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ABSTRACT: This paper discusses the overlap of the Hori-Vafa formulation of mirror
symmetry with some other constructions. We focus on compact Calabi-Yau hypersurfaces
Mg = {G = 0} in weighted complex projective spaces. The Hori-Vafa formalism relates a
family {.MG € WCPg;_l__,Qm [s]| >0, Qi = s} of such hypersurfaces to a single Landau-
Ginzburg mirror theory. A technique suggested by Hori and Vafa allows the Picard-Fuchs
equations satisfied by the corresponding mirror periods to be determined. Some examples
in which the variety M is crepantly resolved are considered. The resulting Picard-Fuchs
equations agree with those found elsewhere working in the Batyrev-Borisov framework.
When G is an invertible nondegenerate quasihomogeneous polynomial, the Chiodo-Ruan
geometrical interpretation of Berglund-Hiibsch-Krawitz duality can be used to associate
a particular complex structure for Mg with a particular Kéhler structure for the mirror
Mvg. We make this association for such G when the ambient space of M is CP2, CP?,
and CP*. Finally, we probe some of the resulting mirror Kéhler structures by determining
corresponding Picard-Fuchs equations.
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1 Introduction

A Kéhler manifold with nonnegative first Chern class can be described as the resolved
target space of a nonlinear sigma model phase of a (2,2) supersymmetric gauged linear
sigma model in 1+ 1 dimensions [1, 2]. Hori and Vafa [3] showed that the aforementioned
gauged linear sigma model is mirror to a Landau-Ginzburg theory. This paper discusses the
overlap of the Hori-Vafa formulation of mirror symmetry with some other constructions.
We focus on comapct Calabi-Yau hypersurfaces Mg = {G = 0} in weighted complex
projective spaces. The Hori-Vafa formalism relates a family

> Qi :s} (1.1)

of such hypersurfaces to a single Landau-Ginzburg mirror theory. We will use a technique

{MG e WCPy ! ) [s]

suggested by Hori and Vafa to obtain the Picard-Fuchs equations satisfied by the mirror
periods. Some examples in which the variety M is crepantly resolved to yield a Calabi-Yau
manifold Mg will be considered. The resulting Picard-Fuchs equations will be compared
with the results found in [4, 5] working in the Batyrev-Borisov [6, 7] framework.

The Greene-Plesser [8, 9] construction and its Berglund-Hiibsch [10] generalization
provides a mirror partner for each member of a special subfamily of (1.1). For the Berglund-
Hiibsch case, this subfamily is defined by the additional requirement that G be an invertible
nondegenerate polynomial potential. Using the ideas of Berglund and Hiibsch, Krawitz [11]
formulated a mirror pair construction which associates a Landau-Ginzburg orbifold W/G,

where W is an invertible nondegenerate quasihomogeneous polynomial potential and G



is an admissible group, with a dual Landau-Ginzburg orbifold W' /GT. This association
is referred to as Berglund-Hiibsch-Krawitz duality. Chiodo and Ruan [12] established a
Landau-Ginzburg/Calabi-Yau correspondence which allowed them to obtain a geometrical
interpretation of Berglund-Hiibsch-Krawitz duality when My, = {)V = 0} is a Calabi-Yau
variety and (Jyy) C G C SLyy. Specifically, they established that, for such My and G, the
Calabi-Yau orbifolds Myy/ (G/(Jw)) and Myyr/ (GT /{Jyyr)) form a mirror pair. Note

that when G = (Jyy), this mirror pair becomes (./\/lw, MW>, where

(W' =0}
SLwT/<JwT> '
We will discuss M,y and /WW in the Hori-Vafa context and specifically consider the cases
Myy € CP2[3], Myy € CP3[4], and My, € CP*[5].
This paper is organized as follows: In Sections 2 and 3, we discuss the Hori-Vafa

My =

formalism pertaining to a compact hypersurface in a toric variety and to a closely related
noncompact toric variety, respectively. At the end of this discussion, we write down a
relation between the corresponding Landau-Ginzburg mirror periods. In Section 4, we use
a technique suggested by Hori and Vafa to determine the Picard-Fuchs equations satisfied
by these mirror periods when a Calabi-Yau condition is satisfied. We then specialize the
discussion to consider some examples in which varieties of the form given in (1.1) are
crepantly resolved. In Section 5, we discuss the Chiodo-Ruan geometrical interpretation of
Berglund-Hiibsch-Krawitz duality in the Hori-Vafa context. We conclude with a discussion

of our results in Section 6.

