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Motivation
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Figure: Numerical solutions of IVP of the linear advection equation

ut + 0.2ux = 0 by MONOTONE schemes [H.Z. Tang & G. Warnecke,

M2AN, 38 (2004)].

• Why does the monotone scheme produce local

/counterintuitive oscillations?



Review of numerical schemes for HCL

IVP of scalar HCL

ut + f(u)x = 0, x ∈ R, t > 0,

u(x, t) = u0(x), x ∈ R, t = 0.

Integrating the above PDE and using the divergence theorem

give

d

dt

∫
R
u dx+ f |x=+∞ − f |x=−∞ = 0

which means that the time rate of change of u in the domain

is equal to the net flux of u through its boundary.

HCL plays an important role in gas dynamics etc.
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Review of numerical schemes for HCL

Lax-Wendroff theorem [CPAM, 1960]: If the solutions of the

conservative scheme converge to a function u as

max{τ, h} → 0, then u is a weak solution of HCL.

Conservative scheme in the viscous form

un+1
j =unj −

ν

2

(
f(unj+1)− f(unj−1)

)
+
Qnj+1/2

2
(unj+1 − unj )

−
Qnj−1/2

2
(unj − unj−1),

where ν = τ/h, and τ & h are time and space step sizes,

respectively.



Review of numerical schemes for HCL

Lax-Friedrichs scheme: Qj+1/2 = 1; Lax-Wendroff scheme:

Qj+1/2 = |νaj+1/2|2; Upwind scheme: Qj+1/2 = |νaj+1/2|.

aj+1/2 =

f ′(uj), uj = uj+1

(fj+1 − fj)/(uj+1 − uj), otherwise.

Generalized LxF scheme: Qj+1/2 = q (0 < q < 1 constant)

Monotone scheme: If unj ≥ vnj for each j, then un+1
j ≥ vn+1

j

for each j.

TVD (Total variation diminishing):

TV (un+1) ≤ TV (un) :=
∑

j |uj+1 − uj |.

Monotonicity-preserving: If {unj } is monotone w.r.t. j, so

does {un+1
j }.



Review of numerical schemes for HCL

Some well-known facts:

(i) The monotone scheme is TVD, while the TVD scheme is

monotonicity-preserving;

(ii) The TVD scheme as well as the monotonicity-preserving

scheme is (essentially) non-oscillatory;

(iii) The solution of the monotone scheme converges to

unique entropy solution of HCL;

(iv) The GLF & LxF schemes are monotone under their CFL

conditions.

[1] M. G. Crandall & A. Majda, Math. Comp., 34(1980), 1-21.

[2] A. Harten, J. M. Hyman, & P.D. Lax, Comm. Pure Appl. Math. 29(1976),

297-321.



Review of numerical schemes for HCL
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Figure: Numerical results for the linear advection equation ut + ux = 0.

From left to right: 2nd order LW, 1st order upwind, and 2nd order TVD.

• The LW scheme is 2nd order accurate in time and space,

and not monotone & TVD as well as

monotonicity-preserving, thus produces numerical

oscillations.



Glimpse of local oscillations in the GLF scheme

Consider the generalized LxF schemes (GLF)

un+1
j = unj −

ν

2

(
f(unj+1)− f(unj−1)

)
+
q

2
(unj+1− 2unj + unj−1), (1)

and understand local oscillations in solutions of (1) by Fourier

analysis and modified equation methods, even though GLF is

monotone and TVD under a certain restriction.

A glimpse: Taking the highest frequency mode, a chequerboard

mode, as the initial data, then we have the solution of GLF (1)

unj = (1− 2q)n(−1)j .

It shows that the solution of (1) is still a chequerboard mode,

except for the modified LxF scheme with q = 1/2. The amplitude

of the solution is diminishing if 0 < q < 1 but keeps invariant for

the LxF scheme with q = 1 or for the unstable central scheme with

q = 0.



Example 1. Linear Advection Equation

First, we present several examples to display local oscillations in

the solution of CL by GLF.

Consider the LAE

ut + ux = 0, x ∈ [0, 1],

by using the LxF scheme (i.e. q = 1). Take the grid points

M = 50, ν = τ/h = 0.8, and use periodic B.C. just for simplicity.

