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Differential-Algebraic Equations

We consider overdetermined mixed index 2 and 3 DAEs:

ẏ = v(t, y , z)

ż = f (t, y , z , ψ) + r(t, y , λ)

0 = g(t, y)

0 = gt(t, y) + gy (t, y)v(t, y , z)

0 = k(t, y , z)

The functions

v : R× R
ny × R

nz → R
ny

f : R× R
ny × R

nz × R
nk → R

nz

r : R× R
ny × R

ng → R
nz

g : R× R
ny → R

ng

k : R× R
ny × R

nz → R
nk

are assumed to be sufficiently differentiable.



Differential-Algebraic Equations

The two matrices

gy (t, y)vz(t, y , z)rλ(t, y , λ)[
gyvz(t, y , z)
kz(t, y , z)

] [
rλ(t, y , λ) fψ(t, y , z)

]

are assumed invertible. These assumptions allow for the system of
DAEs to be expressed as ODEs. These are the so called underlying
ODEs.



Examples from Mechanics

Well-known formulations of classical mechanics are Hamiltonian
Mechanics and Lagrangian Mechanics. If the evolution of the
system is constrained, the result is a DAE.

In the context of classical mechanics,

Holonomic constraints are restrictions on the coordinates of a
system. For example, the position of a pendulum in Cartesian
coordinates is constrained to a circle or sphere.

Nonholonomic constraints are (nonintegrable) restrictions on
the velocities of a system. For example, an ice skate is
constrained to move in the direction the blade is pointing.



Examples from Mechanics

Lagrangian System

q̇ = v

d

dt
∇vL(t, q, v) = ∇qL(t, q, v)− gq(t, q)

Tλ− kv (t, q, v)
Tψ

0 = g(t, q)

0 = gt(t, q) + gq(t, q)v

0 = k(t, q, v)

Hamiltonian System

q̇ = ∇pH(t, q, p)

ṗ = −∇qH(t, q, p)− gq(t, q)
Tλ− kp(t, q, p)

Tψ

0 = g(t, q)

0 = gt(t, q) + gq(t, q)∇pH(t, q, p)

0 = k(t, q, p)
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Runge-Kutta Type Methods

We introduce two classes of Runge-Kutta type methods for solving
overdetermined mixed index 2 and 3 DAEs.

Specialized partitioned additive Runge-Kutta (SPARK)
methods were introduced by Jay in 1998, and can be applied
to systems with nonholonomic constraints. Methods were
developed in 2007 and can be applied to systems with
holonomic constraints.

Murua’s partitioned Runge-Kutta methods were proposed by
Murua in 1996 for index 2 DAEs, and can be applied to
systems with nonholonomic constraints.

We consider in this presentation an extension of the SPARK
methods for systems of mixed index 2 and 3 DAEs. We consider
also the extended Murua’s partitioned Runge-Kutta (EMPRK)
methods to systems of mixed index 2 and 3 DAEs.



An Example Method

(1, 1)-SPARK/EMPRK Midpoint-Trapezoidal Method

Y1 = y0 +
h

2
v(t0 +

1

2
h,Y1,Z1)

Z1 = z0 +
h

2
f (t0 +

1

2
h,Y1,Z1,Ψ1) +

h

2
r(t0, y0,Λ0)

y1 = y0 + h v(t0 +
1

2
h,Y1,Z1)

z1 = z0 + h f (t0 +
1

2
h,Y1,Z1,Ψ1) +

h

2
r(t0, y0,Λ0) +

h

2
r(t1, y1,Λ1)

0 = g(t1, y1)

0 = gt(t1, y1) + gy (t1, y1)v(t1, y1, z1)

0 = k(t1, y1, z1)



The (s, s)-SPARK/EMPRK Methods

The internal stages

Yi = y0 + h
s∑

j=1

aijv(t0 + cjh,Yj ,Zj), i = 1, . . . , s

Zi = z0 + h
s∑

j=1

aij f (t0 + cjh,Yj ,Zj ,Ψj) + h
s∑

j=0

ãij r(t0 + c̃jh, Ỹj ,Λj),

i = 1, . . . , s

Ỹi = y0 + h

s∑

j=1

āijv(t0 + cjh,Yj ,Zj), i = 0, . . . , s

Z̃i = z0 + h
s∑

j=1

aij f (t0 + cjh,Yj ,Zj ,Ψj) + h
s∑

j=0

ǎij r(t0 + c̃jh, Ỹj ,Λj),

i = 0, . . . , s



The (s, s)-SPARK/EMPRK Methods, cont.