2 Compact hypersurface in a toric variety

Let X be a toric variety of complex dimension m — k defined by the charge matrix (Q;a),
where i =1,...,mand A =1,...,k. Consider a compact hypersurface

Mg ={G=0}C X, (2.1)

where G = G (¢1, . . ., ) is a quasihomogeneous polynomial of multidegree (s4). A Kéhler
manifold Mg may be obtained as a crepant resolution of M if a crepant resolution exists.
Such a manifold would have nonnegative first Chern class when

S Quzsa,  A=1....k. (2.2)
i=1

We will assume that a crepant resolution exists and that (2.2) is satisfied.
We can describe M as the target space of a nonlinear sigma model phase of a (2,2)
supersymmetric U(1)* gauged linear sigma model with classical Lagrangian

m k
I .25k QiaV, 525k sV, I =
L _/d 0 Z@ie s QuaVap,; 4 Pe?ra=isaVap 4 N - eiBEAEB
=1 A,B=1

_% </d2§ itAEA—i—c.c.) + (/dQHP-G(qDl,...,(I)m)—i—c.c.). (2.3)

A=1



Here, ¥4 is the twisted chiral field strength of the U(1) vector superfield V4, ®; and
P are chiral superfields of respective charges ;4 and —s4 under the A-th U(1), G =
G (®q,...,P,) is a quasihomogeneous polynomial of charge s4 under the A-th U(1), eap
is the gauge coupling, and t 4 = r4 — i 4 is a complexified Fayet-Iliopoulos parameter. The
nonlinear sigma model phase is realized in the low energy limit with

ra >0, oa=0, p=20,

and target space

((bla"' 7¢m) |z;n:1QiA‘¢i’2:rAa A:177k}

MG:{GZO}C { U(l)k )

(2.4)

where 04, ¢; and p are the lowest components of the #-expansions of ¥4, ®;, and P,
respectively. If the Calabi-Yau condition

S Qia=sa,  A=1,...k (2.5)
i=1

is satisfied, then each Fayet-Iliopoulos parameter 74 does not renormalize. Following [3],
we obtain the Landau-Ginzburg mirror period

m k m
M, = / (H in> dYpe ¥P [gé (Z; QiaYi — 54Yp — m)]

i=1
m
X exp (— e Yi - eYP> , (2.6)
i=1

where Y; and Yp are the dual variables of ®; and ®p, respectively.

3 Related noncompact toric variety

The compact variety Mg = {G = 0} C X discussed in the previous section is closely
related to the noncompact toric variety N' = Tot (69’2121(’)(—3 A) > X ) defined by the
charge matrix (Q;a] — sa). We can describe A as the target space of a nonlinear sigma
model phase of a (2,2) supersymmetric U(1)¥ gauged linear sigma model with classical
Lagrangian given by (2.3) without the superpotential term, i.e.

PN

m k
Ly = / ' | S B2 0 QuaVag, 4 Pe2XamisaVapy 3T
i=1 A,B=1 €AB

!
_% </d2é ZtAEA+C-C-> . (3.1)

A=1

The nonlinear sigma model phase is realized in the low energy limit with

ra>0, oa=0,



and target space

N_ {(¢15 ,Qbm,p) |Z?;1QiA|¢i|2_SA|p|2 =Ta, A= 1aak}
B U(L)* '

Following [3], we obtain the Landau-Ginzburg mirror period

m k
HN:/<Hin> dYp
=1 A=1

H 0 <§: QiaY; — sa¥p — tA)] exp (— i e Yi - eYP> .
i=1

i=1
(3.3)

(3.2)

The periods (2.6) and (3.3) are related by

4 Calabi-Yau Picard-Fuchs equations

In this section, we will use a technique suggested in [3] to determine the Picard-Fuchs
equations satisfied by II Me when the Calabi-Yau condition (2.5) holds. This technique
involves first determining the Picard-Fuchs equations satisfied by Il when the Calabi-
Yau condition holds and then using the relation (3.4).

We begin by considering

I (1, t) _/<de> dYp

i=1

X exp ( Z,uz i — upe YP) , (4.1)

k

H (f} QinY; — saYp — m)]

where
w=(p1,- -y, pp) , t=(t1,...,tx) - (4.2)
When the Calabi-Yau condition (2.5) holds, Il 7(u,t) satisfies

(3" mawo = (1) I (3) e o

Qia>0 Oni Qia<0
for A=1,...,k. Under the shifts

Y=Y +lny, i=1,....,m; Yp = Yp+Inpup, (4.4)

we can eliminate the p dependence in (4.1), except for a shift in each delta function

constraint. That is,

Mg (p,t) = H(T)

m k m
— / <H in> dYp H ) (Z QiaY; —saYp — TA)
i=1 A=1 \i=1
X exp (_ ie_Yi _ G_YP> , (45)
i=1




where

T=(Ty,..Th); Ta=ta—» Qualnpj+salnpp, A=1,... k. (4.6)
j=1
Using (4.5) in (4.3) gives
P )QiA B b SA o —Qia
11 II+(T) =e 4 <—> 11 < ) I1(T) (4.7)
A N A AR
Qia>0 (8#2 e Qia<0 Opi

for A=1,...,k. From the chain rule, we have

9 k
a—MHN(T) = (AZl

%f‘@A) Hg(T), i=1,...,m;

(4.8)
0 k SA
<(T) = — SAQ, | (T,
opp N ) AZ1 Hnp N( )
where 5
Op = —7 =1,...,k. 4.9
A 8TA ) ) ) ( )
Furthermore, from (4.6), we obtain
1 elag—ta
= . A=1,... k. (4.10)
,U?IA L M%mA N?DA

Equations (4.8) and (4.10) can be used to eliminate fi,. .., tm,up and t4 from (4.7).

Doing this for A =1,...,k and then making the replacements
0
Tqh —ta, Op > 04=———; A=1,...,k (4.11)
Ot 4
yields the Picard-Fuchs equations satisfied by Il . Applying (3.4) then allows the Picard-
Fuchs equations satisfied by II Me to be determined. This procedure can also be applied

to the corresponding crepantly resolved manifolds MG and N. We will now illustrate this
with some examples.