We first look at the impulsive initial data

u0j =

1, j = M/2,

0, otherwise,

and the distributed square pulse initial data

u0j =

1, j = M/2,M/2 + 1,

0, otherwise.



Example 1. Linear Advection Equation
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Figure: Numerical results for the advection equation with 50 grid points

and ν = 0.8. Left: impulsive data; right: square pulse data.

The left plot displays clear oscillations. Note that the TV keeps

invariant 2. The right one shows exactly the opposite behavior (No

oscillation is present).



Example 2. Burgers equation ut + (u2/2)x = 0
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Figure: Same as the last figure except for the Burgers equation. Left:

impulsive data; right: square pulse data.

Similar numerical phenomena are observed. Therefore, the

oscillations are not connected to the nonlinearity, just for

chequerboard mode.



Example 3. Compressible Euler equations

This example is for nonlinear systems

∂U

∂t
+
∂F (U)

∂x
= 0,

with U = (ρ, ρu,E)> and F (U) = (ρu, ρu2 + p, u(E + p))>. We

take the equation of state p = (γ − 1)ρe for polytropic gases with

γ = 1.4. Similar to the scalar case, we still use odd and even

points to discretize a square-shaped signal initial data such as

(ρ0j , u
0
j , p

0
j ) =

(0.125, 0, 0.1), j = 49, 50, 51,

(1, 0, 1), otherwise,

and

(ρ0j , u
0
j , p

0
j ) =

(0.125, 0, 0.1), j = 50, 51,

(1, 0, 1), otherwise.



Example 3. Compressible Euler equations
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Figure: t = 0.25, 100 grid points, CFL = 0.6, and q = 1. The obvious

oscillations are generated by the LxF scheme.



Example 3. Compressible Euler equations
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Figure: Same as the last Figure except with q = 0.9. The solution is

non-oscillatory.
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0 0.2 0.4 0.6 0.8 1
0.95

0.96

0.97

0.98

0.99

1
DENSITY

X−AXIS

rh
o

0 0.2 0.4 0.6 0.8 1
0.93

0.94

0.95

0.96

0.97

0.98

0.99

1
PRESSURE

X−AXIS

p

0 0.2 0.4 0.6 0.8 1
−0.06

−0.04

−0.02

0

0.02

0.04

0.06
VELOCITY

X−AXIS

v

0 0.2 0.4 0.6 0.8 1
2.4

2.45

2.5

2.55

2.6
INTERNAL ENERGY

X−AXIS

e

Figure: Same as before except that even points are used to discretize the

initial square-shaped signal. q = 1. No oscillation is present.



Local oscillations in the solutions by the GLF scheme

Remarks:

The presence of oscillations is not only related to the ways in

which the initial data are approximated, but also to the

numerical viscosity coefficient q.

For the LxF scheme, the local oscillations are very strong

although the TV property is not violated.

Those examples show that the different ways of initial

discretization lead to distinct solution behaviors. This

motivates the analysis of the discretization of initial data.
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Chequerboard modes in the initial discretization

As observed previously and also in [M. Breuss, M2AN, 38(2004),

519-540], the numerical solutions display very distinct behaviors if

the initial data are discretized in different ways. This motivates us

to discuss the discretization of initial data

u(x, 0) = u0(x), x ∈ [0, 1], (2)

with M grid points and h = 1/M . For simplicity, we assume that

M is even, the initial function is periodic, i.e. u0(0) = u0(1) and

its value at the grid point xj is denoted by u0j . We express grid

function {u0j} by using the usual discrete Fourier sums with scaled

wave number ξ = 2πkh

u0j =

M/2∑
k=−M/2+1

c0ke
iξj , i2 = −1, j = 0, 1, · · · ,M − 1, (3)



Chequerboard modes in the initial discretization

where the coefficients c0k are, in turn, expressed as

c0k =
1

M

M−1∑
j=0

u0je
−iξj , k = −M/2 + 1, · · · ,M/2. (4)

We first pay special attention to the particular case that

c0k =

1, if k = M/2,

0, otherwise,

i.e. the initial data are taken to be just the highest Fourier mode

which is a single chequerboard mode

u0j = ei2π
M
2
jh = eiπj = (−1)j .



