Constructing self-dual chiral polytopes

Gabe Cunningham

Northeastern University, Boston, MA

October 25, 2011

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Definition of an abstract polytope

Let \mathcal{P} be a ranked poset, whose elements we call faces. Then \mathcal{P} is an (abstract) *n*-polytope if it satisfies the following four conditions:

- Every flag (maximal chain) of \mathcal{P} has n+2 faces.
- There is a unique maximal face and a unique minimal face.
- If F ≤ G and rank(G) rank(F) > 2, the Hasse diagram of {H | F < H < G} is connected.
- If F ≤ G and rank(G) rank(F) = 2, there are exactly 2 faces H such that F < H < G.</p>

Schläfli symbol of a polytope

Let \mathcal{P} be an *n*-polytope. Let F be a face of rank (i-1) and G a face of rank (i+2), with $F \leq G$. Then

$$G/F := \{H \mid F \le H \le G\}$$

is a polygon, and we define $p_i(G/F)$ to be the number of vertices of this polygon.

If each $p_i(G/F)$ depends only on i (and not on the choice of F and G), then we define $p_i := p_i(G/F)$ and we say that \mathcal{P} has Schläfli symbol $\{p_1, \ldots, p_{n-1}\}$ or that \mathcal{P} is of type $\{p_1, \ldots, p_{n-1}\}$.

Definition of polytope automorphisms

A function $f : \mathcal{P} \to \mathcal{Q}$ is a polytope isomorphism if:

- It is bijective, and
- $F \leq G$ in \mathcal{P} if and only if $f(F) \leq f(G)$ in \mathcal{Q} .

(These are just the usual isomorphisms for posets.)

An isomorphism from \mathcal{P} to itself is an automorphism. We denote the automorphism group of \mathcal{P} by $\Gamma(\mathcal{P})$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition of regular and chiral polytopes

The automorphism group of a polytope has a natural action on the flags (maximal chains). If this action is transitive, we say that the polytope is regular.

Examples: regular convex polytopes, regular tessellations, 11-cell.

The polytope \mathcal{P} is chiral if

- The action of $\Gamma(\mathcal{P})$ on the flags has 2 orbits.
- Flags that differ in a single face are in different orbits.

More info on chirality

Chiral polytopes do not have mirror symmetry, but they have full rotational symmetry. The mirror-image of \mathcal{P} is denoted $\overline{\mathcal{P}}$.

 $\{4,4\}_{(2,1)}$

$$\overline{\{4,4\}_{(2,1)}} = \{4,4\}_{(1,2)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Duality

Given a polytope \mathcal{P} , we get its dual \mathcal{P}^{δ} by reversing the partial order. If a polytope is isomorphic to its dual, we say that it is self-dual.

For chiral polytopes, there are two types of self-duality.

- 1. improperly self-dual the dual is equal to the mirror image
- 2. properly self-dual the dual is equal to the polytope itself

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Automorphism group of a chiral polytope

Φ

Let \mathcal{P} be a chiral *n*-polytope, and fix a base flag Φ . Then

$$\blacktriangleright \ \Gamma(\mathcal{P}) = \langle \sigma_1, \dots, \sigma_{n-1} \rangle$$

• σ_i sends Φ to $\Phi^{i,i-1}$

► For i < j, the automorphism $\sigma_i \sigma_{i+1} \cdots \sigma_j$ has order 2.

►
$$\Gamma_I \cap \Gamma_J = \Gamma_{I \cap J}$$
, where

$$\Gamma_{I} = \langle \sigma_{i} \cdots \sigma_{j} \mid i \leq j \text{ and } i-1, j \in I \rangle$$
$$(I \subseteq \{0, 1, \dots, n-1\})$$

・ロト ・母 ・ ・ 母 ・ ・ 母 ・ ・ の へ ()・

Automorphism group of a chiral polytope

Let \mathcal{P} be a chiral *n*-polytope, and fix a base flag Φ . Then

$$\blacktriangleright \ \Gamma(\mathcal{P}) = \langle \sigma_1, \ldots, \sigma_{n-1} \rangle$$

• σ_i sends Φ to $\Phi^{i,i-1}$

► For i < j, the automorphism $\sigma_i \sigma_{i+1} \cdots \sigma_j$ has order 2.

▶
$$\Gamma_I \cap \Gamma_J = \Gamma_{I \cap J}$$
, where

$$\Gamma_{I} = \langle \sigma_{i} \cdots \sigma_{j} \mid i \leq j \text{ and } i-1, j \in I \rangle$$
$$(I \subseteq \{0, 1, \dots, n-1\})$$

・ロト・御ト・前下・前・ 一切・今日・

Automorphism group of a chiral polytope

 $\Phi^{1,0}$

Let \mathcal{P} be a chiral *n*-polytope, and fix a base flag Φ . Then

$$\blacktriangleright \ \Gamma(\mathcal{P}) = \langle \sigma_1, \ldots, \sigma_{n-1} \rangle$$

• σ_i sends Φ to $\Phi^{i,i-1}$

► For i < j, the automorphism $\sigma_i \sigma_{i+1} \cdots \sigma_j$ has order 2.