Example 4.1 Let Mg € WCP%,LZQQ[S]. This singular variety is described by the charge
matriz (Q1,Q2,Q3,Q4,Qs5| —s) = (1,1,2,2,2| — 8). The singularities can be crepantly
resolved to yield M, which is described by the charge matriz

(Qial — 54) = Q1 Q21 @31 Qa1 Q51 Qer|—s1| _ (00111 1 |—4
' Q12 Q22 Q32 Qu2 Q52 Qe2|—52 11000-2{0 )
Note that
0

6
:/<HdYQ> dYpe YP§ (Y3 4+ Yy + Ys + Y5 — 4Yp — 1))
i—1

6
x 0 (Y1 + Yo —2Yg — ta) exp <— e_Y"—e_YP> ,
i=1



where

6

Hﬁz/<Hin> dYpo (Ys+ Y+ Ys+Ys —4Yp — t1)
i=1

=1

x 0 (Y1 + Yo —2Yg — t9) exp <—Ze_yi—e_YP>.

Equation (4.7) then yields

o o0 0 0

RGNS _ ,ti 7 T
Opz Op Ops Opg N (T)=c oup w(T)
o 0 02
2 (1) = e (T,
Opr dpa N ) oud (D)

for A=1 and A = 2, respectively. Using (4.8), we obtain

1 e*tl
— 030, —20,)I1+(T) = 401 +3)(40; +2)(40, +1)(40,) 1 (T),
3 pafls i (61 2) Iy(T) M‘}a( 1+3)(401 +2)(401 + 1)(401) 15 (T)
L o2 (T) = (26, — 6, + 1)(205 — O1) 1T (T)
pipg 2N T2 2 2 — 91) UFL)-

Applying (4.10) and rearranging gives
1 _
0= [16%(@1 —20) — e 11(40 + 3)(40; + 2)(40; + 1)] 40, I15(T),
0=[03—e (20, — 01 +1)(20; — 01)] L1 (T).
Making the replacements (4.11) yields
1 _
0= [Zaf (01 — 205) — e~ "1 (401 + 3)(46, + 2)(40; + 1)} 46, 1 5
0= [9% —e 2 (292 — 01 + 1)(292 — 91)] Hﬁa
which are the Picard-Fuchs equations satisfied by I15. Finally, using the relation
HMG =401 115,
we obtain the Picard-Fuchs equations satisfied by HMG’ i.€.

0= [67 (61 — 262) — de™" (461 + 3)(461 +2) (461 + 1)] U7,
(4.12)
0= [63 — e "2(205 — 01 +1)(202 — 61)] T .

Note that our result (4.12) agrees with the result in [4] obtained via a different method.



Example 4.2 Let Mg € WCP%7272,171[12]. This singular variety is described by the charge

matriz (Q1,Q2,Qs,Q4,Q5| —s) = (6,2,2,1,1| — 12). The singularities can be crepantly
resolved to yield M, which is described by the charge matriz

[ Qu Q21 Q31 Qu1 @51 Qer|—s1\ (31100 1|6

(Qial —sa) = = :

Q12 Q22 Q32 Qa2 Q52 Qe2|—52 00011-2/0

Note that
0
6
= / <H dY;) dYp €7YP(5(3Y1 +Yo+Y;5+Ys —6Yp — tl)
i=1
6
X 6 (Y3 + Y5 — 2Y5 — ta) exp (—Ze‘“‘ —e‘YP> :
=1
where
6
g = / (Hdiﬁ) dYpo (3Y1 + Yo+ Y3+ Ys —6Yp —t1)
=1

6
><5(Y4+Y5—2Y6—t2)exp <—Z€Yi—€YP> .

Equation (4.7) then yields

P o 9 9 L
22 T (T) =e ' I<(T),
O Opo Ops O N (T) oug N ™
o 0 02
2 I (T)=e 22 T1+(T),
Opg Ops N ) opg N o

for A=1 and A = 2, respectively. Using (4.8), we obtain

1
———— (301 —2)(30; — 1)(30,)0%(01 — 20,) 11 (T
M%ng%( 1—2)(301 —1)(301)07(04 2) I15(T)
—t1
= 8:6 (601 +5)(301 +2)(60 +3)(30; + 1)(60; + 1)(30;) T 5(T),
P
L@ZH%T)—Q@@ — 01 +1)(20, — O1)II+(T)
s 2N 2 2 1 2 1)U (T).

Applying (4.10) and rearranging gives
0= (301 —2)(30; — 1) [07(0; — 20,)
—8¢~ (601 + 5)(601 + 3)(601 + 1)] 30 I15(T),
0=1[03—e (20, — 01 +1)(20, — ©1)| I1(T),



where we have used the identity
e (0 + 1) 5(T) = 01" M 5(T).
Making the replacements (4.11) yields
0= (360 —2)(301 — 1) [67(61 — 202) — 8e " (661 + 5)(661 + 3)(661 + 1)] 361 I,
0=1[05—e (202 — 01+ 1)(20o — 61)] I
which are the Picard-Fuchs equations satisfied by I15. Finally, using the relation

My, =66 g

and removing the factor (36 — 2)(361 — 1), we obtain the Picard-Fuchs equations satisfied
by HM@’ i.e.