Single square signal case.

We start with the simple initial data of a square signal such as

u0(x) =

1, 0 < x(1) < x < x(2) < 1,

0, otherwise,
(5)

and take the following two ways to approximate the step function

(5) as a grid function: One uses an ODD number of grid points to

take the value one of the square signal and the other uses the next

smaller EVEN number of grid points. They could be seen as

approximations to some given fixed interval with end points not

represented on the mesh, which we do not explicitly specify here.



Single square signal case.

We use the discrete Fourier sum to clarify their difference.

(i) Discretization with an ODD number of grid points. Take

j1, j2 ∈ N such that j1 + j2 is an even number. We set

x(1) = (M2 − j1)h and x(2) = (M2 + j2)h. Discretize the square

signal (5) with p := j1 + j2 + 1 nodes, i.e. an odd number of grid

points, such that

u0j =

1, if j = M/2− j1, · · · ,M/2 + j2,

0, otherwise.
(6)

Substituting them into (4), we obtain by simple calculation,

c0k = h

M−1∑
j=0

u0je
−iξj =


(−1)keiξj1 (1−e−iξp)

M(1−e−iξ) , for k 6= 0,

ph, for k = 0.
(7)



Single square signal case.

Pay special attention to the term

c0M/2 = (−1)j1+M/2h,

since M is even and p is odd. Hence the initial data (6) can be

expressed in the form

u0j = (−1)j+j1+M/2h+ ph+
∑

k 6=0,M/2

(−1)keiξ(j+j1)(1− e−iξp)
M(1− e−iξ)

.

(8)

It turns out that chequerboard modes are present and will affect

the solutions if the initial data contains a square signal and are

discretized with an odd number of grid points.



Single square signal case.

(ii) Discretization with an EVEN number of grid points.

Rather than (i) above, we use p := j1 + j2 even number of grid

points to express the square signal in (5) as follows

u0j =

1, if j = M/2− j1 + 1, · · · ,M/2 + j2,

0, otherwise.

Then we substitute these initial data into (4) to obtain

c0k =


(−1)keiξ(j1−1)[1−e−iξ(p−1)]

M(1−e−iξ) , for k 6= 0,

(p− 1)h, for k = 0,

and c0M/2 = 0. The initial data can be written by using the discrete

Fourier sums as

u0j = 0× (−1)jh+(p−1)h+
∑

k 6=0,M/2

(−1)keiξ(j+j1−1)[1− e−iξ(p−1)]
M(1− e−iξ)

.

(9)

Comparing (8) with (9), we observe an essential difference lies in

the fact that a checkerboard mode (−1)k+j1+M/2 is present in (8),

but it is filtered out in (9). This is closely related to the oscillatory

phenomenon observed in [M. Breuss, M2AN2004 & M2AN2005,

Tang & Warnecke, M2AN2004].



Step function initial data case

For more general piecewise constant initial data u0(x) there are

analogous discrete Fourier sum expressions. We divide the

computational domain [0, 1] into L subintervals

Il (l = 1, 2, · · · , L),
⋃L
l=1 Il = [0, 1], the number of the discrete

points of a subinterval Il is Ml, M1 +M2 + · · ·+ML = M , and

the initial data (2) are expressed as

u0j =

L∑
l=1

Ū l0 · χl(j), (10)

where Ū l0 are constants, χl(j) is the characteristic function on Il

χl(j) =

1, if xj ∈ Il,

0, otherwise .

Note that (10) can be regarded as the superposition of several

single square signals of the form (5).



Step function initial data case

Then we express (10) as a discrete Fourier sum of the form (3)

with c0k. For k 6= 0, M/2, we have

c0k =
1

M

Ū1
0

M1−1∑
j=0

e−iξj + Ū2
0

M1+M2−1∑
j=M1

e−iξj + · · ·+ ŪL0

M−1∑
j=pL−1

e−iξj


=

1

M(1− e−iξ)

L∑
l=1

Ū l0(e
iξMl − 1)e−iξpl , (11)

where pl = M1 + · · ·+Ml; and for k = 0, M/2, we have

c00 = 1
M (Ū1

0M1 + Ū2
0M2 + · · ·+ ŪL0 ML),

c0M/2 = 1
M

L∑
l=1

Ū l0

[
M−1∑
j=0

χl(j)(−1)j

]
.