►
$$\Gamma_I \cap \Gamma_J = \Gamma_{I \cap J}$$
, where

$$\Gamma_{I} = \langle \sigma_{i} \cdots \sigma_{j} \mid i \leq j \text{ and } i-1, j \in I \rangle$$
$$(I \subseteq \{0, 1, \dots, n-1\})$$

・ロト・「聞ト・「問ト・「問・」 白・

Building a chiral polytope from a group

Given a group $\Gamma = \langle \sigma_1, \ldots, \sigma_{n-1} \rangle$, we can build a poset $\mathcal{P}(\Gamma)$ in a natural way. We set

$$\Gamma_0 = \langle \sigma_2, \dots, \sigma_{n-1} \rangle$$

$$\Gamma_i = \langle \sigma_1, \dots, \sigma_{i-1}, \sigma_i \sigma_{i+1}, \sigma_{i+2}, \dots, \sigma_{n-1} \rangle (1 \le i \le n-2)$$

$$\Gamma_{n-1} = \langle \sigma_1, \dots, \sigma_{n-2} \rangle$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The faces of rank k are the cosets of Γ_k , and two cosets are incident if they intersect.

If Γ is "nice enough", then $\mathcal{P}(\Gamma)$ is a chiral polytope and $\Gamma(\mathcal{P}(\Gamma)) = \Gamma$.

Mixing groups

Given groups

$$\begin{split} \mathsf{\Gamma} &= \langle \sigma_1, \dots, \sigma_{n-1} \rangle \\ \mathsf{\Gamma}' &= \langle \sigma'_1, \dots, \sigma'_{n-1} \rangle, \end{split}$$
we define $\alpha_i = (\sigma_i, \sigma'_i) \in \mathsf{\Gamma} \times \mathsf{\Gamma}' \ (1 \leq i \leq n-1). \end{split}$

The mix of Γ and Γ' is defined to be

$$\mathsf{\Gamma}\diamond\mathsf{\Gamma}'=\langle\alpha_1,\ldots,\alpha_{n-1}\rangle.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

(The diagonal subgroup of the direct product)

If
$$\Gamma = G/N$$
 and $\Gamma' = G/N'$, then $\Gamma \diamond \Gamma' = G/(N \cap N')$.

Let \mathcal{P} and \mathcal{Q} be chiral polytopes. We define the mix of \mathcal{P} and \mathcal{Q} (denoted $\mathcal{P} \diamond \mathcal{Q}$) to be the poset built from $\Gamma(\mathcal{P}) \diamond \Gamma(\mathcal{Q})$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Unfortunately,

- 1. $\mathcal{P} \diamond \mathcal{Q}$ may be regular instead of chiral.
- 2. $\mathcal{P} \diamond \mathcal{Q}$ may not even be a polytope!

Mixing and duality

Proposition $(\mathcal{P} \diamond \mathcal{Q})^{\delta} = \mathcal{P}^{\delta} \diamond \mathcal{Q}^{\delta}.$ Corollary

 $\mathcal{P} \diamond \mathcal{P}^{\delta}$ is properly self-dual.

Under what conditions is $\mathcal{P} \diamond \mathcal{P}^{\delta}$ a chiral polytope?

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

When is $\mathcal{P} \diamond \mathcal{P}^{\delta}$ chiral?

Theorem Let

$$\Gamma(\mathcal{P}) \diamond \Gamma(\mathcal{P}^{\delta}) = \langle \alpha_1, \dots, \alpha_{n-1} \rangle$$

$$\Gamma(\mathcal{P}) \diamond \Gamma(\overline{\mathcal{P}}) = \langle \beta_1, \dots, \beta_{n-1} \rangle$$

If there is no epimorphism

$$arphi: \mathsf{\Gamma}(\mathcal{P}) \diamond \mathsf{\Gamma}(\mathcal{P}^{\delta})
ightarrow \mathsf{\Gamma}(\mathcal{P}) \diamond \mathsf{\Gamma}(\overline{\mathcal{P}})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

that sends α_i to β_i , then $\mathcal{P} \diamond \mathcal{P}^{\delta}$ is chiral.