0= [67(61 — 26) — 8e™"1 (661 + 5)(661 + 3)(661 + 1)] I3
(4.13)
0=1[05—e 2(205 — 61 + 1)(20> — 61)] I1~

Note that our result (4.13) agrees with the result in [4] obtained via a different method.

Example 4.3 Let Mg € WCPl 14,6[12]. This singular variety is described by the charge
matriz (Q1, Q2,Qs3, Q4| —s) = (1,1,4,6| — 12). The singularities can be crepantly resolved
to yield M¢, which is described by the charge matrix

[ Qi1 Q21 Q31 Qa1 Qs1|—s1 ) (0023 1|6
(Qial — sa) = = .

Q12 Q22 Q32 Qa2 Q52| —52 1100 -2|0
Note that

6

HMG = atl Hj\?
_ / (H dn) dYp e YP§ (2Ys + 3V + Vs — 6Yp — £1)

i—1

5(Y1+Y2—2Y5—t2 exp( Ze Yi _ o~ ),
where

5
Hﬁ = / (HdY;) dYP5(2Y3 +3Ys+Y; —6Yp — tl)
=1

5
6(Y1—|—Y2—2Y5—t2 exp< Ze )

i=1



Equation (4.7) then yields

0% & 9 9"
e — T (T) = " —TI5(T
o 0 0
— —TI(T) =e 2—II4(T
aﬂlaﬂQ N( ) € 8//% N( )’

for A=1 and A = 2, respectively. Using (4.8), we obtain

%(2@1 —1)(201)(30; —2)(30; — 1)(301)(0; — 20,) I1(T)
M3 s
_ geﬂﬁl (601 + 5)(301 +2)(60; +3)(30; + 1)(60; + 1)(30,) 15 (T)
P
1 e t2
it (“)% HN(T) = M—g(2@2 -0+ 1)(2@2 — @1) HN(T) .

Applying (4.10) and rearranging gives

0=(20, —1)(30; —2)(30; — 1) [0,(O; — 20,)
—12¢7 (601 + 5)(601 + 1)] 601 I15(T),

0=1[03 ¢ (20, — ©1 +1)(20; — ©1)| I1(T),
where we have used the identity
=T _ _ =T 7~
e 1O+ 1)IIH(T) =01 I (T).

Making the replacements (4.11) yields

0= (201 — 1)(361 — 2)(361 — 1) [61(61 — 262) — 12e~ "1 (661 + 5)(66; + 1)] 661 I,

0=[05—e (20, — 01 +1)(20> — 61)] I 5,
which are the Picard-Fuchs equations satisfied by I15. Finally, using the relation

HMG = 66, H]V
and removing the factor (201 — 1)(301 — 2)(3601 — 1), we obtain the Picard-Fuchs equations
satisfied by Hﬁg, i.e.
0= [01(61 — 202) — 12¢=" (661 +5)(661 + 1)] g7 ,
(4.14)
0= [9% —e 2 (292 — 01 + 1)(292 — 91)] HMG .

Note that our result (4.14) agrees with the result in [5] obtained via a different method.



Let us consider the unresolved Calabi-Yau varieties M given at the start of Examples
4.1, 4.2, and 4.3. The corresponding Picard-Fuchs equations satisfied by II M, are

0=[(20—1)%0" +4e (80 + 7)(80 + 6)(80 + 5)(80 + 3)(80 + 2)(80 + 1)] II ,
WCP1,1,2,2,2[8}

(4.15)
0=[(20 — 1)%0* + 16 (120 + 11)(126 + 9)(120 + 7)(126 + 5)(126 + 3)(1260 + 1)]
|} P : (4.16)
WCP6,2,2,1,1[12}
0=[(20 —1)6° + 727" (120 + 11)(120 + 7)(126 + 5)(120 + 1)] I (4.17)

— 3 .
WCP1,1,4,6[12]

5 Geometrical interpretation of the mirror

When the Calabi-Yau condition (2.5) is satisfied, we expect to find a geometrical interpreta-
tion of the Landau-Ginzburg mirror theory. In this section, we will discuss the realization
of this expectation when Mg is a Calabi-Yau hypersurface in a weighted complex pro-
jective space and G is an invertible nondegenerate quasihomogeneous polynomial. These
restrictions allow us to discuss the Chiodo-Ruan geometrical interpretation of Berglund-
Hiibsch-Krawitz duality in the Hori-Vafa context.