Chequerboard modes in the initial discretization

Thus, the initial data are expressed as

u0j =
1

M

L∑
l=1

Ū l0

[
M−1∑
m=0

χl(m)(−1)m

]
(−1)j +

1

M
(Ū1

0M1 + Ū2
0M2 + · · ·

+ ŪL0 ML) +
1

M

∑
k 6=0,M/2

1

(1− e−iξ)

L∑
l=1

Ū l0(eiξMl − 1)e−iξpl . (12)

Similar to the case of a single square signal, it depends on c0M/2

whether there is a chequerboard mode in the discrete initial data.

Therefore, we have three cases here too.

(i) If the gridpoint number Ml in each Il is odd, c0M/2 is

c0M/2 =
1

M

L∑
l=1

Ū l0

M−1∑
j=0

χl(j)(−1)j

 =
1

M

L∑
l=1

Ū l0(−1)l+1;



Chequerboard modes in the initial discretization

(ii) If the gridpoint number Ml in each Il is even, c0M/2 vanishes,

c0M/2 =
1

M

L∑
l=1

Ū l0

M−1∑
j=0

χl(j)(−1)j

 = 0.

(iii) If the gridpoint number in some Il is odd while in the others it

is even, c0M/2 = 1
M

L∑
l=1

Ū l0φ(l), where

φ(l) =

0, if Il is in the even case,

1 or (−1), if Il is in the odd case.



Chequerboard modes in the initial discretization

Thus, there is no chequerboard mode for Case (ii). For Case (i),

the summation may be zero when the factors cancel. However,

since this summation is taken in the global sense and the

chequerboard mode exists in each subinterval, the solution may

still contain oscillations due to the finite propagation speed

property of the scheme.



Chequerboard modes in the initial discretization

We summarize all of the above analysis as follows.

Proposition

Suppose that the initial data

u(x, 0) = u0(x)

are given as a step function. We can approximate them as the

superposition of several single square signals. For each square

signal we have two different types of discretizations. If they are

approximated with an ODD number of grid points, the

chequerboard (i.e. highest frequency) mode is present. In contrast,

if they are discretized with an EVEN number of grid points, there

is no chequerboard mode.
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Propagation of the chequerboard mode propagation

In this part we simply look at the GLF scheme for the linear

advection equation, f(u) = au,

un+1
j = unj −

νa

2
(unj+1 − unj−1) +

q

2
(unj+1 − 2unj + unj−1), (13)

and catch a glimpse of the resolution of high frequency modes,

where |νa| ≤ q ≤ 1.

As usual for stability analysis, the solution to (13) is expressed

analogously to (3) in the standard form of a discrete Fourier sum

using ξ = 2πkh

unj =

M/2∑
k=−M/2+1

cnke
iξj . (14)

The coefficients cnk are obtained successively and expressed as,

cnk = (1 + q(cos ξ − 1)− iνa sin ξ)n c0k. (15)



Corresponding to the two kinds of discretization of a single square

signal, c0j have different expressions, and the solutions become:

(i) Odd discretization case. With the initial data (8), the

solution of (13) is

unj =
1

M
(1− 2q)n(−1)j+j1+M/2 +

M/2−1∑
k=−M/2+1

cnke
iξj . (16)

(ii) Even discretization case. With the initial data (9), we have

unj = 0× (1− 2q)n(−1)j +

M/2−1∑
k=−M/2+1

cnke
iξj . (17)

Comparing them, we see that in the odd case the chequerboard

mode does not vanish if it exists initially, unless we have the MLF

scheme q = 1/2, although it decays with a rate of |2q − 1| at each

time step. So, a proper discretization of initial data would be

important to avoid these possible oscillations in solving CL.
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Figure: The decay of oscillations as the parameter q decreases: The

initial data are impulse signal, the CFL number is 0.2 and only one time

step is taken.



Remark 1. The solution of LxF unj = (−1)n+j oscillates between 1

and −1 alternately if the chequerboard mode initial data are taken.

The large numerical dissipation does not have any effect.