Let ${\mathcal P}$ be a finite chiral polyhedron of type $\{3,7\}$ such that $\Gamma({\mathcal P})$ is simple. Then

$$\blacktriangleright \ \Gamma(\mathcal{P}) \diamond \Gamma(\mathcal{P}^{\delta}) = \Gamma(\mathcal{P}) \times \Gamma(\mathcal{P}^{\delta})$$

$$\blacktriangleright \ \Gamma(\mathcal{P}) \diamond \Gamma(\overline{\mathcal{P}}) = \Gamma(\mathcal{P}) \times \Gamma(\overline{\mathcal{P}})$$

So $|\Gamma(\mathcal{P}) \diamond \Gamma(\mathcal{P}^{\delta})| = |\Gamma(\mathcal{P}) \diamond \Gamma(\overline{\mathcal{P}})|$. Thus, the function sending α_i to β_i is only well-defined if it has a trivial kernel. But α_1 has order 21, while β_1 has order 3. So the function is not well-defined, and thus $\mathcal{P} \diamond \mathcal{P}^{\delta}$ is chiral.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

When is $\mathcal{P} \diamond \mathcal{P}^{\delta}$ chiral?

Theorem

Let \mathcal{P} be a finite chiral polytope of type $\{p_1, \ldots, p_{n-1}\}$. If $\Gamma(\mathcal{P})$ is simple and there is some *i* such that $p_i \neq p_{n-i}$, then $\mathcal{P} \diamond \mathcal{P}^{\delta}$ is chiral.

$$\left\{ \begin{array}{cccc} p_1, & p_2, & \dots, & p_{n-2}, & p_{n-1} \end{array} \right\} \\ \left\{ \begin{array}{cccc} p_{n-1}, & p_{n-2}, & \dots, & p_2, & p_1 \end{array} \right\}$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三三 - のへぐ

When is $\mathcal{P} \diamond \mathcal{P}^{\delta}$ a polytope?

Proposition

The mix of chiral polyhedra is a polyhedron.

Theorem

Let \mathcal{P} be a finite chiral polyhedron of type $\{p, q\}$. Let g = gcd(p, q), and suppose that

$$|\Gamma(\mathcal{P})\diamond\Gamma(\mathcal{P}^{\delta})|<rac{pq}{g^2}|\Gamma(\mathcal{P})\diamond\Gamma(\overline{\mathcal{P}})|.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Then $\mathcal{P} \diamond \mathcal{P}^{\delta}$ is a properly self-dual chiral polyhedron.

When is $\mathcal{P} \diamond \mathcal{P}^{\delta}$ a polytope?

Theorem

If \mathcal{P} is of type $\{p_1, p_2, \dots, p_{n-1}\}$ and each p_i is relatively prime to p_{n-i} , then $\mathcal{P} \diamond \mathcal{P}^{\delta}$ is a polytope.

Corollary

If \mathcal{P} is of type $\{p_1, p_2, \dots, p_{n-1}\}$, each p_i is relatively prime to p_{n-i} , and $\Gamma(\mathcal{P})$ is simple, then $\mathcal{P} \diamond \mathcal{P}^{\delta}$ is a self-dual chiral polytope.

When is $\mathcal{P} \diamond \mathcal{P}^{\delta}$ a polytope?

Theorem

If \mathcal{P} is of type $\{p_1, p_2, \dots, p_{n-1}\}$ and each p_i is relatively prime to p_{n-i} , then $\mathcal{P} \diamond \mathcal{P}^{\delta}$ is a polytope.

Corollary

If \mathcal{P} is of type $\{p_1, p_2, \dots, p_{n-1}\}$, each p_i is relatively prime to p_{n-i} , and $\Gamma(\mathcal{P})$ is simple, then $\mathcal{P} \diamond \mathcal{P}^{\delta}$ is a self-dual chiral polytope.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(Of course, this is only possible when *n* is odd.)

When is $\mathcal{P} \diamond \mathcal{P}^{\delta}$ not a polytope?

Theorem

If \mathcal{P} is of type $\{p, q, r\}$, with q odd and p coprime to r, then $\mathcal{P} \diamond \mathcal{P}^{\delta}$ is not a polytope. (The group $\Gamma(\mathcal{P}) \diamond \Gamma(\mathcal{P}^{\delta})$ fails to have the "intersection property".)

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三三 - のへぐ

Some generalizations

- $\mathcal{P} \diamond \overline{\mathcal{P}}^{\delta}$ is improperly self-dual
- The mix of a regular polytope with its dual is self-dual
- The mix of a regular polyhedron with its Petrie dual is self-Petrie

Some generalizations

- $\mathcal{P} \diamond \overline{\mathcal{P}}^{\delta}$ is improperly self-dual
- The mix of a regular polytope with its dual is self-dual
- The mix of a regular polyhedron with its Petrie dual is self-Petrie

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Thank you!