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Burgers’ Equation

See, e.g., Adjerid et al. [1995]

ut = −uux + ǫuxx, 0 < x < 1, t > 0, ǫ > 0

Initial condition and boundary conditions chosen so that
the exact solution is given by

u(x, t) =
0.1e−A + 0.5e−B + e−C

e−A + e−B + e−C
,

where A = 0.05
ǫ
(x− 0.5 + 4.95t), B = 0.25

ǫ
(x− 0.5 + 0.75t),

C = 0.5
ǫ
(x− 0.375), where ǫ is a problem dependent

parameter
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Burgers’ Equation
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Solution of Burgers’ equation with ǫ = 10−4
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Catalytic Surface Reaction

Reaction-diffusion-convection system, [Zhang, 1993]

(u1)t = −(u1)x + n(D1u3 − A1u1γ) + (u1)xx/Pe1,

(u2)t = −(u2)x + n(D2u4 − A2u2γ) + (u2)xx/Pe1,

(u3)t = A1u1γ −D1u3 −Ru3u4γ
2 + (u3)xx/Pe2,

(u4)t = A2u2γ −D2u4 −Ru3u4γ
2 + (u4)xx/Pe2,

where γ = 1− u3 − u4, 0 < x < 1 t > 0, and
Pe1, P e2, D1, D2, R,A1, and A2 are problem dependent
parameters, with initial conditions

u1(x, 0) = 2− r, u2(x, 0) = r, u3(x, 0) = u4(x, 0) = 0,
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Catalytic Surface Reaction

and (mixed) boundary conditions:

(u1)x(0, t) = −Pe1(2− r − u1(0, t))

(u2)x(0, t) = −Pe1(r − u2(0, t))

(u3)x(0, t) = (u4)x(0, t) = 0

(u1)x(1, t) = (u2)x(1, t) = (u3)x(1, t) = (u4)x(1, t) = 0
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Catalytic Surface Reaction
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General Problem Class

NPDE partial differential equations

ut(x, t) = f (t, x, u(x, t), ux(x, t), uxx(x, t)) ,

a ≤ x ≤ b, t ≥ t0,

initial conditions

u(x, t0) = u0(x), a ≤ x ≤ b,

(separated) boundary conditions

bL (t, u(a, t), ux(a, t)) = bR (t, u(b, t), ux(b, t)) = 0
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MOL Software

• “Production Level" or “Library Level" software
packages based on well-established algorithms,
designed for a general problem class

• e.g.,

• LINPACK, LAPACK, in numerical linear algebra,

• QUADPACK in numerical integration,

• IMSL, NAG, Netlib

• We focus on “Library Level" software packages for 1D
time-dependent PDEs
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MOL Software

• Spatial mesh which partitions spatial domain +
spatial discretization of PDE by, e.g.,
finite differences, finite elements, collocation

⇒ PDE approximated by system of ODEs

• ODEs + boundary conditions
⇒ Differential-Algebraic Equations (DAEs)

• ⇒ Takes advantage of the availability of high quality
DAE solvers that adapt stepsize/order of formula
to control temporal error estimate
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MOL Software

Spatial Error Adaption/Control

• I: No spatial adaptation/error control
PDECOL, [Madsen,Sincovec, 1979],
EPDCOL, [Keast,Muir, 1991]

• II:Adaptive spatial mesh via moving mesh strategy
(r refinement) but no spatial error control
D03PPF, [NAG] from SPRINT,
[Berzins,Dew,Furzeland, 1989],
TOMS731, [Blom,Zegeling, 1994],
MOVCOL, [Huang,Russell,1996]

Efficient Interpolant-Based Spatial Error Estimation for B-Spline Collocation Solutions of 1D Parabolic PDEs – p. 11



MOL Software

• III: Spatial adaptation and error control

• Computation of a high order estimate of spatial error

• Tolerance check of spatial error estimate for every
successful timestep

• Mesh adaptation: refinement and redistribution

• Adaptation of order of discretization method

HPNEW, [Moore,2001], hp refinement
BACOL [Wang,Keast,Muir, 2004a, 2004b, 2004c],

h refinement
BACOLR [Wang,Keast,Muir, 2008] h refinement
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B-spline Adaptive COLlocation

• BACOL

• spatial discretization

• spatial error estimation and adaptive control

• temporal error estimation and adaptive control
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Spatial Discretization

• Spatial mesh, {xi}Ni=0, x0 = a, xN = b

• Approximate solution,

Us(x, t) =
NC
∑

i=1

yi,s(t)Bi(x), NC = N(p− 1) + 2,

s=1,. . . ,NPDE

{Bi(x)}NC
i=1 - B-spline basis polynomials of degree p

based on B-Spline Package, [deBoor,1977]

• yi,s(t) are unknown time-dependent coefficients for
the sth PDE component
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Spatial Discretization

• Us(x, t) required to satisfy PDEs at collocation points
on each subinterval ⇒ system of ODEs

• ODEs plus boundary conditions give index-1 DAE
system:

0 = bL(t, U(0, t), Ux(0, t))

d

dt
Us(ξl, t) = fs(t, ξl, U(ξl, t), Ux(ξl, t), Uxx(ξl, t)),

s = 1, . . . , NPDE, l = 1, . . . , N(p− 1)

0 = bR(t, U(1, t), Ux(1, t))

where ξl is lth collocation point (Gauss points on each
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Spatial Error Estimate

• For spatial error estimate, a second (global) collocation
solution, Ū(x, t), of degree p+ 1 is computed

• DAE systems for U(x, t) and Ū(x, t) are integrated
simultaneously

• After every successful timestep, we compute, Es(t), for
sth solution component over whole problem interval:

Es(t) =

√

∫ b

a

(

Us(x, t)− Ūs(x, t)

ATOLs +RTOLs|Us(x, t)|

)2

dx

• t is current time; ATOLs, RTOLs:
absolute, relative error tolerances
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Spatial Error Estimate

• If
NPDE
max
s=1

Es ≥ 1, (tolerance not satisfied), then

• reject current step and perform global
redistribution/refinement of spatial mesh based on
error estimates, Êi(t), i = 1, . . . , N , where

Êi(t) =

√

√

√

√

NPDE
∑

s=1

∫ xi

xi−1

(

Us(x, t)− Ūs(x, t)

ATOLs +RTOLs|Us(x, t)|

)2

dx

• These give a measure of the error distribution over the
subintervals of the spatial mesh at time t.

• Spatial remeshing based on equidistribution principle
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Spatial Mesh Adapt.
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Solution of Burger’s equation, ǫ = 10−4
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Spatial Mesh Adapt.
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Time Integration

BACOL/DASSL:

• “Double” DAE system treated by DASSL, [Petzold,
1982] modified to add option for COLROW package

• Family of Backward Differentiation Formulas (BDF) -
Multistep Methods

• “Warm” restarts (same order, same stepsize) after
remeshings, based on high order interpolation of
solution values from previous mesh

• Variable order, 1 to 5
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Relation to BVODE Software

• MOL Software (with Adaptive Spatial Error Control) ≈
Boundary Value ODE Software for spatial domain
coupled with DAE software for time stepping

• In particular, spatial discretization scheme of BACOL ≈
discretization scheme of BVODE solver COLSYS
[Ascher, Christensen, Russell 1981]

• Software consisting of COLSYS interfaced with DASSL
would be similar to BACOL, although (spatial) error
estimation scheme is fundamentally different
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Comparisons

• BACOL: [Wang, Keast, Muir, 2004b], "A comparison of
adaptive software for 1-D parabolic PDEs"

• BACOL compared with
EPDCOL, D03PPF, TOM731, MOVCOL, HPNEW

• BACOL shown to be more efficient than these
packages, especially for higher accuracy computations
and problems with rapid spatial variation

Efficient Interpolant-Based Spatial Error Estimation for B-Spline Collocation Solutions of 1D Parabolic PDEs – p. 22



Alternative Error Estimates

• Recall that BACOL error estimate involves the
computation of two global collocation solutions

Es(t) =

√

∫ b

a

(

Us(x, t)− Ūs(x, t)

ATOLs +RTOLs|Us(x, t)|

)2

dx

• Approach I: Replace higher order collocation solution,
Ū(x, t), by interpolant of same order;
uses a Superconvergent Interpolant (SCI)

• Approach II: Replace lower order collocation solution,
U(x, t), by interpolant of same order;
uses a Lower Order Interpolant (LOI)
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Superconvergent Interpolant

• Lower order collocation solution, U(x, t), is the primary
solution; higher order collocation solution, Ū(x, t), is
computed only for use in error estimate

• (Auxiliary computation to obtain a higher accuracy
solution for error estimation, e.g., Gauss-Kronrod
quadrature, formula pairs for IVPs, etc. )

• Basic idea: replace higher order collocation solution,
Ū(x, t), by interpolant of same order; need extra
computation to obtain higher order values?

• No, higher accuracy solution info for interpolant is
available for free!
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Superconvergent Interpolant

• BACOL spatial discretization:
collocation at Gauss points

• Theory from BVODEs: collocation solution has leading
order error term containing the following factor:

P (x) =
1

p!

∫ x

0

(t− x)

p
∏

l=1

(t− ρl)dt,

where ρl are Gauss points on [0, 1]
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Superconvergent Interpolant

• Evaluation of collocation solution at points
corresponding to roots of P (x) on each subinterval

• ⇒ leading order error term is zero

• ⇒ collocation solution is superconvergent at such
points on each subinterval

• ⇒ one extra order of accuracy

• Even better superconvergence at mesh points
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Superconvergent Interpolant
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Superconvergent Interpolant

• Main idea:
Replace order p+ 1 global collocation solution with
local interpolant, of order p+ 1, based on
superconvergent solution and derivative values

• Want data error to dominate interpolation error

• However, interpolant existence issues arise if data
values are all from local subinterval

• ⇒ Need to use two superconvergent values
from outside subinterval
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Superconvergent Interpolant
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Hermite-Birkhoff Interpolant