Remark 2. In case 0 < q < 1, the chequerboard mode is damped

out quickly. In particular, for the MLF q = 1/2 the chequerboard

mode is eliminated and has no influence on the solution at all.



In the following we attempt to analyze the numerical dissipation

and phase error mechanisms of GLF, particularly on high frequency

modes and explain the phenomenon of oscillations caused by high

frequency modes. We apply discrete Fourier analysis and the

method of modified equation analysis. Both of the methods give

complimentary results, which are consistent. We show that as

0 ≤ q ≤ 1 is away from 1/2, the damping on high frequency modes

becomes weak. In particular, there is no damping effect in the LxF

scheme (i.e. q = 1) and the unstable central scheme (i.e. q = 0).
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Discrete Fourier analysis

We use the discrete Fourier analysis to discuss the dissipation and

phase error mechanism of GLF for f = au, which is monotone

under 0 < |νa| < q ≤ 1. We are particularly concerned with the

phase accuracy of Fourier modes. Denote a Fourier mode by eiξ

with ξ = 2πkh. Then using it as initial data for a linear FDS

results in the solution at t = nτ

unk = λnke
iξ = (λ(k))n eiξ, i2 = −1, (18)

where λnk is the amplitude. The ratio λ(k) = λn+1
k /λnk is the

amplitude of the mode for one time step.



Discrete Fourier analysis

For GLF we have in particular

λ(k) = 1 + q(cos ξ − 1)− iνa sin ξ, ν = τ/h, (19)

and its modulus

|λ(k)|2 = 1 + 4(a2ν2 − q) sin2(ξ/2) + 4(q2 − a2ν2) sin4(ξ/2). (20)

For q = ν|a| the last term at RHS vanishes, whereas for q = ν2a2

the 2nd term vanishes.



Discrete Fourier analysis
Also we see that for GLF, under the conditions 0 < ν2a2 ≤ q ≤ 1,

we have from (20) the estimate of the modulus of amplitude

|λ(k)|2 = 1+4(a2ν2−q)
(
sin2(ξ/2)− sin4(ξ/2)

)
+4q(q−1) sin4(ξ/2) ≤ 1.

(21)

Thus these conditions imply that the schemes are linearly stable.

In fact, these conditions are necessary and sufficient for stability.

Figure: Range of stability of parameter q over CFL number νa.



Discrete Fourier analysis

The exact solution of the Fourier mode eiξ for x = h after one

time step τ is ei(ξ−2πakτ) = e−i2πakτeiξ = λexact(k)eiξ. The exact

amplitude λexact(k) has modulus 1. We see from (20) that the

amplification error, i.e. the error in amplitude modulus, is of order

O(ξ) for the monotone schemes and order O(ξ2) for the LW

scheme. If the modulus of λ(k) is less than one, the effect of the

multiplication of a solution component with λ(k) is called

numerical dissipation and then the amplification error is called

dissipation error. If the modulus is larger than 1, this leads to the

amplification of the Fourier mode, i.e. instability of any solution

containing it. Further, comparing the exponents of λ(k) and

λexact(k) there is a phase error arg λ(k)− (−2πakτ).



Discrete Fourier analysis

The relative phase error is then defined as

Ep(k) :=
arg λ(k)

−2πakτ
− 1 = −arg λ(k)

νaξ
− 1.

A mode is a low frequency mode if ξ ≈ 0 and a high frequency

mode if ξ ≈ π.

We first look at the low frequency modes (ξ ≈ 0)

(U s)nj := λnke
iξj .

For k = ξ = 0 we have λ(k) = 1. From (20) we obtain

d(|λ(k)|2)
dq

= 2(1 + q(cos ξ − 1))(cos ξ − 1) < 0, (22)

for fixed ξ ∈]0, π/2]. This implies that the dissipation becomes

weaker as q decreases. The LxF scheme with q = 1 has the largest

numerical dissipation for low frequency modes.



Discrete Fourier analysis

The phase of the low frequency modes is approximated by Taylor

expansion at ξ = 0

arg λ = arctan

(
−νa sin ξ

1 + q[cos ξ − 1]

)
≈ −νaξ

(
1 +

3q − 1− 2ν2a2

6
ξ2 + · · ·

)
.

