Cayley Complexity of One Degree of Freedom Linkages in 2D

Meera Sitharam Menghan Wang Heping Gao

University of Florida
Department of Computer Information Science & Engineering

2011

1-dof Linkages

- One degree of freedom (1-dof) linkage (mechanism) in 2D
- Linkage (G, δ) : $G = (V, E), \delta : E \to \mathbb{R}$

• How to describe the space of configurations (2D realizations) for a 1-dof linkage (G, δ) ?

- How to describe the space of configurations (2D realizations) for a 1-dof linkage (G, δ) ?
- Cayley Configuration Space of (G, δ) on non-edge f = (u, v): the set of possible distances between u and v• $\Phi_f(G, \delta) := \{\delta^*(f) : linkage (G \cup f, \delta, \delta^*) \text{ has realization}\}$

- How to describe the space of configurations (2D realizations) for a 1-dof linkage (G, δ) ?
- Cayley Configuration Space of (G, δ) on non-edge f = (u, v): the set of possible distances between u and v $\Phi_f(G, \delta) := \{\delta^*(f) : linkage <math>(G \cup f, \delta, \delta^*)$ has realization $\}$
- $\Phi_f(G, \delta)$ is a set of intervals on the real line

- How to describe the space of configurations (2D realizations) for a 1-dof linkage (G, δ) ?
- Cayley Configuration Space of (G, δ) on non-edge f = (u, v): the set of possible distances between u and v• $\Phi_f(G, \delta) := \{\delta^*(f) : linkage (G \cup f, \delta, \delta^*) \text{ has realization}\}$
- $\Phi_f(G, \delta)$ is a set of intervals on the real line
- Each point $\delta^*(f)$ in $\Phi_f(G, \delta)$ is a Cayley configuration

How to measure the complexity of Cayley configuration space?

How to measure the complexity of Cayley configuration space?

(a) Cayley complexity: algebraic complexity of interval endpoint values

Definition

Quadratically Solvable (QS) values: solutions to triangularized quadratic system with coefficient in \mathbb{Q} (in extension field over \mathbb{Q} by nested square-roots)

How to measure the complexity of Cayley configuration space?

(a) Cayley complexity: algebraic complexity of interval endpoint values

Definition

Quadratically Solvable (QS) values: solutions to triangularized quadratic system with coefficient in \mathbb{Q} (in extension field over \mathbb{Q} by nested square-roots)

(b) Cayley size: number of intervals

How to measure the complexity of Cayley configuration space?

(a) Cayley complexity: algebraic complexity of interval endpoint values

Definition

Quadratically Solvable (QS) values: solutions to triangularized quadratic system with coefficient in \mathbb{Q} (in extension field over \mathbb{Q} by nested square-roots)

- (b) Cayley size: number of intervals
- (c) Cayley computational complexity: time complexity of obtaining all intervals (as function of Cayley size)

A Natural Class of Graphs

Cayley configurations $\delta^*(f)$ can be efficiently converted to Cartesian configurations provided:

- Completeness: $G \cup f$ minimally rigid (implies $(G \cup f, \delta, \delta^*(f))$ has finitely many realizations for each $\delta^*(f)$)
- Low realization complexity: linear realization complexity if local orientations are specified

Note: any f = (i, i + 2) guarantees both properties

Quadratically Solvable Graphs

Definition

 $G \cup f$ Quadratically Solvable (QS) from $f: \exists$ a ruler and compass realization of $(G \cup f, \delta, \delta^*(f))$ starting from f

Hence: Cayley configuration $\delta^*(f)$ $\xrightarrow{efficient\ conversion}$ Cartesian configuration

Note: for any f = (i, i + 2), $G \cup f$ is QS starting from f

A Class of Quadratically Solvable Graphs

Definition

G is \triangle -decomposable if it is a single edge, or can be divided into 3 \triangle -decomposable subgraphs s.t. every two of them share a single vertex. 1-dof \triangle -decomposable graph: drop an edge f from a \triangle -decomposable graph

Note: \triangle -decomposable implies minimally rigid

- Graph construction from f: each step appends a new vertex shared by 2 △-decomposable subgraphs
- This is also a (unique) QS realization sequence of corresponding linkage starting from f
- Hence \triangle -decomposable \implies QS

A Class of Quadratically Solvable Graphs

Theorem (Owen & Power, 2005)

 $QS \implies \triangle$ -decomposable for planar graphs

- Strong conjecture:
 - \triangle -decomposable implies QS for general graphs
- In this talk, we only consider △-decomposable graphs
- Will refer to them as QS graphs

QS Cayley complexity

Definition

G has QS Cayley complexity with respect to non-edge f: all interval endpoints – of $\Phi_f(G, \delta)$ – are QS

Extreme graphs: O(n) of them, one per step of QS realization sequence, obtained by adding an extreme edge

Theorem

A 1-dof QS graph G has QS Cayley complexity on $f \iff$ all of its extreme graphs starting from f are QS.