5.1 Berglund-Hiibsch-Krawitz duality

Using the ideas of Berglund and Hiibsch [10], Krawitz [11] formulated a mirror pair con-
struction which associates a Landau-Ginzburg orbifold W/G, where W is an invertible
nondegenerate quasihomogeneous polynomial potential and G is an admissible group, with
a dual Landau-Ginzburg orbifold wT / GT. This association is referred to as Berglund-
Hiibsch-Krawitz duality. Specifically, Krawitz established that

Hesrw(W,G) =2 Q (W',G7), (5.1)
where Hpyrw (W, G) is the Fan-Jarvis-Ruan- Witten state space [13-15] of W/G and
Q (WT,QT) is the orbifold Milnor ring [11, 16, 17] of W' /GT.
Let W=>",¢ H;nzl (b;”j be an invertible nondegenerate quasihomogeneous polyno-
mial Landau-Ginzburg potential. The name invertible means that the matrix Ay = (a;;)

of exponents is invertible. Since Ayy is invertible, the nonzero complex coefficients ¢; may
be absorbed by rescaling the ¢;. Thus, without loss of generality, we can write

W = Z; H1 ¢ . (5.2)
=1 j=

A potential W(¢1, . .., ¢m) is nondegenerate when its only critical point is at (¢1, ..., ¢m) =
(0,...,0). We say that W(¢1,...,dn) is a quasihomogeneous polynomial of degree s when
there exist positive integer weights ng,,...,n4,, and a positive integer s such that

W(An¢1¢la"-aAn¢m¢m):ASW(¢1?””¢m) V)\EC’

5.3
ged (ngys ...y ng,,,8) = 1. (5:3)

,10,



The group Aut(W) of diagonal automorphisms of W, i.e.

AutOV) = (D1, oy ) = (We D1y s W D) Hw;;f:L i=1,....m, (5.4)
j=1

contains two natural subgroups. First, we have

SLyy = SL (m, C) N Aut(W) :

m az]_ . .
[T} Liwy, =1, i=1.,m;

(11 bm) = (@1 D1+, Wi, D) ‘ - (5.5)
Hj:l wg, = 1.
Second, we have the cyclic group (Jyy) of order s generated by
T B bm) = (STl Pinentg,). (5.6)

Krawitz [11] proved that any subgroup of Aut(W) containing .Jyy is admissible. That is,
an admissible group G satisfies

(Jw) C G C Aut(W). (5.7)

The dual potential potential W7 is given by

Z H i (5.8)

i=1 j=1

It follows from [18] that W7 is an invertible nondegenerate quasihomogeneous polynomial
of some degree s’. We will denote the weights of the y1,. .., ym by ny,, ..., ny,., respectively.
The groups Aut(WT), SLyyr, and (Jyyr) are defined in analogous way to which Aut(W),
SLyy, and (Jyy) are defined, respectively.

A complete set of generators (o1,...,0m) and (9y,...,0,,) for the groups Aut(W)
and Aut(WT) can be read off from the columns and rows of A;Vl, respectively. Let p; =

<p§1), . ,pgm)) be the i-th column and p; = <ﬁ§1), e ,ﬁgm)> be the i-th row of .A;Vl. Then

€] (m)
Qi:((bl,...,(bm)—)(%mp ¢1,..., mip; (bm)y

—(1) —(m)
— 2 2
9; : (yla--"ym)—> <€ 2 Yiy...5€ P ym)

The dual group G7 is given by

a1

H_ﬁ' { }Aw L€z Vﬁgﬁieg . (5.9)

U =1

Chiodo and Ruan [12] established a Landau-Ginzburg/Calabi-Yau correspondence
which allowed them to obtain a geometrical interpretation of Berglund-Hiibsch-Krawitz

— 11 —



duality when the zero locus of W defines a Calabi-Yau hypersurface in a weighted complex
projective space, i.e.

My ={W =0} ¢ WCP%1 e [s], (5.10)
where

m
> ng =s, (5.11)
=1

and the group G satisfies
(Jw) C G CSLwy. (5.12)

Under these assumptions, the following properties hold:

1. The zero locus of W' defines a Calabi-Yau hypersurface in a weighted complex
projective space, i.e.

Myyr = {W' =0} e WCP ! 5], (5.13)
where

m
Z ny, = s (5.14)
1=1

2. The group G7 satisfies

3. The Calabi-Yau orbifolds M/ (G/(Jw)) and Myyr/ (GT/(Jyyr)) form a mirror

pair, i.e.
MW m—2— MWT >
hpvq v :h pq ( __T"VYVS 5.16
i (grmr) = (g ) (516)

where h(3}; is the Chen-Ruan orbifold cohomology [19].

5.2 Hori-Vafa point of view

We will now discuss the Chiodo-Ruan geometrical interpretation of Berglund-Hiibsch-
Krawitz duality in the Hori-Vafa context. Setting k =1 in (2.6) yields

— / (ﬁ de@> dYP €7Yp ) <Zm: QZY; — SYP — t> exp <_ Zm: e*Yz’ _ er)
= =1 i=1

:/(Udﬁ) et/SH( _Y Qi/s Ze Yi et/SH(e_Yi)Qi/s]. (5.17)

i=1 i=1
Suppose there exists an invertible matrix (M;;) of nonnegative integers such that

exp

m
s=> MuQi, j=1,...,m. (5.18)
i=1

- 12 —



Now, consider the change of variables

m
V=TT (5.19)
j=1

This change of variables one-to-one up to the action of the group I' defined by

m Mji : .
[T wy" =1, i=1,...,m;

T, =1 (5.20)
J=1"Yy; —

F: (yla"'aym) _>(wy1917---7wymym) '

In terms of the new variables, we obtain

M, = (=1)"det (M t/s/ <H dyl> exp |— Zm: ﬁy;w” —et/s ﬁyj . (5.21)
j=1

i=1 j=1

This is the period for the Landau-Ginzburg orbifold /I/I\?/ I', where

W/:iﬁ ”—i—et/SHy (5.22)

As proven in [24], W is quasihomogeneous of some degree s’ for all values of ¢ if and only
if the Calabi-Yau condition " Q; = s is satisfied.