This phase has a relative error Ep(k) of order O(ξ2). For the LW

scheme, this phase error causes oscillations, which cannot be

suppressed by the weaker dissipation of order O(ξ2), compared to

the dissipation error O(ξ) of the upwind scheme.



Discrete Fourier analysis

For high frequency modes (18), ξ ≈ π, the situation is very

different. We introduce the decomposition ξ = π + ξ′, i.e.

ξ′ = 2πk′h with kh = 1/2 + k′h, and thus ξ′ ≈ 0. We write the

modes in the form

(Uh)nj = λnke
iξj = λnke

i(π+ξ′)j = (−1)j+nλnk′e
iξ′j , (23)

with λnk′ = (−1)j+neiπjλnk and set

(Uo)nj := λnk′e
iξ′j .

The factor (Uo)nj can be regarded as a perturbation amplitude of

the chequerboard modes (eiπ)j+n = (−1)j+n. The dissipation

(amplitude error) depends only on λnk′ . Then substituting (Uh)nj
into (13) yields

λ′ := λn+1
k′ /λnk′ = −1 + q(1 + cos ξ′)− iνa sin ξ′.



Therefore, we have

|λ′|2 =(1− q(1 + cos ξ′))2 + ν2a2 sin2 ξ′

=1 + 4(a2ν2 − q) cos2(ξ′/2) + 4(q2 − a2ν2) cos4(ξ′/2). (24)

It is consistent with a shift of π in the variable ξ in (20).

Regarding the high frequency modes, for all schemes the amplitude

error is O(1). At ξ′ = 0 we have

|λ′|2 = 1− 4q(1− q), (25)

so we have the lowest amplitude error for q = 1 or near zero, the

highest for the modified LxF scheme with q = 1/2. Obviously, for

small ξ′, |λ′|2 is an increasing function of q if q > 1/2 because

d(|λ′|2)/dq = −2[1− q(1 + cos(ξ′))](1 + cos ξ′) > 0. (26)

That is, GLF becomes much more dissipative for high frequency

modes as the parameter q decreases, which is in sharp contrast

with the situation for low frequency modes, see (22).



Furthermore, let us look at the relative phase error. We compute

arg λ′ = tan−1
(

−νa sin ξ′

−1 + q(1 + cos ξ′)

)
=
−νaξ′

2q − 1
− νa

3(2q − 1)2

[
q + 1

2
− ν2a2

2q − 1

]
ξ′3 +O(ξ′5). (27)

Then for the high frequency modes (Uh)nj , we have by recalling

that ξ = π + ξ′

(Uh)nj =(−1)j+nλ′nk e
iξ′j

=|λ′|nei(jξ−2πkanτ) · ein(−π+arg λ′+νaξ).



So, the relative phase error of high frequency modes after each

time step is

Ep(k) =− −π + arg λ′ + νaξ

νaξ

=− π(1− νa)

νaξ
+

2(q − 1)νaξ′

(2q − 1)νaξ
− 1

3(2q − 1)2ξ

[
q + 1

2
− ν2a2

2q − 1

]
ξ′3

+O(ξ′5). (28)

Because ξ ≈ π, the relative phase error has O(1). This error is

huge, and strong numerical dissipation is needed to suppress it.



We summarize the above Fourier analysis in the proposition.

Proposition

We distinguish low and high frequency Fourier modes unj = λnke
ijξ,

ξ = 2πkh, and they behave differently.

(i) For the low frequency modes (ξ ∼ 0), the relative phase error is

of order O(ξ2), and the amplitude error (dissipation) becomes

smaller as the parameter q decreases. The order of amplitude error

is O(ξ) for the monotone schemes and O(ξ2) for the LW scheme.

(ii) For the high frequency modes (ξ ∼ π), the relative phase error

is of order O(1), the amplitude error becomes larger as the

parameter q is closer to 1/2.



Outline

1 Motivation

2 Chequerboard modes in the initial discretization

3 Propagation of the chequerboard mode

4 Discrete Fourier analysis

5 Modified equation analysis

6 Conclusions



Modified equation analysis for linear cases

As we know, the amplitude error and relative phase error of the

Fourier modes have a correspondence with dissipation and phase

error mechanisms displayed by related PDEs. Here we use the

modified equation to further investigate the mechanisms of

dissipation and phase error of GLF. Particularly, we want to see

how the dissipation offsets the large phase error of high frequency

modes. The modified equation analysis was originally introduced

for low frequency modes1. Here it is especially used for high

frequency modes, as its usefulness was clearly shown in [K.W.

