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V is a vectorspace

Vi, Vo, -+ Vi < V are called skew subspaces (" independent

subspaces”) if they satisfy r(V4V Vo V---V Vi) = 2K r(V;)

e e< Visalineif r(e) =2

V, E is an instance of linear matroid matching if E is a set
of lines

e M C E is a matching if it consists of skew lines, i.e.
r(sp(M)) = 2|M|
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Linear Matroid Matching

(Unweighted) Linear Matroid Matching Problem

Given: vectorspace V/, set of lines E
Find: matching M to maximize |M|

v(V,E) := max{|M| : M a matching }

Weighted Linear Matroid Matching Problem

Given: vectorspace V/, set of lines E, weights w : E — R
Find: matching M to maximize w(M)

v(V,E,w) = max{w(M) : M a matching }
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Matroid matching:
e definition (Lawler, 1976)

@ exponential, oracle model (Lovész, 1981; Jensen, Korte, 1982)
@ NP-hard (Schrijver, 2003)

Arbitrary matroids:

@ 2/3-approximation, unweighted (Fujito, 1993)
e PTAS, unweighted (Lee, Sviridenko, Vondrak, 2010)

Linear matroid matching is tractable:

@ min-max, polytime algorithm (Lovész, 1980)

o fastest polytime (Gabow, Stallmann, 1986; Orlin, 2008)
o different polytime (Orlin, Vande Vate, 1990)

o fastest randomized (Cheung, 2011)
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Applications / special cases:

graph matching (Edmonds, 1965)
matroid intersection (Edmonds, 1970)
Mader’s node-disjoint S-paths (Lovasz, 1980; Schrijver, 2000)

maximum genus embedding (Nebesky, 1981; Furst, Gross,
McGeoch, 1988)

matchoid (Lovasz, Plummer, 1986)

@ polymatroid matching

@ parity-constrained rooted-connected orientation (Frank,
Jorddn, Szigeti, 2001; Kirdly, Szabd, 2003)

@ maximum triangle cactus, graphic matroid matching (Szigeti,
2003)

@ minimum generically rigid pinning-down in the plane
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Variations:

@ algebraic matroids (Dress, Lovész, 1987)

e pseudomodular matroids (Hochstattler, Kern, 1987)

@ double circuit property (Bjorner, Lovasz, 1987)

@ ntcdc-free polymatroid matching (Makai, Pap, Szabd, 2007)

Generalization:
@ linear delta-matroid parity (Geelen, Iwata, Murota, 1997)
Related:
e fractional matroid matching (Vande Vate, 1992)
@ unweighted algorithm (Vande Vate, Chang, Llewellyn, 2001)
@ weighted algorithm (Gijswijt, Pap, 2008)
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Weighted matroid matching:
@ graphic matching, matroid intersection
e gammoids (Tong, Lawler, Vazirani, 1984)

@ linear matroid, randomized pseudopolynomial (Camerini,
Galbiati, Maffioli, 1992)

fractional matching (Gijswijt, Pap, 2008)
PTAS, strongly base orderable (Soto, 2011)

linear matroid, randomized polynomial (Cheung, 2011)

This talk:
Theorem (Iwata 2011 — and independently — P 2011)

Weighted linear matroid matching is solvable in strongly
polynomial time. *

* (assuming "nice” linear representation of input lines)
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(Linear) Matroid Intersection ]

@ S is the groundset

¢i: S — Vi (i =1,2), where V; is a vectorspace

U C S is a common independent set if ¢;(U) is independent
FIND max|U|, or max w(U) for some w: S — R
representation: ¥(s) := sp(¢1(s), #2(s)) € Vi x Va

U C S is a common independent set iff 1»(U) is a matching in
V1 X V2
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(Linear) Matroid Intersection

e [Edmonds, 1979]
P = conv{xy : U common indep.} =

= {x €RY : x(Z) < r(¢i(2)) forall ZC S,i=1,2}

@ P is determined by an LP that is
— integral, TDI, polytime optimization
— 0-1 inequalities (" RANK" inequalities)
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Graph Matching )

@ Let G =(Vg, Eg) be a graph

V= ® sp(1,),

veVg

where 1, is a unit vector introduced for node v € V

E:={sp({1,,1,}) : uv € Eg}

Mg C Eg is a graph matching iff {sp({1,,1,}) : uv € Mg} is a
linear matroid matching in V', E
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Graph Matching

e [Edmonds, 1968]
P := conv{xm : M matching in G} =
= {x e RS : x(E[Z]) < |3]Z|] forall ZC V, and
x(0,) < 1forallve Vg}