The constraints

0 = g(t0 + c̃ih, Ỹi ), i = 0, . . . , s

0 = g(t1, y1)

0 = gt(t1, y1) + gy(t1, y1)v(t1, y1, z1)

0 =

s∑

j=1

bjc
i−1
j k(t0 + cjh,Yj ,Zj), i = 1, . . . , s − 1

0 = k(t0 + c̃ih, Ỹi , Z̃i), i = 0, . . . , s

0 = k(t1, y1, z1)



The (s, s)-SPARK/EMPRK Methods, cont.

The numerical solution

y1 = y0 + h

s∑

j=1

bjv(t0 + cjh,Yj ,Zj)

z1 = z0 + h

s∑

j=1

bj f (t0 + cjh,Yj ,Zj ,Ψj) + h

s∑

j=0

b̃j r(t0 + c̃jh, Ỹj ,Λj)



Gauss-Lobatto Coefficients

An example of a class of methods is the (s, s)-Gauss-Lobatto
methods.

Use s-stage Gauss coefficients for the aij , bi , ci

Use (s + 1)-stage Lobatto coefficients for the b̃i , c̃i

Use (s + 1)-stage Lobatto-IIIA for ǎij

Define aij and ãij by

s∑

j=1

aijc
k−1
j =

c̃ki
k
, k = 1, . . . , s

ā0j = 0, j = 1, . . . , s
s∑

j=0

ãij c̃
k−1
j =

cki
k
, k = 1, . . . , s

ãi0 = b̃0, i = 1, . . . , s.



Existence and Uniqueness

Theorem

Suppose that y0 = y0(h), z0 = z0(h), λ0 = λ0(h), ψ0 = ψ0(h) satisfy

o(h2) = g(t0, y0)

o(h) =
d

dt
(g(t, y))(t0, y0, z0)

o(1) =
d2

dt2
(g(t, y))(t0, y0, z0, λ0, ψ0)

o(h) = k(t0, y0, z0)

o(1) =
d

dt
(k(t, y , z))(t0, y0, z0, λ0, ψ0).

Then the SPARK and EMPRK methods possess a unique solution for h
sufficiently small.



Determining Local Order

Local order is defined through series expansions of the
numerical and exact solutions. However, using series
expansions to determine local order is tedious.

Collocation methods (and discontinuous collocation methods),
by contrast, have a much cleaner derivation of their local
order.

We are thus interested in showing the equivalence of the
SPARK and EMPRK methods to a class of discontinuous
collocation type methods.
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Collocation and Discontinuous Collocation

Continuous Collocation Discontinuous Collocation

Hairer, Nørsett, Wanner. Solving Ordinary Differential Equations I, Nonstiff

Problems. 2000



Discontinuous Collocation Type Methods

Let c1, . . . , cs be distinct real numbers, and c̃0, . . . , c̃s also be
distinct real numbers, with c̃0 = 0 and c̃s = 1. Assume also that
b̃0, b̃s are positive real numbers. We then define the s-degree
polynomials Y (t), Λ(t), Ψ(t), Z f (t), the (s + 1)-degree
polynomials Z (t), Z r (t), and the (s + 2)-degree polynomials Z̃(t),
Z̃ r (t) as the polynomials satisfying the initial conditions

Y (t0) = y0,

Z f (t0) = z0, Z r (t0) = −hb̃0µ̃(t0),

Z̃ r (t0) = 0,

Z (t0) = Z f (t0) + Z r (t0) = z0 − hb̃0µ̃(t0)

Z̃(t0) = Z f (t0) + Z̃ r (t0) = z0,

where

µ̃(t) := Ż r (t)− r(t,Y (t),Λ(t)),



Discontinuous Collocation Type Methods

and the conditions

Ẏ (t0 + cih) = v(t0 + cih,Y (t0 + cih),Z (t0 + cih)), i = 1, . . . , s

Ż f (t0 + cih) = f (t0 + cih,Y (t0 + cih),Z (t0 + cih),Ψ(t0 + cih)),

i = 1, . . . , s

Ż r (t0 + c̃ih) = r(t0 + c̃ih,Y (t0 + c̃ih),Λ(t0 + c̃ih)), i = 1, . . . , s − 1

Z (t) = Z f (t) + Z r (t)

˙̃
Z

r

(t0 + c̃ih) = r(t0 + c̃ih,Y (t0 + c̃ih),Λ(t0 + c̃ih)), i = 0, . . . , s

Z̃(t) = Z f (t) + Z̃ r (t)



Discontinuous Collocation Type Methods

0 = g(t0 + c̃ih,Y (t0 + c̃ih)), i = 0, . . . , s

0 = gt(t1, y1) + gy (t1, y1)v(t1, y1, z1)

0 = k(t0 + c̃ih,Y (t0 + c̃ih), Z̃ (t0 + c̃ih)), i = 0, . . . , s

0 =

s∑

j=1

bjc
i−1
j k(t0 + cjh,Y (t0 + cjh),Z (t0 + cjh)), i = 1, . . . , s − 1

0 = k(t1, y1, z1).



