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Burgers’ Equation

e, e.g., Adjerid et al. [1995]
U = —UUy + EUgy, O<ax<l, t>0 €>0

nitial condition and boundary conditions chosen so that
the exact solution is given by

0.le 4 +0.5e B +¢e ¢

u(a:,t): G_A—|—€_B—|—€_C )
where A = 22 (z — 0.5+ 4.95t), B = %2 (z — 0.5 + 0.75¢),
C = ‘Lf(a: — 0.375), where ¢ is a problem dependent

parameter

. Efficient Interpolant-Based Spatial Error Estimation for B-Spline Collocation Solutions of 1D Parabolic PDEs — p. 3



Burgers’ Equation
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Solution of Burgers’ equation with e = 104
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Catalytic Surface Reaction

action-diffusion-convection system, [Zhang, 1993]

(u1)r = —(u1)z +n(Dyus — Arury) + (uy)ze/ Pex,
(ug)r = —(ug)z +n(Douy — Asusy) + (u2)ze/ Pex,
(uz)e = Ajuyy — Dyug — Ruzsuﬂz + (u3)zz/ Pes,
(ug)y = Asusy — Douy — RU3U472 + (Uy)ze/ Peo,

wherey=1—u3 —uy, O0<zx <1 ¢t>0,and
Pey, Pey, D1, Dy, R, Ay, and A, are problem dependent
parameters, with initial conditions

u(2,0) =2 —7r, wuy(x,0) =7, wuz(x,0) =1wuy(x,0) =0,
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Catalytic Surface Reaction

d (mixed) boundary conditions:
(ul)x(O, t) = —P€1(2 — T — ul(O, t))
(u2),(0,t) = —Pey(r — us(0, 1))

(u3)2(0,1) = (u4)2(0,2) = 0
(u1)2(1,2) = (u2)e(1,t) = (us)2(1,1) = (us)e(1,1) =0
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Catalytic Surface Reaction
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Catalytic Surface Reaction Model, u;(x,t)
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General Problem Class

PDEFE partial differential equations
u(z,t) = f(tx,u(z,t), up(x, 1), Upe (2, 1)),

a<x<b t=ty,

Initial conditions

U(Zlf,t()) ZUO(CE’), a<a:<b,

(separated) boundary conditions
by (t,u(a,t),u.(a,t)) =bg (t,u(db,t),u.(b,t)) =0
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MOL Software

* “Production Level" or “Library Level" software
packages based on well-established algorithms,
designed for a general problem class

° e.g.,

* LINPACK, LAPACK, in numerical linear algebra,
* QUADPACK in numerical integration,
* IMSL, NAG, Netlib

e We focus on “Library Level" software packages for 1D
time-dependent PDEs

. Efficient Interpolant-Based Spatial Error Estimation for B-Spline Collocation Solutions of 1D Parabolic PDEs — p. 9



MOL Software

* Spatial mesh which partitions spatial domain +

spatial discretization of PDE by, e.qg.,

finite differences, finite elements, collocation
= PDE approximated by system of ODEs

* ODEs + boundary conditions
= Differential-Algebraic Equations (DAES)

* = Takes advantage of the availability of high quality
DAE solvers that adapt stepsize/order of formula
to control temporal error estimate
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MOL Software

patial Error Adaption/Control

* |: No spatial adaptation/error control
PDECOL, [Madsen,Sincovec, 1979],
EPDCOL, [Keast,Muir, 1991]

* |I:Adaptive spatial mesh via moving mesh strategy
(r refinement) but no spatial error control
DO3PPF, [NAG] from SPRINT,
[Berzins,Dew,Furzeland, 1989],
TOMS731, [Blom,Zegeling, 1994],
MOVCOL, [Huang,Russell,1996]
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MOL Software

* [ll: Spatial adaptation and error control
* Computation of a high order estimate of spatial error

* Tolerance check of spatial error estimate for every
successful timestep

* Mesh adaptation: refinement and redistribution

* Adaptation of order of discretization method

HPNEW, [Moore,2001], Ap refinement
BACOL [Wang,Keast,Muir, 2004a, 2004b, 2004c],

h refinement
BACOLR [Wang,Keast,Muir, 2008] / refinement
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B-spline Adaptive COLlocation

* BACOL
* spatial discretization
* spatial error estimation and adaptive control
* temporal error estimation and adaptive control
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Spatial Discretization

* Spatial mesh, {z;}Y,, 7o = a, zxy = b

* Approximate solution,

NC
Us(z,t) = > yis(t)Bi(z), NC=N(p—1)+2

1=1

s=1,...,NPDE

{Bz-(a:)},fi(f - B-spline basis polynomials of degree p
based on B-Spline Package, [deBoor,1977]

* y;s(t) are unknown time-dependent coefficients for
the sth PDE component
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Spatial Discretization

* Uy(x,t) required to satisfy PDEs at collocation points
on each subinterval = system of ODEs

* ODEs plus boundary conditions give index-1 DAE
system:

0 = by(t,U(0,1),U,(0,1))

d
_Us(gly t) — fs(ty ‘fl; U(gl; t); Ux(&; t)v Uazx(gla t))a

dt
s=1,....NPDE [=1,....N(p—1)
0 = br(t,U(1,1),U,(1,1))

where &; Is [th collocation point (Gauss points on each
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Spatial Error Estimate

For spatial error estimate, a second (global) collocation
solution, U(z, t), of degree p + 1 is computed

* DAE systems for U(x,t) and U(x, t) are integrated
simultaneously

* After every successful timestep, we compute, E,(t), for
sth solution component over whole problem interval:

/ (z,t) — Uy(z, 1) ? .
ATOL + RTOL,|Uy(x,1)]

° tis currenttime; ATOL,, RTOL;:
absolute, relative error tolerances
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Spatial Error Estimate

o |f %DéifE > 1, (tolerance not satisfied), then

* reject current step and perform global
redistribution/refinement of spatial mesh based on
error estimates, F;(t),i = 1,..., N, where

2i(t) = \ 4 N§E / (ATOL i?%TOUL(TUtg )|>2 dr

* These give a measure of the error distribution over the
subintervals of the spatial mesh at time t.

* Spatial remeshing based on equidistribution principle
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Spatial Mesh Adapit.
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Solution of Burger's equation, ¢ = 104
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Spatial Mesh Adapit.
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Time Integration

ACOL/DASSL:

* “Double” DAE system treated by DASSL, [Petzold,
1982] modified to add option for COLROW package

* Family of Backward Differentiation Formulas (BDF) -
Multistep Methods

* “Warm” restarts (same order, same stepsize) after
remeshings, based on high order interpolation of
solution values from previous mesh

* Variable order, 1to 5
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Relation to BVODE Software

* MOL Software (with Adaptive Spatial Error Control) ~
Boundary Value ODE Software for spatial domain
coupled with DAE software for time stepping

* |n particular, spatial discretization scheme of BACOL ~
discretization scheme of BVODE solver COLSYS
[Ascher, Christensen, Russell 1981]

* Software consisting of COLSYS interfaced with DASSL
would be similar to BACOL, although (spatial) error
estimation scheme is fundamentally different
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Comparisons

* BACOL: [Wang, Keast, Muir, 2004b], "A comparison of
adaptive software for 1-D parabolic PDEs"

* BACOL compared with
EPDCOL, DO3PPF, TOM731, MOVCOL, HPNEW

* BACOL shown to be more efficient than these
packages, especially for higher accuracy computations
and problems with rapid spatial variation
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Alternative Error Estimates

~« Recall that BACOL error estimate involves the
computation of two global collocation solutions

/ (z,t) — Uy(z, ) ’ .
ATOL + RTOL,|Uy(x,1)]
* Approach I: Replace higher order collocation solution,

U(x,t), by interpolant of same order;
uses a Superconvergent Interpolant (SCI)

* Approach II: Replace lower order collocation solution,
U(x,t), by interpolant of same order;
uses a Lower Order Interpolant (LOI)
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Superconvergent Interpolant

* Lower order collocation solution, U(z,t), is the primary
solution; higher order collocation solution, U(z, ), is
computed only for use In error estimate

* (Auxiliary computation to obtain a higher accuracy
solution for error estimation, e.g., Gauss-Kronrod
guadrature, formula pairs for IVPs, etc. )

* Basic idea: replace higher order collocation solution,
U(x,t), by interpolant of same order; need extra
computation to obtain higher order values?

* No, higher accuracy solution info for interpolant is
available for free!
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Superconvergent Interpolant

* BACOL spatial discretization:
collocation at Gauss points

* Theory from BVODEs: collocation solution has leading
order error term containing the following factor:

z p
P(x) = '/ t— ) Ht—pl
P I=1

where p; are Gauss points on [0, 1]
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Superconvergent Interpolant

* Evaluation of collocation solution at points
corresponding to roots of P(x) on each subinterval

* = leading order error term is zero

* = collocation solution is superconvergent at such
points on each subinterval

°* = one extra order of accuracy

* Even better superconvergence at mesh points
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Superconvergent Interpolant

Order of Convergence

---Non-S.C. Solution
oL ---Non-S.C. Derivative
e S.C. Solution

1- A S.C. Derivative B
= Mesh Solution and Derivative

G | | | | | | | | |
x_i d f d f d f d x_i+1

Collocation solution: superconvergent points (p = 6)
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Superconvergent Interpolant

Main idea:
Replace order p 4+ 1 global collocation solution with
local interpolant, of order p + 1, based on
superconvergent solution and derivative values

Want data error to dominate interpolation error

However, interpolant existence issues arise if data
values are all from local subinterval

= Need to use two superconvergent values
from outside subinterval
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Order of Convergence

(@] [ N w H (4} (o)) ~ [os] ©

[y
o

Superconvergent Interpolant

---Non—S.C. Solution
---Non—S.C. Derivative
e S.C. Solution

A S.C. Derivative

= Mesh Solution and Derivative|
O Information Used

| | | | | |
d f d xi+1 d f

SCI uses mesh point solution/derivative values, all internal

solution values and two external solution values
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Hermite-Birkhoff Interpolant