This is probably folklore. For completeness, formally proven in (Gao & Sitharam, 2008).

Outline

- Characterizing QS Cayley complexity
 - It is a Property of G Independent of Choice of Non-edge f
 - Algorithmic Characterization (4-cycle Theorem)
 - Finite Forbidden-Minor Characterization

- Cayley Size & Cayley Computational Complexity
 - Guaranteeing Computational Complexity O(n) & Cayley size O(1)

Outline

- Characterizing QS Cayley complexity
 - It is a Property of G Independent of Choice of Non-edge f
 - Algorithmic Characterization (4-cycle Theorem)
 - Finite Forbidden-Minor Characterization

- 2 Cayley Size & Cayley Computational Complexity
 - Guaranteeing Computational Complexity O(n) & Cayley size O(1)

Choice of f

• Possible f: (i, i + 2) for any iBy possible f we mean any non-edge f s.t. $G \cup f$ is QS.

• Does Cayley complexity depend on choice of f?

Choice of f

• Possible f: (i, i + 2) for any iBy possible f we mean any non-edge f s.t. $G \cup f$ is QS.

- Does Cayley complexity depend on choice of f?
- NO.

Independent of Choice of f

Theorem (Sitharam, Wang, Gao)

1-dof QS graph G either has QS Cayley complexity on all possible f or on none of them.

Proof is non-trivial.

Thus: our measure of QS Cayley complexity is robust. Characterizing G of QS Cayley complexity with a specific f is sufficient.

G has QS Cayley complexity

Outline

- Characterizing QS Cayley complexity
 - It is a Property of G Independent of Choice of Non-edge f
 - Algorithmic Characterization (4-cycle Theorem)
 - Finite Forbidden-Minor Characterization

- 2 Cayley Size & Cayley Computational Complexity
 - Guaranteeing Computational Complexity O(n) & Cayley size O(1)

Algorithmic Characterization (4-cycle Theorem)

Theorem (Sitharam, Wang)

1-dof QS graph G has QS Cayley complexity $\iff \exists$ non-edge f $(\forall f)$ each construction step from f is based on a pair of vertices taken from two adjacent QS subgraphs, from a 4-cycle of QS subgraphs

 Gives O(n) time algorithm to recognize QS Cayley complexity graphs

Outline

- Characterizing QS Cayley complexity
 - It is a Property of G Independent of Choice of Non-edge f
 - Algorithmic Characterization (4-cycle Theorem)
 - Finite Forbidden-Minor Characterization
- 2 Cayley Size & Cayley Computational Complexity
 - Guaranteeing Computational Complexity O(n) & Cayley size O(1)

Finite Forbidden-Minor Characterization

 Can there exist finite forbidden-minor characterization for general 1-dof QS graphs?

Finite Forbidden-Minor Characterization

- Can there exist finite forbidden-minor characterization for general 1-dof QS graphs?
- NO.

Will show counterexamples later.

1-Path & △-Free

Need to look at natural subclasses: 1-Path & △-Free

Definition

1-Path: \exists only one "last vertex" v, that is, v is shared by exactly 2 QS subgraphs, each of them share only one vertex with the rest of the graph.

Definition

 \triangle -Free: no subgraph of G is a triangle

Equivalence to Planarity

Theorem (Sitharam, Wang)

A 1-path, \triangle -free, 1-dof QS graph G has QS Cayley complexity \iff G is planar

Ex. (b) has QS Cayley complexity, (a) doesn't

Equivalence to Planarity

Theorem (Sitharam, Wang)

A 1-path, \triangle -free, 1-dof QS graph G has QS Cayley complexity \iff G is planar

Ex. (b) has QS Cayley complexity, (a) doesn't

 1-path & △-free are necessary. Otherwise no finite forbidden-minor characterization exists

1-Path & △-Free are Necessary Counter example 1: not △-free

- Has QS Cayley complexity since the sole extreme graph is QS.
- Can extend the graph to make G_1 have an arbitrary clique as minor

Independent of Choice of *f*Algorithmic Characterization (4-cycle Theorem)
Finite Forbidden-Minor Characterization

1-Path & △-Free are Necessary Counter example 2: not 1-path

- Has QS Cayley complexity (can be checked using the 4-cycle theorem).
- Can be made to have an arbitrary clique as minor.

