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Basic Background

Two-derivative Runge-Kutta (TDRK) methods belong to the
family of multi-derivative Runge-Kutta methods – they are
one-step multi-stage methods.

We consider an autonomous ODE system y′(t) = f(y) with
initial condition y0 = y(t0) and known second derivative
y′′(t) = f ′(y)f(y) =: g(y).

Numerical Scheme:

Yi = yn + h

s∑

j=1

aijf(Yj) + h2

s∑

j=1

âijg(Yj), i = 1, . . . , s,

yn+1 = yn + h

s∑

i=1

bif(Yi) + h2

s∑

i=1

b̂ig(Yi).
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âijg(Yj), i = 1, . . . , s,

yn+1 = yn + h

s∑

i=1

bif(Yi) + h2

s∑

i=1

b̂ig(Yi).

3/31



TDRK Methods
TDRK Methods for ODEs
TDRK Methods for PDEs

Discussion/Conclusion

Basic Background

In a non-autonomous system, the variable t can be treated as
a component of the y vector.

Block Matrix Form:

Y = e ⊗ yn + h(A ⊗ IN )F (Y ) + h2(Â ⊗ IN )G(Y ),

yn+1 = yn + h(bT
⊗ IN )F (Y ) + h2(̂bT

⊗ IN )G(Y ),

where e = [1]s×1, A = [aij ]s×s, Â = [âij ]s×s, b = [bi]s×1,

b̂ = [̂bi]s×1, and

Y =





Y1

Y2

...
Ys



 , F (Y ) =





f(Y1)
f(Y2)

...
f(Ys)



 , G(Y ) =





g(Y1)
g(Y2)

...
g(Ys)



 .
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Basic Background

Extended Butcher Tableau:

c A Â

bT b̂T

Stability Function: For the standard test problem y′(t) = λy,
yn+1 = R(z)yn, where

R(z) = 1 + (zbT + z2 b̂T )(I − zA − z2Â)−1e, with z = hλ.

Symmetry Conditions:
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Basic Background

Symmetry Conditions:
PAP = ebT

− A

PÂP = −êbT + Â

Pb = b

P b̂ = −b̂

where P is the permutation matrix which reverses the stages.

Order Conditions: As for RK methods, we compare the Taylor
Series expansions of the exact and numerical solutions,
y(tn + h) and yn+1 respectively, to derive the order conditions
of methods.
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Order Conditions

Order conditions assuming C(1):

Order Tree Order Condition

1 bT e = 1

2 bT c + b̂T e = 1

2

3 bT c2 + 2b̂T c = 1

3

bT Ac + bT Âe + b̂T c = 1

6

4 bT c3 + 3b̂T c2 = 1

4

bT cAc + bT cÂe + b̂T c2 + b̂T Ac + b̂T Âe = 1

8

bT Ac2 + 2bT Âc + b̂T c2 = 1

12

bT A2c + bT AÂe + bT Âc + b̂T Ac + b̂T Âe = 1

24
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Simplifying Assumptions and Labelling Trees

Stage Order Conditions:

C(q) : Ack−1 + (k − 1)Âck−2 =
ck

k
, k = 1, . . . , q.

Bushy Tree Conditions:

Example of Labelling Trees:
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ck

k
, k = 1, . . . , q.

Bushy Tree Conditions:

B(p) : bT ck−1 + (k − 1)̂bT ck−2 =
1

k
, k = 1, . . . , p.

Example of Labelling Trees:

bT

c

c

A

bT

c Âe
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Constructing Explicit TDRK Methods

In our study, we include two special groups of explicit TDRK
methods:

GROUP A:

c Ae1 Â

b1 b̂T
⇒

c Â

b̂T

GROUP B:

c A Âe1

bT b̂1

We also constructed embedded explicit TDRK methods to
compare with some popular embedded explicit RK methods.

Explicit TDRK methods can easily have stage order 2, i.e.
they satisfy the C(2) conditions.
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Constructing Explicit TDRK Methods

TDRK45b/TDRK5b: p = 5, q = 2
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0 order 4

TDRK5b requires 1f + 3g function evaluations per step, and
R(z) = 1 + z + z2

2
+ z3

6
+ z4

24
+ z5

120
+ z6

720
.

TDRK45b is an embedded method which requires 1f + 4g
function evaluations per step.
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Constructing Implicit TDRK Methods

We have constructed several implicit TDRK methods, for
example, TDRK244sss is a 2-stage, order-4, stage-order-4,
semi-implicit, symmetric, and stiffly-accurate method:
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R(z) =
12 + 6z + z2

12 − 6z + z2

The implicit TDRK methods we constructed range from order
3 to 6, the order-3 and 5 methods are L-stable and the
order-4 and 6 methods are A-stable.
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Stiff ODE Problems

Prothero-Robinson Problem (PR):

y′(t) = λ(y(t) − φ(t)) + φ′(t),

we show the results for φ(t) = sin(t) and two cases for the
implicit methods,

PR1b: y0 = φ0 and λ = −104. Exact solution is y(t) = φ(t).
PR1d: y0 = 1 and λ = −104. Exact solution is
y(t) = φ(t) + (y0 − φ0) exp(λt).