* SCI based on Hermite-Birkhoff interpolant, using
superconvergent solution and derivative values

* Interpolation error term [Finden, 2008] for p = 6, on ith
subinterval, |z;, z;,1], depends on
LR

o(x) = $2—(RC¥—|—L5)QZ—R(X—|—L5—|—?—1

* where o =1 — 13, 8=1+1V3,

_ L2 Li41 _ L= Ti—1
Lj4+1—Lq

Tit1—Tq

are left and right adjacent subinterval ratios
* = Issues when adjacent subinterval ratios are large
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Lower Order Interpolant

= A change in viewpoint: Higher order collocation
solution, U(z,t), is propagated forward in time; lower
order collocation solution is used only for error
estimate (Local extrapolation)

* For error estimate, we replace lower order collocation
solution, U(x,t), by interpolant of same order - the LOI

 LOI interpolates data from higher order solution U(x, t)

* Main idea: Interpolation points chosen so that leading
order term in interpolation error is asymptotically
equivalent to leading order term in lower order
collocation solution error [Moore 2004]
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Lower Order Interpolant

* We want interpolation error to dominate data error

* Interpolation points chosen so that factor that depends
on x in leading order term in interpolation error equals
factor that depends on x arising in leading order term
In collocation error:

P(x) = p'/ (t — x) Ht—pl

* LOI based on Hermite-Birkhoff interpolant

* All interpolation points are from current subinterval =
Error does not depend on adjacent subinterval ratios
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Lower Order Interpolant

Order of Convergence

---Non-S.C. Solution

2 ---Non-S.C. Derivative
e S.C. Solution

A S.C. Derivative

= Mesh Solution and Derivative

O | | | | | | | | |
x_i d f d f d f d x_i+1

Interpolation points for LOI
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* contro
* contro
* contro

Numerical Results

Error estimate from SCI - (), from BACOL - x,
from LOI - [J; True Error - +

* Mesh adaptation

ed by BACOL estimate
ed by SCI estimate
ed by LOI estimate

* Results for simple test problem [Sincover, Madsen,
1979], withp = 4, ATOL, = RTOL, = 107®

 Results for Burgers' equation, with e = 10~
(p =7, ATOL, = RTOL, = 10~
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Numerical Results
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Numerical Results

15t Burgers, € = 10_3, Bac. Controlled, KCOL = 6, TOL = 10_6, Time = 1.000, NINT = 14, Remeshes = 74
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Numerical Results

15t Burgers, € = 10_3, Bac. Controlled, KCOL = 6, TOL = 10_6, Time = 1.000, NINT = 14, Remeshes = 74
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Scaled Error Est.
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Numerical Results

18t Burgers, € = 10_3. LOI Controlled, KCOL =6, TOL = 10_5, Time = 1.000, NINT = 14, Remeshes = 91
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Scaled Error Est.
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Numerical Results - Observations

* For simple problems, all estimates in good agreement
with each other and true error

* For problems with sharp layer regions:

* For BACOL controlled meshes, some SCI error
estimates are too large but ...

* SCI controlled meshes lead to “self correction”:
meshpoints are moved, a few added,

* LOIl estimates are generally in good agreement with
BACOL estimates (LOI control ~ BACOL control)

* All schemes underestimate error in layer region to
some extent

. Efficient Interpolant-Based Spatial Error Estimation for B-Spline Collocation Solutions of 1D Parabolic PDEs — p. 42



Computational Costs

* Order p + 1 global solution computation about same
cost as order p computation: setup extra B-spline
basis, solution of second DAE system = standard
BACOL error estimate doubles cost of computation

* SCI/LOI approaches involve only evaluation of global
solution and evaluation of Hermite-Birkhoff interpolant

* SCI self-correction = small number extra subintervals
* Number of remeshings ~ same for all schemes

* = SCI/LOI-based error estimates much less expensive
than original BACOL error estimate
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Extension to 2D PDESs

he Method of Surfaces [Zhi Li 2011]

* Takes advantage of the presence of good quality
software for time-dependent 1D PDEs

* Apply a standard discretization (as in the standard
MOL algorithm) to discretize the y domain, reducing
the 2D PDE to a system of 1D PDEs

* Apply software for 1D PDEs to return a set of surfaces
(in t and x), each of which is associated with a discrete
point of the y domain

* No adaptation or error control in y domain
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Extension to 2D PDESs

eneralization of BACOL to 2D: [Zhi Li 2011]
» 2D collocation (tensor product formulation)
* DASPK/sparse linear system solver

* Efficient error estimators for 2D Gaussian collocation
solutions

* 2D mesh adaptation
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The End

* See Technical Report
(cs.smu.cal/tech_reports/txt2011 001.pdf) for many
more numerical results

* SCI approach [Arsenault, Smith, Muir, CAMQ, 2011]

Thank You
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