Discontinuous Collocation Type Methods

The numerical solution at t1 = t0 + h is taken to be

y1 := Y (t1)

z1 := Z (t1)− hb̃sµ̃(t1).

These discontinuous collocation type methods can be shown to be
equivalent to the Gauss-Lobatto SPARK and EMPRK methods.



Discontinuous Collocation Type Methods

Theorem

A SPARK/EMPRK method with distinct values for cj and for c̃j is
a discontinuous collocation method iff the coefficients satisfy

s∑

j=1

aijc
k−1
j =

cki
k
,

s∑

j=1

bjc
k−1
j =

1

k
, k = 1, . . . , s

s∑

j=0

ãij c̃
k−1
j =

cki
k
,

s∑

j=0

b̃j c̃
k−1
j =

1

k
, k = 1, . . . , s − 1

ãi0 = b̃0, ãis = 0
s∑

j=1

āijc
k−1
j =

c̃ki
k
, k = 1, . . . , s − 1

s∑

j=0

ǎij c̃
k−1
j =

c̃ki
k
, k = 1, . . . , s + 1.
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Local Error for Gauss-Lobatto SPARK/EMPRK Methods

Theorem

The (s, s)-Gauss-Lobatto SPARK and EMPRK methods with
consistent initial values have local order 2s, i.e., for |h| ≤ h0,

y1 − y(t1) = O(h2s+1), z1 − z(t1) = O(h2s+1).



Convergence

Theorem

Consider the (s, s)-Gauss-Lobatto SPARK / EMPRK methods with
consistent initial conditions (y0, z0) at time t0. Then the
(s, s)-Gauss-Lobatto SPARK / EMPRK methods are convergent of
order 2s, i.e.

yn − y(tn) = O(h2s), zn − z(tn) = O(h2s),

where yn and zn are the numerical solution at time tn := t0 + nh,
for nh ≤ Const.
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Numerical Example - Simple Pendulum

Consider a simple pendulum of mass m and length ℓ.

L(t, q, v) := T − U, T :=
1

2
m(v21 + v22 ), U := −mγq2,

0 = g(t, q) =
1

2
(q21 + q22 − ℓ2).

m is the mass (m = 1)

ℓ is the length of the bob (ℓ = 1)

γ is the acceleration due to gravity (γ = 1)

The initial conditions are

q0 = (1 0)T , v0 = (0 0)T .

The system is integrated from 0 to 100.



Numerical Example - Simple Pendulum
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Numerical Example - Simple Pendulum

(2, 2)–Gauss-Lobatto, h = .05
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Numerical Example - Simple Pendulum

(2, 2)–Gauss-Lobatto, h = .01
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Numerical Example - Skate on an Inclined Plane

Consider a skate sliding on an inclined plane without friction.

L(t, q, v) := T − U

T :=
1

4
m
(
v2
1 + v2

2 + v2
3 + v2

4

)
U := −

1

2
mγ sin(β)(q1 + q3)

0 = g(t, q) =
1

2

(
(q3 − q1)

2 + (q4 − q2)
2 − ℓ2

)

0 = k(t, q, v) = −(q4 − q2)(v1 + v3) + (q3 − q1)(v2 + v4)

m is the mass of the skate (m = 1)

ℓ is the length of the skate (ℓ = 2)

γ is the acceleration due to gravity, β is the incline of the plane
(γ sin(β) = 1)

The initial conditions are

q0 = (−1/2 0 1/2 0)
T

v0 = (0 − 1/2 0 1/2)
T
.

The system is integrated from 0 to 10.



Numerical Example - Skate on an Inclined Plane
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Numerical Example - Skate on an Inclined Plane
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Numerical Example - Skate on an Inclined Plane

(2, 2)–Gauss-Lobatto SPARK Method, h = .1
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Numerical Example - Skate on an Inclined Plane

(2, 2)–Gauss-Lobatto EMPRK Method, h = .1
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Conclusion

SPARK and EMPRK methods are Runge-Kutta style methods
for solving overdetermined mixed index 2 and 3 DAEs.

These methods have a unique solution.

These methods can be expressed as discontinuous collocation
methods.

For the Gauss-Lobatto coefficients, the SPARK and EMPRK
methods are of order 2s.