Morton and D.F. Mayers, Numerical Solution of Partial Differential

Equations, Cambridge Univ Press, 2005].

The modified equation is derived by first expanding each term of a

difference scheme in a Taylor series and then eliminating time

derivatives higher than first order by certain algebraic

manipulations.
1R. F. Warming and B. J. Hyett, The modified equation approach to the

stability and accuracy analysis of finite-difference methods, J. Comput. Phys.,

14(1974), 159-179



Modified equation analysis for linear cases

We begin here with the linear case, and still use notation ν = τ/h.

As in [Morton & Mayers, 2005, P173], we will consider a smooth

solution (U s)nj and an oscillatory solution (Uh)nj , respectively. The

oscillatory solution (Uh)nj is written as

(Uh)nj = (−1)j+n(Uo)nj , (29)

where (Uo)nj is viewed as the perturbation amplitude of the

chequerboard mode.



Modified equation analysis for linear cases

The smooth solution (U s)nj satisfies GLF, i.e.

(Us)n+1
j = (Us)nj−

νa

2
((Us)nj+1−(Us)nj−1)+

q

2
((Us)nj+1−2(Us)nj +(Us)nj−1).

Then we derive a modified equation for this solution2, and the

notation Ũ s corresponds to the associated exact solution

∂tŨ
s+a∂xŨ

s =
1

2τ

(
qh2 − a2τ2

)
∂2xŨ

s+a

(
−h

2

6
+

1

2
qh2 − 1

3
a2τ2

)
∂3xŨ

s+· · · .

It is evident that the numerical viscosity of GLF becomes stronger

for low frequency modes as q is larger, and vice versa. Particularly,

for the LW scheme the dissipation comes from the 4th order term

and therefore is quite weak. This is consistent with the fact

observed by the Fourier analysis that the dissipation becomes

weaker as q decreases, provided that the scheme is stable.
2K.W. Morton & D.F. Mayers, CUP, 2005, p169



Modified equation analysis for linear cases

However, the numerical dissipation of GLF is very different for the
high frequency modes. Let us discuss the perturbation (Uo)nj of
the oscillatory solution (29). Substituting (29) into GLF yields

(Uo)n+1
j − (Uo)nj

τ
=
q − 2

τ
(Uo)nj−

νa

2τ
[(Uo)nj+1−(Uo)nj−1]+

q

2τ
[(Uo)nj+1+(Uo)nj−1].

(30)

Compared to the difference equation for the low frequency modes,

it contains an extra term q−2
τ (Uo)nj , which plays the key role of

damping on high frequency modes. We use the notation

Ũo(jh, nτ) to express (Uo)nj inserted into the above equation and

apply the standard approach. That is, taking the standard Taylor

expansion yields

D+tŨ
o + a∂xŨ

o =
2(q − 1)

τ
Ũo +

a2qτ

2ν2
∂2xŨ

o − a3τ2

6ν2
∂3xŨ

o + · · · , (31)

where D+t = (eτ∂t − 1)/τ.



Note that in (30) the term q−2
τ (Ũo)nj is unusual compared to

classical modified equation analysis.

We may derive the modified equation for the oscillatory part

∂tŨ
o+

a

2q − 1
∂xŨ

o =
ln |2q − 1|

τ
Ũo +

h2

2τ

[q(2q − 1)− ν2a2]

(2q − 1)2
∂2xŨ

o

+
ah2

6

[(q + 1)(2q − 1)− 2ν2a2]

(2q − 1)3
∂3xŨ

o + · · · .

Introducing for q 6= 1/2 a rescaling x′ = x(2q − 1) and omitting

the use of a primed variable gives

∂tŨ
o+a∂xŨ

o =
ln |2q − 1|

τ
Ũo +

h2

2τ
[q(2q − 1)− ν2a2]∂2xŨo

+
ah2

6
[(q + 1)(2q − 1)− 2ν2a2]∂3xŨ

o + · · · .

