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o Two-derivative Runge-Kutta (TDRK) methods belong to the
family of multi-derivative Runge-Kutta methods — they are
one-step multi-stage methods.

o We consider an autonomous ODE system ¢/(t) = f(y) with
initial condition yo = y(top) and known second derivative

y'(t) = f'(y) f(y) = 9(y).

o Numerical Scheme:

_yn—l—hZa”f —I—h Z aij9(Y; =1,...,s,

7j=1

yn+1—yn+h2bf —I—hQqu

=1
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o In a non-autonomous system, the variable ¢ can be treated as
a component of the y vector.
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BASIC BACKGROUND

o In a non-autonomous system, the variable ¢ can be treated as
a component of the y vector.
o Block Matrix Form:

Y =e®yn +hMA®IN)F(Y) + h2(A® IN)G(Y),
Ynt1 = Yo+ h(OT ® IN)F(Y) + h2(T © In)G(Y),

where e = [1]sx1, A = [ai]sxs, A = [@iglsxs, b= [bilsx1,
b = [bi]sxlx and

Vi f() 9(Y1)
v Y5 FY)— f(?”z) o) = 9(Y2)
Y, f(Y5) 9(Ys)
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where P is the permutation matrix which reverses the stages.
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BASIC BACKGROUND

o Symmetry Conditions: PAP —ebl — A

PAP = —ebT + A
Pb=1b
Pb=—b

where P is the permutation matrix which reverses the stages.

o Order Conditions: As for RK methods, we compare the Taylor
Series expansions of the exact and numerical solutions,
y(tn + h) and y,41 respectively, to derive the order conditions
of methods.
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ORDER CONDITIONS

o Order conditions assuming C(1):

Order | Tree | Order Condition

1 ble=1

2 e +/b\Te = %

3 bl e? 4+ Wl ¢c = %
bT Ac+ bT Ae + bTc =

=

bl e? 4 3ET62 i
blcAc + bTcAe + b2 + T Ac + T Ae =
_|_

’grz 1

bT Ac? —|-2bTAc =15

bT A%¢ + BT Ade + bT Ac + b7 Ac + bT Ae = L

'v\.'—-<:</<v< ~ -
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ORDER CONDITIONS

o Order conditions assuming C'(1):

Order

Tree

Order Condition

1
2
3

R S A G

ble=1

ble+ble= %

bTc? 4 2bTc = %

bT Ac + b7 Ae + blc = 3

b +3bT 2 = 1
blcAc + bTcAe + b2 + T Ac + T Ae =

o[

bT A + 26T Ac + b7 = %
b A2¢ + bT Ade + b7 Ac + b7 Ac + b7 Ae = &
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ConsTRUCTING ExpriciT TDRK METHODS

o In our study, we include two special groups of explicit TDRK
methods:

GROUP A: GROUP B:
C‘Ael HA\ N cHﬁ c| A Eel
‘ bl H/gf H/l')\T bT /61

o We also constructed embedded explicit TDRK methods to
compare with some popular embedded explicit RK methods.

o Explicit TDRK methods can easily have stage order 2, i.e.
they satisfy the C'(2) conditions.
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ConsTRUCTING ExpriciT TDRK METHODS

o TDRK45b/TDRK5b: p = 5,q = 2

0 0 0 0 O
il &§ 0 0 0O
sl & 0 0 0
5| "ms 15 0 0
1 % 2% 0 % order 5
1 % 0 % o order 4

o TDRK5b reqmres 1f —|— 3g functlon evaluatlons per step, and
R(z)=1+4+z + + 2 —|-24+120+720
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ConsTRUCTING ExpriciT TDRK METHODS

o TDRK45b/TDRK5b: p = 5,q = 2

0 0 0 0 O
il &§ 0 0 0O
sl & 0 0 0
5| "ms 15 0 0
1 % 29_8 0 % order 5
1 % 0 % o order 4

o TDRK5b reqmres 1f —|— 3g functlon evaluatlons per step, and
R(z)=1+4+z + + 2 +24+120+720

o TDRK45b is an embedded method which requires 1f + 4¢g
function evaluations per step.
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CONSTRUCTING IMmPLICIT TDRK METHODS

o We have constructed several implicit TDRK methods, for
example, TDRK244sss is a 2-stage, order-4, stage-order-4,
semi-implicit, symmetric, and stiffly-accurate method:

0]0 OH 0 0 ,

1L 1L _1 R :12+6z+z
z 22 b C) = B v 22
1 1 1 1
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CONSTRUCTING IMmPLICIT TDRK METHODS

o We have constructed several implicit TDRK methods, for
example, TDRK244sss is a 2-stage, order-4, stage-order-4,
semi-implicit, symmetric, and stiffly-accurate method:

0]0 OH 0 0 ,

1L 1L _1 R :12+6z+z
z 22 b C) = B v 22
1 1 1 1

‘ 2 2 H 12 12

o The implicit TDRK methods we constructed range from order
3 to 6, the order-3 and 5 methods are L-stable and the
order-4 and 6 methods are A-stable.

11/31



STirr ODE Pro

o Prothero-Robinson Problem (PR):

Yy () =Ay(t) — 6(t) +¢'(2),

we show the results for ¢(t) = sin(¢) and two cases for the
implicit methods,

12/31



STirr ODE PROBL

o Prothero-Robinson Problem (PR):

Yy () =Ay(t) — 6(t) +¢'(2),

we show the results for ¢(t) = sin(¢) and two cases for the
implicit methods,

o PR1b: yo = ¢p and A = —10%. Exact solution is y(t) = ¢(t).

12/31



TDRK METHODS

TDRK METHODS FOR ODES
TDRK MEgTHODS FOR PDES
D1scuUssION / CONCLUSION

STirF ODE PROBLEMS

o Prothero-Robinson Problem (PR):

y'(t) = Ay(t) — 8(t) + ¢'(2),

we show the results for ¢(t) = sin(t) and two cases for the
implicit methods,

o PR1b: yo = ¢ and A = —10*. Exact solution is y(t) = ¢(t).

o PR1d: g =1 and A = —10%. Exact solution is
y(t) = ¢(t) + (yo — ¢o) exp(At).
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STirF ODE PROBLEMS

o Prothero-Robinson Problem (PR):

y'(t) = Ay(t) — 8(t) + ¢'(2),

we show the results for ¢(t) = sin(t) and two cases for the
implicit methods,

o PR1b: yo = ¢ and A = —10*. Exact solution is y(t) = ¢(t).
o PR1d: g =1 and A = —10%. Exact solution is
y(t) = o(t) + (yo — do) exp(At).

o Kaps Problem:

y(t) = —y1(1+y1)+yz]7 (0) = [1

, Re(A) >1,
AMy3 — y2) — 2u2 1} )

with exact solution y(t) = [exp(—t), exp(—2t)]7.
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(a) Efficiency Diagram, Prothero-Robinson, A=-1, order 5, xf=2.8n
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(b) Efficiency Diagram, Prothero-Robinson, A=-200, order 5, X=2.81
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Iog10 |Error|

Iogl(7 |Error|

(a) Effluency Diagram: Prothero—Robinson, A=-1, variable step5|ze (4,5) pair
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(b) Efflr:lency Diagram: Prothero—-Robinson, A=-200, variable stepsize, (4, 5) pair
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CcrassicaL PDE METHODS

o Consider the advection/wave equation,

Ou -+ a% =0 on the interval (0,1) with u(0,t) = u(1,?).
ot ox

o By using central differences, we semi-discretize the PDE to an
ODE system du(t)/dt = Apu(t) with spatial stepsize
h = 1/N, and then integrate the system by an explicit RK
method with temporal stepsize §. It follows that z* must stay
inside the stability region of the RK method to ensure the
time integration is stable, where z* = 6\, for k=1,..., N
and \; are the eigenvalues of Ay,.
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A NOVEL SEMI-DISCRETIZATION METHOD

o We want to develop new discretization methods which
overcome the disadvantages of MOL and unify MOL and other
classical PDE methods under the same RK/TDRK structure.

