + pxg L:ﬁ
and
(M(xg)xz¢)e =0,
MOG)oexs — pxg| = MOA)Oex™" — pxi L:B

x3(1) =1,

where p is a constant to be chosen to improve the convergence
rate.
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Theorem
The subdomain solutions are given implicitly by the formulas

X (€)

x{(€)
/0 M(X) 0% = Ry (x0(8))€ & / M(X) 0% = Ro(x(8))(€~1)+C

where C = fo X) dx. The operators Ry and R, are given by

R1(X):é/ode)~( and Rz(x):ﬁ(/ode)"(—C)

And x1(B8) and xJ(B) satisfy

(pl — Ro)xZ(B) = (pl—R)x]"(B).
(pl+ R)XT(B) = (pl+ R2)x§(B).
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The optimized Schwarz iteration converges globally to the exact
solution x(B) for all p > 0.

21/45



Outline of Proof

e Ry and —R;, are continuous and uniformly monotonic
(increasing) since

Ri(x) = %M(X) > %a >0 and —Ry(x)= HfBM(x) >
e p> 0= pl— R and p/ + Ry are continuous and
uniformly monotonic = invertible.
 x§(B) and x]""'(B) are well-defined.

1_53>0

x7T1(B) = Gx~'(B)
where
G = (pl+ Ri)~'(pl + Re)(p! — R2) ™' (pl — Ry).
G is a contraction for all p > 0.
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Parallel Linearized Schwarz

d n—1 dX1n _ i n—1 dxg _

dé‘(M(X‘ Vag) =0 G <M(X2 )dg) =0
X(0) = 0 B@) = x(a)
(B = @) B = 1
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Lemma
The subdomain solutions are given by
IS ety
_ M(x{™" (&
X(E) = 57 (0) ot
f° M(x™ 1(»5))

and
3 de¢

XB(E) = X)) + (1 - X" (@)
Jo sz

Ja M(g ' (€))
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The parallel linearized Schwarz iteration converges for any
smooth initial guesses x{(¢) and x2(¢).
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Proof
Forany £ € (0, ]

X{(€) = Cix{~3() + D.
where

6] dé
7BM”m5MM@ n aM”@hM“@

e Dy =

1 1
f"‘ M(xg~ 2(E)) fo M(X" 1(&)) fo‘ M(xg~ 2(E)) fo M(X" 1(E))
The quantities C{ and D satisfy

0<Cf<pe<1, and0<Df < <1,

where

and Ve =
B¢
3 14

pe 1=

Dl | —
Q

Dy | =

Do | =

Do | —

i

QI

1486221 L1+
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Furthermore, these quantities are uniformly bounded

=p<1 and ¢ <

If nis even

n-2 n— n-2
2 2 2
xP(€) = g [1 c&xf(a) + Dg +cf > DY ( CQ‘L’) :
/

k=

_k

>
I

N

{x{'(€)} and {xJ'(€)} converge uniformly to X1, Xo.
% (o) = %o() and % (B) = %(6),
e = Xy = Xz On [, (]

e Define
)?1(&), e [0,5],
X =1 X1(§) = x(§). [a.0]
x2(€) [6.1]
o By uniqueness x(¢) = x(€)
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Time Dependent Case

For a given u(x, t) a time dependent mesh transformation may
be found by solving

Xt = LM%,

subject to boundary and initial conditions
x(0,6)=0, x(1,t)=1,x(&0) = x0(&).

Discretize this problem in time implicitly and then solve the
sequence of elliptic problems using a DD approach.
The exact solution at time step k satisfies

1 — BL M) xt)e = K1 (¢)
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Assuming two spatial domains for each time step (k =1,2,..))
we consider the iteration

t At
X = (MO = X1(€) xg — —(MOGH)xg)e = X7 (€)
x[k(0) =0 x5 k() = x77"()
x4 (B) = x5 (B) xgK(1) =1

Subtracting the equation for x{" K from the equation for x¥ we
have

ko nk At

xK—xp (M(xk)xé‘ — M(x)x 5")5 =0.
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We define an error measure

* def’§ k ax]"
el = /nk Mdx = d{; = M(xk)c(’;lxS — M(x5) d1§2
Xi2

The mean value theorem for integrals implies
s = M(x*)(x¥ — x5 for x* between x*&xJ"5.
So on subdomain one we have

d? e?'k T 1

_ nk _
dez ~ Armpx) Sz =0

Since M, 1, At > 0 the classical results for second order elliptic
problems tells us that e?'k satisfies a maximum principle.
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Numerical Example: steady mesh pde
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Numerical Example: steady mesh pde
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Numerical Example: steady mesh pde
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Numerical Example: steady mesh pde
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Numerical Example: steady mesh pde
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Numerical Example: steady mesh pde

o5+
8

0.4r P

0.3r 4

0.2

01r

0 | | | | | | | | | ]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

31/45



Numerical Example: steady mesh pde
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Figure: Convergence of grid generation by classical Schwarz with
varying overlap for u(x) = (1 — exp(20x))/(1 — exp(20)).
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—O— Classical

—»— Optimized - p =3
—Q— Optimized - p =4
—8— Optimized - p=5
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Error in Numerical Solutions
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Figure: Grid generation problem for
u(x) = (1 — exp(20x))/(1 — exp(20)).

33/45



Iterations | 1 3 5 7 9 11 00

Nonlinear Parallel 0.3625 0.0520 (5) 0.0498 (10) 0.0478 (15) 0.0462 (21) 0.0448 (27) 0.0366
Linearized Parallel 0.3625 0.1291 (3) 0.1006 (5) 0.0571 (7) 0.0479 (9) 0.0471 (11) 0.0366
Optimized 0.3625 0.1402 (9) 0.0367 (23) 0.0366 (30) 0.0366 (36) 0.0366 (40) 0.0366
Optimal 0.3625  0.0367 (12) 0.0366 (19) 0.0366 (24) 0.0366 (27) 0.0366 (29) 0.0366

Table: Interpolation errors.
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Error in Numerical Solutions
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Figure: Grid generation problem for
u(x) = u(x) = (1 — exp(20x))/(1 — exp(20)).
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2 moving subdomains!

2(6.)
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3 moving subdomains

2(6.)
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Two dimensions

Determine equidistributing mesh for

u(x,y) = (1 — e“’(’H)) sin(my), (x.y) e [0,1] x [0,1].
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Figure: Surface plot of the function u(x, y) over the equidistributed
mech
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40/45



Figure: Equidistributed mesh obtained by DD.
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Summary

e Presented and analyzed a parallel DD framework for grid
generation via equidistribution in 1D.
e 2D numerics — analysis in progress.

e Theoretical and practical assessment of the many possible
flavours of DD for solution of PDEs on equidistributing
grids is in progress.
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