@ P is determined by an LP that is
— integral, TDI, polytime optimization
— 0-1 inequalities (" RANK" inequalities)
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Example for linear matroid matching polytope

a=1(1,0,00,00,0) b
by =(1,1,0,0 00, 0) K 2
a=1(1,0,1,0,0,0,0) b
b, =(1,0,0,1,0,0,0) N
a1 o
a3=1(1,220,00,0) I .
bs=(1,0,0,0,1,0,0) R By
as=(1,2,1,0,0,0,0) s
by =(1,0,0,0,0,1,0) Q\'
as=(1,1,210,00,0) bs
bs =(1,0,0,0,0,0,1) r(K)=3
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Example for linear matroid matching polytope

=(1,0,0,0,0,0,0) b
b1 =(1,1,0,0,0,0,0) K 2
a=(1,0,1,0,0,0,0) b
b, =(1,0,0,1,0,0,0) 2% /’

a1 P
a3=(1,220,0,0,0) I .
bs=(1,0,0,0,1,0,0) by R B by
as=(1,21,0,0,0,0) s
by =(1,0,0,0,0,1,0) Q\'
as=(1,1,20,0,0,0) bs
bs =(1,0,0,0,0,0,1) r(K)=3
i, bj

2x1+x0 +x3+ x4 +x5 <3
for all x € P = conv({xm : M a matching })

[STERET) Weighted linear matroid matching



Unweighted matroid matching min-max (Lovasz)

Theorem (Lovész, 1980)

V(V,E)—mm r( ~|—Z {fV/K J

where K < V and 7 = {E1, Ez,--- } is a partition of E.

Necessity follows from:
o V(V,E)<v(V/K,E)+ r(K) for any K < V
o v(V,E) <Y, |3r(E;)| for any partition
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Necessity in Lovasz' min-max

For a matching M, define x = xM,y = yM by

X@y_{lﬁeeM

0 otherwise,

and forall K < Vand F C E, let

yk(F) == r(K A sp(M N F)).
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Necessity in Lovasz' min-max

For a matching M, define x = x",y = yM by

X@%_{lﬁeeM

0 otherwise,

and forall K < Vand F C E, let

y(F) = r(K Asp(M N F)).

The following inequalities hold:
(1) x(F) —yk(F) < L%I’v/K(Sp(F))J, (" Parity Constraint”)
(2) ZFGTI’ }/K(F) < r(K), (" Partition Constraint”)
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Necessity in Lovasz' min-max

For a matching M, define x = xM,y = yM by

X@%_{lﬁeeM

0 otherwise,

and forall K < Vand F C E, let

yk(F) == r(K A sp(M N F)).

The following inequalities hold:
(1) x(F) —yk(F) < L%I’v/K(Sp(F))J, (" Parity Constraint”)
(2) ZFGTI’ }/K(F) < r(K), (" Partition Constraint”)

Combining these inequalities we get

M] =x(E) < r(K) + 3 | 3P|

Fem
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The following inequalities hold:

(1) X(F) _}/K(F) < L%rV/K(SP(F))J, (" Parity Constraint”)
(2) ZFEW YK(F) < r(K), (" Partition Constraint”)
(3) x(E) < 3(V)
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Assign dual variables:

(1) x(F) = yk(F) < [3rv/k(sp(F))]. 5(K,F)
(2)  Xreryk(F) < r(K), (K, )
(3) x(E) < 3(V), o
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(1) x(F) = yx(F) < [3rv/k(sp(F))], 3(K, F)
(2) Drenyk(F) < r(K), V(K )
(3) x(E) < 3(V) a
STEP 0.
Initially, set

and set all other dual variables 0.
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(1) x(F) = yw(F) < [3rv/k(sp(F))], 5(K, F)
(2) Xrenyx(F) < r(K), (K, )
(3) x(E) < (V) a
STEP 0.

Initially, set

and set all other dual variables 0.

Complementary slackness < FIND perfect matching in V, E= J
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(1) x(F) = yx(F) < [3rv/k(sp(F))]. 5(K.F)
(2 2Zreryr(F) < r(K), (K, m)
(3) x(E) < 3(V), a

STEP 1.
CASE 1. There is a perfect matching M in V, E=. RETURN M.