Now, set G = W, where W is given by (5.2). Taking the limit ¢ — —oo and setting
Mj; = aj; in (5.22) yields the expression for WT given by (5.8). We thus obtain the
Landau-Ginzburg orbifold W' /SLy,r. Imposing the Calabi-Yau condition (5.11) with
(Ngys - ng,) = (Q1,...,Qm), we obtain the mirror pair (Myy, MW), where

Mw ={W =0} e WCP ! [s], D ng =s, (5.23)

— {Wr'=o0}ewcpPr ! | [s] m

My = vioelym - - ny, = s . (5.24)
SLyyr /{Jwr) 221 !

5.3 Application to CP?[3], CP3[4], and CP*[5]

Tables 5.1, 5.2, and 5.3 list mirror pairs <MW,MVW) given by (5.23) and (5.24) when

Myy € CP?[3], Myy € CP3[4], and My, € CP[5], respectively. These tables are com-
plete in the sense that all inequivalent invertible nondegenerate quasihomogeneous poten-
tials YV appropriate to each table are considered. When the orbifold group SLy,r/{Jyy7)
is nontrivial, we use the shorthand Zy : [r1,...,7,] to denote a Zj symmetry with action

W1y ym) = (@Y1, ..., a"™y,y,), where oF = 1.

,13,
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My ={W =0}

_— {WT :0}
M = S ST

1 {6% + 93+ 9§ =0} e cP2[3

{v% + 93 + 4§ =0} € cP2p3)
Zs: [2,1,0]

2 {9362 + 68 + 6§ = 0} € CP2[3]

2 3 3 2
{yl +yiys +yz = 0} € WCPj3 ; ,[6]

3 {¢f¢2+¢§¢3+¢§ :0} € CcP2[3]

2 2 3 2
{v +v1v3 +v2v§ = 0} e WCP3 | (4]

4| {0} + 0303 + 9203 = 0} € CP?[3]

{v? +v3ys +v2v] = 0} € CP?[3]

5 | {6302 + 0305 + @103 = 0} € CP?[3]

{yfys +y1ys + yays = 0} e CP?[3]

Table 5.1. Mirror pairs (MW,MW) when My, € CP2[3].

Myy ={W =0}

_— {wT = o}
M= SLyy1 /{Jyy1)

{61 + ¢4 + 03 + o4 = 0} € CP?[y

{vi+v3+vi+vi=0}ccPy
(Z4)? : [3,1,0,0], [3,0,1,0]

{6362 + 64 + 64 + 01 =0} € CP3[4]

{yi' +y1ys + s + vl = 0} € WCP} , ; 5(12]
Z,: [0,0,3, 1]

{6302 + 0305 + ¢4 + 01 = 0} € CP[4]

3 3 4, 4 3
{1/1 +y1vs +y2yz +yy = 0} € WCPY;, g,7,9(36]

{8362 + 6363 + 6304 + 4 = 0} € CPP[4)

3 3 3 4 3
{y1 +y1y2 +y2y3 T ysyy = 0} € WCPy ¢ 7 5[27]

{6302 + ¢4 + ¢3¢a + 01 = 0} € CP[4]

{v3 +v1vs +v3 + yavi = 0} € WCPF | 5 (6]
Zy: [0,1,0,1]

{o1 + ¢4 + ¢804 + 9303 = 0} € CP[4]

{vi+v3 + viva + vavd = 0} € CP?[4]
Zg : [0,2,5,1]

{6302 + 63 + ¢34 + 930 =0} € CP?[4]

{v +v1vd + v3ua +vswi =0} € WCP] 5 5 3012]

Zs : [0,2,5,1]

{¢§¢2 + $105 + ¢3ba + ¢33 = 0} € CP3[4]

{v3v2 +v193 + viva +ysui =0} € CP3[4)
Zo: [1,1,1,1]

{¢‘1‘ + 303 + ¢3ba + D20] = 0} € CP3[4]

{y‘f + y3va + y2y3 + vsyl = O} € CcP3[4]
Z7: [0,2,4,1]

{6362 + 0303 + ¢0a + 9103 = 0} € CP[4]

{viva +v193 +v2ud +vsui =0} € CP?[4)
Zs: [3,4,2,1]

Table 5.2. Mirror pairs (MW,MW) when M,y € CP?[4].

— 14 —
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11

12

13

14

15

16

presented in [9].