Unlike the modified equation (52) for the low frequency modes the

numerical dissipation comes from two terms: Zero order term
ln |2q−1|

τ Ũo and the 2nd order term a2τ
2ν2a2

[q(2q − 1)− ν2a2]∂2xŨo.
The former exerts more dominant dissipation than the latter.



Modified equation analysis for linear cases

The zero order term in the modified equation ln |2q−1|
τ Ũo is called a

numerical damping term and the 2nd order term
h2

2τ [q(2q − 1)− ν2a2]∂2xŨo a numerical viscosity. They play

different dissipation roles in controlling the amplitude of high

frequency modes.

Remarks: The modified equation of LxF for Ũo is

∂tŨ
o+a∂xŨ

o =
a2τ

2ν2a2
[1−ν2a2]∂2xŨo+

a3τ2

3ν2a2
[1−ν2a2]∂3xŨo+· · · .

(32)

Although this part is dissipated through the numerical viscosity

term if |νa| < 1, this dissipation is still weak in comparison with

the numerical damping term ln(|2q−1|)
τ Ũo. Thus the chequerboard

mode is not perturbed and damped at all. This explains why the

oscillations in the LxF scheme are observed. This was already

highlighted above through the discrete Fourier analysis.



Modified equation analysis for linear cases

Remarks: As 0 < q < 1, the strong damping term ln(|2q−1|)
τ Ũo

suppresses the oscillations well no matter how the viscosity term

behaves. In particular, if q = 1/2, the oscillation is damped out

immediately, by noting that

lim
q→1/2+0

ln(|2q − 1|) = −∞. (33)

So the damping becomes infinite for q = 1/2. This is consistent

with two previous observations.

The high frequency modes are dissipated very quickly if 0 < q < 1,

unlike the LxF scheme with q = 1 or the unstable central scheme

with q = 0, even though there is a chequerboard mode initially.

This explains why the oscillations are less visible for 0 < q < 1

than those in the LxF or the unstable central scheme for q = 0.
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Conclusions

The talk discussed the local oscillations in the GLF scheme. It

has general implications into more extensive (monotone)

schemes and multidimensional cases.

The discrete Fourier analysis and the modified equation are

applied to investigating the numerical dissipative and

dispersive mechanisms as well as relative phase errors.

The resolutions of the low and high frequency modes

unj = λnke
ijξ, ξ = 2πkh in numerical solutions are individually

discussed.

The presence of high frequency modes results from the

initial/boundary conditions. The discretization may produce

the chequerboard modes.



Conclusions

We summarize our results as follows.

Relative phase error. For the low frequency modes, the error

is of order O(ξ2), while for high frequency modes the error is

of order O(1) after each time step, which is generally

independent of the parameter q.

Numerical dissipation. For the low frequency modes, the

dissipation is usually of order O(ξ) for the scheme GLF, which

closely depends on the parameter q. As q = ν2a2, GLF

becomes the LW scheme and it has the amplitude error

O(ξ2). For high frequency modes, the scheme usually has the

numerical damping of order O(1) that becomes stronger as q

is closer to 1/2, unless it vanishes for the limit case (q = 1 or

0), in which the amplitude is dissipated via the numerical

viscosity of 2nd order.



Conclusions

In the LW scheme the oscillations are caused by the relative

phase error of low frequency modes, while in LxF, oscillations

are caused by the relative phase error of high frequency

modes. To control the oscillations by high frequency modes,

the strong numerical damping is necessary to add.

Compared to LxF, the GLF (0 < q < 1) introduces the

numerical damping as well, which is stronger as q is closer to

1/2. Hence, to control the oscillations caused by high

frequency modes, the numerical damping plays an important

role.



Conclusions

Indeed, the GLF scheme is monotone and thus TVD under a

certain restriction. The TVD property is proposed to describe

the global property of solutions of CLs. The oscillations we

are investigating is local and does not contradict to this global

TVD property. As far as hyperbolic problems are concerned,

local properties should be paid more attention because of

finite propagation of waves.



Thank you for your attention!

J.Q. Li, H.Z. Tang, G. Warnecke,& L.M. Zhang, Math. Comp.,

78(2009), 1997-2018.
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