CASE 2. Otherwise, take K, from Lovdsz' min-max, and change
dual by

— d(K,F):=¢€forall F e,

— (K, ) =,

— O = Wmax — €,

taking € maximal, subject to dual feasibility.
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STEP 2. Complementary slackness conditions equivalent with:

FIND Mpurp/e g Epurplev Bbluer Bred SUCH
THAT

— For all F, either Bpye has a basis of
sp(F)/K and B,y contains one element
from sp(F) AK, OR Bpye has a near-basis of
sp(F)/K and B4 contains no element from
sp(F)ANK

— Byed is a basis of K

— Bbiye U Breq U Mpurple spans V/K

— Bhpiue U Bred U Mpyrpie are skew

This, in turn, is equivalent with an instance
of unweighted linear matroid matching.
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STEP 2. Complementary slackness conditions equivalent with:

FIND Mpurple - Epurple: Bbluev Bred

SUCH THAT

— For all F, either Bpye has a basis of
sp(F)/K and B,y contains one element
from sp(F) AK, OR Bpye has a near-basis of
sp(F)/K and By contains no element from
sp(F) A K

— Byed is a basis of K

- Bblue U Bred U Mpurple spans V/K

— Bhpiue U Bred U Mpurpie are skew
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Extended Formulation of the Linear Matroid Matching Polytope )

@ For e € E, introduce variable
x(e) > 0.
@ For subspaces V > K > L and F C E, introduce variable

yk,L(F) > 0.

For a matching M, we put

o xM(e):=1if e € M, and 0 otherwise,

YKL (F) = yK (F) =yl (F) = r(KAsp(MNF))—r(LAsp(MNF)).
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Extended Formulation of the Linear Matroid Matching Polytope J

Z Z yp;_,,0;(F) < r(Dj) " Partition Constraint”
i=1 FEF
x(F) — ZYDf,l,D,(F) < E Zi%’z rvp;_,(Di A sp(F))J " Parity Constraint”
ich
2x(e) — Z)’D,-,l,D,-(e) <0 "Line Constraint”
i<j

where 0 = Dy < D1 < Dy < --- < D, = V is a chain of subspaces, F C E, F a
partition of E, j < k, h C {1,2, - ,k}, and e < D;.
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Necessity in the extended formulation

1. Consider D, j, F for the degree constraint. Then
J
Z Z yo;_,,0;(F) = Z r(sp(M N F) A D;j) < r(sp(M) A Dj) < r(Dj)
i=1 FEF Fer

implying the Partition Constraint.
2. Assume e € M. Then

EYD,lD (e) = Z( Di_yNe)—r(Dine)) =r(DjNe)=r(e) =2=2x(e)

i<j i<j

implying the Line Constraint.

Gyula Pap Weighted linear matroid matching



Necessity in the extended formulation

3. By
yo;_1,0;(F) < ryyp,_, (Di A sp(F))

we get that

K
2x(F)=2IMNF| = yp,_,.0,(F) <> yo,_1.0,(F)+ > rv/p,_, (Di A sp(F)).
i=1 ich igh

For a,b,c € N,

1
2a<b+c implies a<b+ [ECJ

Thus

x(F) < ZYD,-,l,D,-(F) 4 F Z ry/p;_,(Di A SP(F))| 7

ich igh

implying the parity constraint.
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Extended Formulation of the Linear Matroid Matching Polytope J

Z Z yp;_,,0;(F) < r(Dj) " Partition Constraint”
i=1 FEF
x(F) — ZYDf,l,D,(F) < E Zi%’z rvp;_,(Di A sp(F))J " Parity Constraint”
ich
2x(e) — Z)’D,-,l,D,-(e) <0 "Line Constraint”
i<j

where 0 = Dy < D1 < Dy < --- < D, = V is a chain of subspaces, F C E, F a
partition of E, j < k, h C {1,2, - ,k}, and e < D;.
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Extended Formulation of the Linear Matroid Matching Polytope ]

J
Z Z XF)yp,_,,0;(F) < (£, \)r(D;) "Laminar Constraint”
i—1 FeL
x(F) - ZYD,-,I,D,(F) < b Zig@ rvp;_,(Di A sp(F))J Parity Constraint
i€h
2x(e) — ZYD,,l,Df(e) <0 "Line Constraint”
i<j

where 0 = Dy < D1 < Dy < --- < D, = V is a chain of subspaces, F C E, L is a
weighted laminar family of subsets of E, with weights A : £ — R4, j < k,
L C{1,2,--- ,k}, and e < D;.
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j
D> AF)yo,_y,p,(F) < w(L,N)r(Dy)