Myy = {W =0}

Myy =

(o7 -]

SLyy1/(Jyy1)

{63 + 05 + 65 + 67 + 08 = 0} € CP[5]

{v?+v3+v3+ui+ul=0}ccPip
(Z5)3 : [4,1,0,0,0], [4,0,1,0,0], [4,0,0, 1, 0]

{6162 + 03 + 05 + 6§ + ¢ =0} € CPI[5]

{yil +yvivs +vi vl +ud = 0} € WCP} 3 4 4 4[20]
(Z5)2 : [0,0,4,1,0], [0,0,4,0,1]

{st02 + o805 + ¢3 + 0§ + 6% = 0} € CP4[3]

{yi1 +y1ys +y2ul +ui +ud = 0} € WCP%U,IB,IS,IG,IG[SOJ
Zs: [0,0,0,4,1]

{6162 + 6865 + 6864 + 6% + 63 = 0} € CPI[5)

4 4 4 5 5 4
{vi +v1v3 +v2v3 + yaul + ¥3 = 0} € WCP 60,65,51,04(320]

{6102 + o803 + ¢40a + 9105 + 6§ = 0} € CPA[3]

4 4 4 4 5 4
{y1 + 1Yy +v2yz + ysyy + vays = 0} € WCPg, 48,52,51,41 [256]

{s102 + 03 + 0304 + 0§ + 6§ = 0} € CP4[3]

4 5 4 5 5 4
{'lJ1 +y1ys +y3 +ysyy +y; = 0} S WCP5,3,573v4[20]

{6162 + 6805 + 63 + 665 + 63 = 0} € CPI[5)

4 4 5, 4 5 4
{y1 +y1ys + y2us + Yy + yays = 0} € WCPy 15,13,20,12[80]

{62 + 03 + 03 + 6405 + 9a0h =0} € CPI[5]

{v + 3 + 3 + vivs + vavd = 0} € CP*[3]
(Z5)? x Z3: [1,4,0,0,0], [0,4,1,0,0], [0,0,0,2,1]

{63 + ¢hes + ¢3 + 9405 + sa0d = 0} € CPA[3]

5 4 5 4 4 4
{v7 + v +v2u3 + yivs + vayi = 0} € WCOP] 5 54 4(20]

{6102 + ¢40s + 63 + ¢1os + 9ast = 0} € CPI[5)

{v+v1vs +v2u5 + viys +vayd = 0} € WCPH 15 15,16,16(80]
Z1s : [0,0,3, 11, 1]

{63 + 6465 + 6204 + 0165 + 6a0d =0} € CPI[3]

{v3 +vdys +v2vs +viys +vayd = 0} € CP[3)
Zg: [0,2,1,2,1]

{85 + 65 + 9364 + 6105 + d398 = 0} € P[]

{v? + 95 + vius +vsui + vavd = 0} € CP[5]
[1,4,0,0,0], [0,0,3,9,1]

Zs X Z13 :

{#162 + 03 + 0404 + 0405 + 8368 = 0} € CPA[3]

{yi1 +y193 + yays + yavi + vava = 0} € WCP3 5 44 4[20]
Zgs : (0,52, 16, 61, 1]

{102 + ¢16% + ¢4éa + dies + 939 = 0} € CP[5]

{vtvs +v1vs + vivs + vsui + vavd = 0} € CP[5]
[1,2,0,0,0], [0,0,3,9,1]

Z3 X Zq3 :

{43 + ¢33 + 040 + o405 + 6204 = 0} € CPA[3)

{v? +vdvs + v2ul + wsud + vayd = 0} € CP4[3)

Zs1 : (0,38, 16,47, 1]

{100 + o805 + ¢éa + dieés + 9108 = 0} € CP[5]

{vivs + v1vs + y2u3 + vavi + vavd = 0} € CP4[5]
Z4y ¢ [10,18,16,37,1]

Table 5.3. Mirror pairs (MW,//\/lVW) when My, € CP*[5].

Note that rows 1, 8, 14, 15, and 16 of Table 5.3 agree with the corresponding results

The following example illustrates the calculations involved in obtaining
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Tables 5.1, 5.2, and 5.3.

Example 5.1 Consider row 13 of Table 5.3. The potential YV is

5 5
W= T[¢;" = dldo+ 65 + d4ps + dies + psos.

i=1j=1
From this expression, we obtain the matrix
41000
05000
(aij) = 00410
00041
00104

and the dual potential

WE =3 "TT v = vt + 1195 + viys + sy + vavs -
i=1 j=1

Thus,
My = {W =0} € CP*[5],
Myyr = (W' =0} € WCPj 5 4 4 4[20] .
Now, let us determine the orbifold group SLyyr/{Jyyr). The action of SLyyr is

1= H?:l ngl = w;ll )

1= H?:l wa = Wylwgz )
1= H?:l wZJ]'B = <");JJL:«x("JZB )
1= H?:l ngﬂ = Wys“i; )
1= H?:l wa = wy4w§5 ’

5
1=T[_ wy,.

Combining the second, fourth, and fifth constraints yields

SLWT : (y17 s 7y5) - (wy1yl7 s 7wy5y5)

— —5 16 —4
(Wyy s Wy Wyg, Wyy,s Wys) = (Wyg » Wyay Wy Wyss wy5) .

Imposing the sixth constraint on this result gives

—4 13 _
Wy Wy = 1.

It follows that

— -5 5 —13 16 —4
(Wyu wa’ Wyg, Wy4, Wy5) - (wyg ’ Wygw% ) wyg,a wys ) wys) .

,16,



From the first and second constraints we obtain

wgg =1,
which together with our result w;;lw;g’ =1 implies
wh =1.