o The idea is simple: we discretize the temporal variable ¢ first.
This means that the spatial discretization can then be chosen
in a more flexible way to meet stability and/or computational
requirements.

o Let f(n) be a smooth function of 77 and we examine

ou

= — 1
= F(Pw), (1)
where P(u) be a linear partial differential operator with
constant coefficients. For examples: P(u) = %u and

P(u) = aa—;gu.
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o Differentiate (1) with respect to ¢, we get
0*u

52 = In(P)P(f(P(w)
= fnP(f)-
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o Differentiate (1) with respect to ¢, we get
0*u
52 = In(P)P(f(P(w)

= fnP(f)-
2

o Compare with Ccll U = fyf for ¥/ (t) = f(y).
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A NOVEL SEMI-DISCRETIZATION METHOD

o Differentiate (1) with respect to ¢, we get

2U
o = h(P@PUPW)
= 13773((f)'
C . CiQZ/ . / _
o Compare with o fyf for y'(t) = f(y).

o Similarly, we can derive all the higher derivatives and apply
the tree theory for ODEs on PDEs.

o This enables us to apply ODE methods directly to PDEs.

o If we apply the explicit trapezoidal rule to the wave equation
with appropriate compact schemes to approximate the spatial
derivatives, we have a method which has order-2 behaviour in
both time and space. In fact, this is the well-known
Lax-Wendroff scheme.
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AN APPLICATION

o One popular method for solving PDE problems, such as the
heat equation, is Crank-Nicolson method, which is an order-2
method.
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AN ApPPLICATION TO PDE

o One popular method for solving PDE problems, such as the
heat equation, is Crank-Nicolson method, which is an order-2
method.

o Heat Equation:
U = U:c:w

with I.C. U(z,0) = sin(7z) and B.C. U(0,t) = U(1,¢) = 0.
o Crank-Nicolson method: use 3-point second order

approximation to U, and implicit midpoint or trapezoidal
rule to solve the resulting tridiagonal system of ODEs.
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Efficiency Diagram of heat equation at t = 1.0
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o Practically, Crank-Nicolson method performs better than
other higher order methods which suffer order reduction.
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HEAT EQUATION AND ORDER REDUCTION

o Practically, Crank-Nicolson method performs better than
other higher order methods which suffer order reduction.
o Analyze the diffusion equation with non-homogeneous
boundary values
ou 0%u
ot da?
u(0,t) =p(t), wu(l,t)=0, and wu(z,0)=0.

on the interval (0,1),

o After obtaining the semi-discrete system, we can decouple it
to a equivalent non-homogenous ODE system which can then
be written as the Prothero-Robinson equation.

o We conduct experiments for p(t) = t* with different o values
to compare the order behaviour of three methods:
Crank-Nicolson, TDRK?244sss and Gauss 2-stage methods.
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Discussion/Co

o TDRK methods are more efficient compared with some
popular RK methods for the stiff problems we tested.
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DiscussioN/CONCLUSION

o TDRK methods are more efficient compared with some
popular RK methods for the stiff problems we tested.

o The second derivative terms in TDRK give us more freedom
and enable us to construct methods with higher stage order.

o Although the cost of calculating the second derivatives may
be higher than the first derivatives, the advantage gained
makes their use beneficial.

o For ODE problems: Our study suggests it will be of interest to
implement a variable stepsize code for implicit TDRK
methods.
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DiscussioN/CONCLUSION

o We have developed a novel approach for the discretization of
PDEs.

o This approach allows for more compact finite schemes for the
higher derivatives and will provide a systematic way to apply
ODE methods to PDEs.

o Many classical PDE schemes can be interpreted in the same
way in terms of our new approach.

o The order-4 TDRK244sss method only requires twice the cost
of the order-2 Crank-Nicolson method and is shown to be
more efficient.

o We will further explore this type of numerical scheme for
solving diffusion and diffusion-advection equations of higher
dimension in the future.
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