"Laminar Constraint”
i=1 FeL

x(F) — Z}/D;,l,Di(F) < H Ziezlg rvp;_(Di A SIJ(F))J " Parity Constraint”
ich

2x(€) = > yp,_,,0,(e) <0

"Line Constraint”
i<j

x(E) < r(V)/2

Assign dual variables:

@ (D, , L, ) for Laminar Constraints
@ 4(D, I, F) for Parity Constraints

@ B(D,j,e) for Line Constraints

@ « for constraint x(E) < r(V)/2
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Consider o, D, L, 6, \;, I2F, where

@ D ={Di,Ds,---,Dy} is a chain of subspaces

@ L is a laminar family of subsets of E

Q@ §: LRy

@ N\ :F—oRyfori=1,2,--- k

(] I2F Clp,r €{1,2,--- ,k} (such that Ip F — I2F are laminar) for all F € £

A Laminar Dual Solution is given by

@ y(D,i,L,\):=1fori=1,2,---k

@ §(D,I,F):=6f for Fe L

@ B(D,j, e) maximal — subject to dual feasibility — for e € E
9 o
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Min-max for weighted linear matroid matching

The maximum weight of a matching is equal to the minimum
value of a laminar dual feasible solution, that is,

k
v(V,E,w) =minar(V) + Zﬁ(ﬁ, Ai)r(Di)+

i=1
+ 3 6F) 13 S 001017 52(F)

where o, D, L, 6, \;, I is a laminar dual solution.
v
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Algorithm. )

@ We maintain a laminar dual solution.

Start with o = Wpax, D = £ = 0.

@ Given a laminar dual solution o, D, L, §, \;, I2F, construct auxiliary unweighted
instance as follows.

@ Auxiliary unweighted instance is equivalent with complementary slackness
conditions

® Vp =@ (Di/Di-1)

@ For F € F, let Gg be a basis of sp(F) N U;¢,(Di/Di—1), and let Hr be a basis
of sp(F) N U;g,(Di/Dj-1)

Let mp := B Z;g,{ rvp;_; (Di A SP(F))J

B:={hr:F € Lmax}U{gFp:F € Lmax,p=1,2,--- ,mg}

Vii=Vp® Rpes b

E':= E= — Uper FUUgrcc(EIGr, he] U Elhr, BE] U E[Br, He])
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Algorithm. )

SOLVE maximum matching in V', E’
IF 3 perfect matching M’ in V', E’, expand M’ to M, and RETURN M
OTHERWISE, take K’,n’ from Lovdsz' min-maximal

K’ is separable, that is, it has the form of

®© 6 06 ¢

k
K=QK o1,
i=1

beB’

where K! < D;j/D;_; and B’ C B.
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Algorithm. J

@ DUAL CHANGE using K/, /, constructed as follows.
@ Let D), :=D;j, and Dy;_1 := K/ ® Dj_1, and put D' := {D} : i =1,2,--- ,2k}.
@ o =a-—c¢
@ For Flen let F/:=(FFNET)UULF.
@ Put £':=LU{F":F € pi}
@ Let L=L4ULyUL_ based on 7.
8(F) if F € Lo
§(F)—eif Fe L_
® ip =

S(F)+eif Fe Ly

eif F=F".

® Fori=1,2,--,k, let J=Ji UJiUJ. based on i and .
Xai(F) if F e Jj
Aoi(F) —eif Fe J.
Noi(F) +eif Fe Ji

0 otherwise,

@ Fori=1,2,---,k, put X},(F):=

while A, _,(F") :=e.
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Running time: J

— either deficiency of auxiliary instance decreases, or the rank of
its kernel decreases, thus we obtain a bound of r(V)? on the

number of dual changes
— we can determine a basis of every subspace D;, if, for example,

V = GF(q)" or Q" in polynomial time
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Conclusion

Theorem (Iwata 2011 — and independently — P 2011)

Weighted linear matroid matching is solvable in strongly
polynomial time.
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Questions:
— weighted linear delta-matroid parity
— bound the coefficients in a facet
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Thank you for your attention!
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