Ys

We also obtain wgg =1 by combining our result wy, = wég with the third constraint. Thus,

all six constraints have been satisfied and we obtain
SLyyr = Zoy x Zgs : [15,5,0,0,0], [0,52,16,61,1].
Modding out by (Jyyr) = Zag gives
SLyyr /(Jyyr) = Zgs = [0,52,16,61,1].
We conclude that

M\/ N {WT - O} S WCP§737474’4[20]
W Zes © |0,52, 16,61, 1] '

In Tables 5.1, 5.2, and 5.3, the left columns correspond to different complex structures
for My whereas the right columns correspond to different Kéhler structures for MW. We
can probe the different Kahler structures for MW by computing the associated Picard-
Fuchs equations. Doing this for rows 2 and 3 of Table 5.1, we obtain

0= [6%—12¢7(60 +5)(66 + 1)] 1T SSL (5.25)
0=1[0"—4e " (40 + 3)(40 + 1)] II SIRE (5.26)

respectively. For rows 3 and 4 of Table 5.2, we obtain
0= {137, 781 [szl(se - i)] [ngl(m - j)] (30 — 2)(30 — 1)6°
+ 962,990, 300, 932 ¢ ¥ (360 + 35)(366 + 34)(366 + 31)(3660 + 29)(366 + 26)

(366 + 25)(360 + 23)(366 + 22)(360 + 19)(360 + 17)(366 + 14)(360 + 13)

(360 + 11)(3660 + 10)(360 + 7)(360 + 5)(360 + 2)(360 + 1)}Hv70/133 a7 (327)
12,8,7,9

0= {280 [ 6 (70 —14)| (60 — 5)(60 — 1) [H§:1(59 - j)} (30 — 2)(30 — 1)(20 — 1)63
+ 2187 (270 + 26)(2760 + 25)(270 + 23)(2760 + 22)(270 + 20)(276 + 19)

(276 + 17)(276 + 16)(276 + 14)(276 + 13)(276 + 11)(276 + 10)(276 + 8)

(276 + 7)(276 + 5) (276 + 4)(2760 + 2)(276 + 1)}11 (5.28)

—~~——3
WCPy ¢ 7 5[27] ’
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respectively. Finally, for rows 6 and 9 of Table 5.3, we obtain

0= {9 [H?:1(59 - i)] (30 — 2)2(30 — 1)26*
+ 12,800 (206 + 19)(206 + 18)(200 + 17)(200 + 14)(366 + 13)(206 + 11)

(200 + 9)(200 + 7)(200 + 6)(200 + 3)(200 + 2)(200 + 1)}11%4 o (329
5,3,5,3,4

0= {3(49 —3)2(40 — 1)%(30 — 2)(30 — 1)(20 — 1)%0*
+ 1000 ¢ (200 + 19)(200 + 18)(206 + 17)(200 + 14)(206 + 13)(200 + 11)

(200 + 9)(200 + 7)(200 + 6)(200 + 3)(200 + 2)(200 + 1)}11%4 oy (330)
4,5,3,4,4

respectively. Note that the Picard-Fuchs operators appearing in each of the above pairs of
Picard-Fuchs equations are different from each other. This indicates that they correspond
to different Kéhler structures for My, .

6 Discussion

In Section 4, we found that the technique suggested by Hori and Vafa [3] for determining
the Picard-Fuchs equations satisfied by HJT/I}; when the Calabi-Yau condition (2.5) holds
yields results which agree with those obtained in [4, 5] working in the Batyrev-Borisov
[6, 7] framework. An advantage of the Hori-Vafa formalism is that it provides an explicit
expression for Hg7.. The case in which the Calabi-Yau condition is replaced by (2.2) can
be treated by making a minor modification to (4.3) and (4.7).

In Tables 5.1, 5.2, and 5.3, the left columns correspond to different complex structures
for Myy whereas the right columns correspond to different Kéahler structures for MVW. By
choosing the change of variables (5.19) appropriately, the Hori-Vafa formalism allows any of
the Kéahler structures for /WW to be obtained in the limit £ — —oo. However, the Hori-Vafa
formalism provides no prescription for associating a particular complex structure for My,
with a particular Kéhler structure for .//\/lvw. For this, we have made use of the Chiodo-
Ruan [12] geometric interpretation of Berglund-Hiibsch-Krawitz duality. We have probed
some of the resulting mirror Kéahler structures by determining corresponding Picard-Fuchs
equations.

Generally speaking, when (Jyy) C SLyy, this corresponds to

m— RS
W(91,...,6m) =0} € WCPn¢1,1...,n¢m [s], s anbz =k €Zx.
i=1

The case K = 1 is the Calabi-Yau condition. The case x > 1 can be described in terms
of the special class of Fano varieties discussed in [20-22]. Alternatively, for the x > 1
case, the Landau-Ginzburg orbifold W/(Jyy) can be given a geometrical interpretation
as a nonlinear sigma model on a super Calabi-Yau using the proposed correspondence of
Sethi [23]; see also [24-26]. It was noted in [25] that this super Calabi-Yau should be
equivalent (in the sense of [27]) to a Calabi-Yau complete intersection when the Newton
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polytope associated with W admits a nef partition. The Batyrev-Borisov construction
yields a mirror for this Calabi-Yau complete intersection. Borisov [28] has suggested a way
to unify the Batyrev-Borisov and Berglund-Hiibsch constructions.

The above comments illustrate the overlapping nature of various mirror symmetry
formalisms. While this paper has helped elucidate some of these overlaps, a complete
mirror symmetry “Venn diagram” has still not been achieved.
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