Kaps Problem:

y′(t) =

[
−y1(1 + y1) + y2

λ(y2
1 − y2) − 2y2

]
, y(0) =

[
1
1

]
, Re(λ) ≫ 1,

with exact solution y(t) = [exp(−t), exp(−2t)]T .
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(a) Efficiency Diagram:  Prothero−Robinson, λ=−1, variable stepsize, (4,5) pair
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Order Behaviour – Error for PR problem when h → 0 and
z = λh → ∞:
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Discussion/Conclusion

Classical PDE Methods

Semi-discretization (or Method of Lines) is used to
approximate PDEs by

firstly, discretize the spatial variables of PDEs to get a set of
ODEs,
and then integrate along the time variable.

However, many popular classical PDE methods are not MOL.
Why?
Two main disadvantages of MOL:

Stability is restricted by spatial discretization, possibly leading
to unstable methods.
Approximation to higher order derivatives depends on the
discretization used and often leads to non-optimal spread-out
schemes.
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Classical PDE Methods

Consider the advection/wave equation,

∂u

∂t
+ a

∂u

∂x
= 0 on the interval (0, 1) with u(0, t) = u(1, t).

By using central differences, we semi-discretize the PDE to an
ODE system du(t)/dt = Ahu(t) with spatial stepsize
h = 1/N , and then integrate the system by an explicit RK
method with temporal stepsize δ. It follows that z∗ must stay
inside the stability region of the RK method to ensure the
time integration is stable, where z∗ = δλk, for k = 1, . . . , N
and λk are the eigenvalues of Ah.
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Classical PDE Methods – Method of Lines
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A Novel Semi-Discretization Method

We want to develop new discretization methods which
overcome the disadvantages of MOL and unify MOL and other
classical PDE methods under the same RK/TDRK structure.

The idea is simple: we discretize the temporal variable t first.
This means that the spatial discretization can then be chosen
in a more flexible way to meet stability and/or computational
requirements.

Let f(η) be a smooth function of η and we examine

∂u

∂t
= f(P(u)), (1)

where P(u) be a linear partial differential operator with
constant coefficients. For examples: P(u) = ∂

∂x
u and

P(u) = ∂2

∂x2 u.
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A Novel Semi-Discretization Method

Differentiate (1) with respect to t, we get

∂2u

∂t2
= fη(P(u))P(f(P(u)))

= fηP(f).

Compare with
d2y

dt2
= fyf for y′(t) = f(y).

Similarly, we can derive all the higher derivatives and apply
the tree theory for ODEs on PDEs.

This enables us to apply ODE methods directly to PDEs.

If we apply the explicit trapezoidal rule to the wave equation
with appropriate compact schemes to approximate the spatial
derivatives, we have a method which has order-2 behaviour in
both time and space. In fact, this is the well-known
Lax-Wendroff scheme.
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An Application to PDE

One popular method for solving PDE problems, such as the
heat equation, is Crank-Nicolson method, which is an order-2
method.

Heat Equation:

Ut = Uxx,

with I.C. U(x, 0) = sin(πx) and B.C. U(0, t) = U(1, t) = 0.

Crank-Nicolson method: use 3-point second order
approximation to Uxx and implicit midpoint or trapezoidal
rule to solve the resulting tridiagonal system of ODEs.
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Heat Equation
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Heat Equation and Order Reduction

Practically, Crank-Nicolson method performs better than
other higher order methods which suffer order reduction.

Analyze the diffusion equation with non-homogeneous
boundary values

∂u

∂t
=

∂2u

∂x2
on the interval (0, 1),

u(0, t) = p(t), u(1, t) = 0, and u(x, 0) = 0.

After obtaining the semi-discrete system, we can decouple it
to a equivalent non-homogenous ODE system which can then
be written as the Prothero-Robinson equation.

We conduct experiments for p(t) = tα with different α values
to compare the order behaviour of three methods:
Crank-Nicolson, TDRK244sss and Gauss 2-stage methods.
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Heat Equation with u(0, t) = tα
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Heat Equation with u(0, t) = tα
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Discussion/Conclusion

TDRK methods are more efficient compared with some
popular RK methods for the stiff problems we tested.

The second derivative terms in TDRK give us more freedom
and enable us to construct methods with higher stage order.

Although the cost of calculating the second derivatives may
be higher than the first derivatives, the advantage gained
makes their use beneficial.

For ODE problems: Our study suggests it will be of interest to
implement a variable stepsize code for implicit TDRK
methods.
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Discussion/Conclusion

We have developed a novel approach for the discretization of
PDEs.

This approach allows for more compact finite schemes for the
higher derivatives and will provide a systematic way to apply
ODE methods to PDEs.

Many classical PDE schemes can be interpreted in the same
way in terms of our new approach.

The order-4 TDRK244sss method only requires twice the cost
of the order-2 Crank-Nicolson method and is shown to be
more efficient.

We will further explore this type of numerical scheme for
solving diffusion and diffusion-advection equations of higher
dimension in the future.
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