• SCI based on Hermite-Birkhoff interpolant, using
superconvergent solution and derivative values

• Interpolation error term [Finden, 2008] for p = 6, on ith

subinterval, [xi, xi+1], depends on

φ(x) =

[

x2 − (Rα + Lβ)x−Rα + Lβ +
LR

3
− 1

]

• where α = 1

2
− 1

6

√
3, β = 1

2
+ 1

6

√
3,

R = xi+2−xi+1

xi+1−xi

, L = xi−xi−1

xi+1−xi

are left and right adjacent subinterval ratios

• ⇒ Issues when adjacent subinterval ratios are large
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Lower Order Interpolant

• ⇒ A change in viewpoint: Higher order collocation
solution, Ū(x, t), is propagated forward in time; lower
order collocation solution is used only for error
estimate (Local extrapolation)

• For error estimate, we replace lower order collocation
solution, U(x, t), by interpolant of same order - the LOI

• LOI interpolates data from higher order solution Ū(x, t)

• Main idea: Interpolation points chosen so that leading
order term in interpolation error is asymptotically
equivalent to leading order term in lower order
collocation solution error [Moore 2004]
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Lower Order Interpolant

• We want interpolation error to dominate data error

• Interpolation points chosen so that factor that depends
on x in leading order term in interpolation error equals
factor that depends on x arising in leading order term
in collocation error:

P (x) =
1

p!

∫ x

0

(t− x)

p
∏

l=1

(t− ρl)dt,

• LOI based on Hermite-Birkhoff interpolant

• All interpolation points are from current subinterval ⇒
Error does not depend on adjacent subinterval ratios
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Lower Order Interpolant
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Numerical Results

• Error estimate from SCI - ©, from BACOL - ×,
from LOI - �; True Error - +

• Mesh adaptation

• controlled by BACOL estimate

• controlled by SCI estimate

• controlled by LOI estimate

• Results for simple test problem [Sincover, Madsen,
1979], with p = 4, ATOLs = RTOLs = 10−8

• Results for Burgers’ equation, with ε = 10−3

(p = 7, ATOLs = RTOLs = 10−6)
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Numerical Results

0.0 1.0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Spatial Domain

Sc
al

ed
 E

rro
r E

st
.

SCI

Bacol

LOI

True

BACOL estimate controls mesh
Efficient Interpolant-Based Spatial Error Estimation for B-Spline Collocation Solutions of 1D Parabolic PDEs – p. 35



Numerical Results
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Numerical Results
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Numerical Results
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Numerical Results
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Numerical Results

0.0 1.0

10
−3

10
−2

10
−1

Spatial Domain

Sc
al

ed
 E

rro
r E

st
.

1st Burgers, ε = 10−3, LOI Controlled, KCOL = 6, TOL = 10−6, Time = 1.000, NINT = 14, Remeshes = 91

SCI
Bacol
LOI
True

LOI estimate controls mesh, Full Spatial Domain
Efficient Interpolant-Based Spatial Error Estimation for B-Spline Collocation Solutions of 1D Parabolic PDEs – p. 40



Numerical Results
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Numerical Results - Observations

• For simple problems, all estimates in good agreement
with each other and true error

• For problems with sharp layer regions:

• For BACOL controlled meshes, some SCI error
estimates are too large but ...

• SCI controlled meshes lead to “self correction”:
meshpoints are moved, a few added,

• LOI estimates are generally in good agreement with
BACOL estimates (LOI control ≈ BACOL control)

• All schemes underestimate error in layer region to
some extent
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Computational Costs

• Order p+ 1 global solution computation about same
cost as order p computation: setup extra B-spline
basis, solution of second DAE system ⇒ standard
BACOL error estimate doubles cost of computation

• SCI/LOI approaches involve only evaluation of global
solution and evaluation of Hermite-Birkhoff interpolant

• SCI self-correction ⇒ small number extra subintervals

• Number of remeshings ≈ same for all schemes

• ⇒ SCI/LOI-based error estimates much less expensive
than original BACOL error estimate
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Extension to 2D PDEs

The Method of Surfaces [Zhi Li 2011]

• Takes advantage of the presence of good quality
software for time-dependent 1D PDEs

• Apply a standard discretization (as in the standard
MOL algorithm) to discretize the y domain, reducing
the 2D PDE to a system of 1D PDEs

• Apply software for 1D PDEs to return a set of surfaces
(in t and x), each of which is associated with a discrete
point of the y domain

• No adaptation or error control in y domain
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Extension to 2D PDEs

Generalization of BACOL to 2D: [Zhi Li 2011]

• 2D collocation (tensor product formulation)

• DASPK/sparse linear system solver

• Efficient error estimators for 2D Gaussian collocation
solutions

• 2D mesh adaptation
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The End

• See Technical Report
(cs.smu.ca/tech_reports/txt2011_001.pdf) for many
more numerical results

• SCI approach [Arsenault, Smith, Muir, CAMQ, 2011]

Thank You
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