Outline

- Characterizing QS Cayley complexity
 - It is a Property of G Independent of Choice of Non-edge f
 - Algorithmic Characterization (4-cycle Theorem)
 - Finite Forbidden-Minor Characterization
- Cayley Size & Cayley Computational Complexity
 - Guaranteeing Computational Complexity O(n) & Cayley size O(1)

Cayley size & Cayley computational complexity

Recall the three aspects of complexity of Cayley Configuration Spaces

- (a) Cayley complexity
- (b) Cayley size: number of intervals
- (c) Cayley computational complexity: complexity of obtaining all intervals
 - Have characterization of (a)
 - Let's consider (b) and (c)

Cayley size & Cayley computational complexity

• Suppose G has QS Cayley complexity

 Are we guaranteed to have small Cayley size & low Cayley computational complexity?

Cayley size & Cayley computational complexity

Suppose G has QS Cayley complexity

- Are we guaranteed to have small Cayley size & low Cayley computational complexity?
- Only if we specify necessary orientations of the realizations

Necessary Orientations

A natural, minimal set of local orientations for both forward & backward QS realization sequences

forward orientations from f

backward orientations for all extreme linkages

Blow-up of Cayley Size & Computational Complexity without Orientations

Is either type of orientations sufficient without the other?

Blow-up of Cayley Size & Computational Complexity without Orientations

Is either type of orientations sufficient without the other?
- NO.

 Can adapt existing examples of Borcea & Streinu to show exponential blow-up

Already so for our standard example.

Efficient Cayley Configuration Space

Theorem (Sitharam, Wang)

For 1-dof QS graph G with QS Cayley complexity, given both forward and backward orientations, the Cayley size is O(1) and the Cayley computational complexity is O(|V|)

- Proof non-trivial & based on the 4-cycle theorem
- Yields straightforward algorithm using quadrilateral interval mapping via 4-cycles.

Summary

- Cayley configuration space & measure of complexity
- Choice of base non-edge does not affect QS Cayley complexity.
- Algorithmic characterization (4-cycle Theorem)
- For 1-path, △-free, 1-dof QS graphs: QS Cayley complexity
 ⇒ planarity
- Low Cayley size & computational complexity in the presence of necessary orientations

Proof of Planarity Theorem

Theorem

A 1-path, \triangle -free, 1-dof QS graph G has QS Cayley complexity \iff G is planar

Proof of Planarity Theorem

Lemma (1)

Given a 1-path, \triangle -free, 1-dof QS graph G with non-edge $f = (v_1, v_2)$. If

- 3 or more vertices are directly constructed on f OR
- exactly 2 vertices are directly constructed on f & deg(v₁) ≥ 3,deg(v₂) ≥ 3

We have

- G has a K_{3,3} minor
- 2 G does not have QS Cayley complexity on f

Proof of Planarity Theorem

Lemma (2)

Given a 1-path 1-dof QS graph G with non-edge $f = (v_1, v_2)$ s.t. u_1, u_2 are the only 2 vertices directly constructed on f, if v_1 is a "last vertex" & v_2 is not (resp. both v_1 and v_2 are "last vertices"), then

- $G' = G \setminus \{v_1\}$ (resp. $G' = G \setminus \{v_1, v_2\}$) is 1-path 1-dof QS graph on $f' = (u_1, u_2)$.
- ② $G' = G \setminus \{v_1\}$ (resp. $G' = G \setminus \{v_1, v_2\}$) has QS Cayley complexity on $f' \iff G$ has QS Cayley complexity on f

Proof of Planarity Theorem.

By the two lemmas, the only interesting case is where G has exactly 2 vertices u_1, u_2 directly constructed on $f = (v_1, v_2)$, and either (a) $deg(v_1) = 2$, $deg(v_2) > 2$, or (b) $deg(v_1) = 2$, $deg(v_2) = 2$. Define G' as in Lemma (2).

1 G is planar ⇒ G has QS Cayley complexity on f: Prove by contradiction. Assume G is the minimum QS graph s.t. G does not have QS Cayley complexity on f and is planar. Clearly G' contradicts the assumption of minimality of G.

Proof of Planarity Theorem (cont.)

2 *G* has QS Cayley complexity on $f \Longrightarrow G$ has no $K_{3,3}$: Prove by contradiction. Assume *G* is the minimum QS graph s.t. *G* has QS Cayley complexity on *f* and *G* has a $K_{3,3}$ minor.

In case (a), either (v_1, u_1) or (v_1, u_2) must be contracted. Either case we obtain the graph on right. (v_3 is the first vertex constructed after u_1 and u_2)

 $K_{3,3}$ contains no triangles. Every way to eliminate the two triangles will produce a subgraph of G'. In case (b), similar argument applies.

Proof of Planarity Theorem (cont.)

3 1-path, \triangle -free, 1-dof QS graph G has $K_5 \Longrightarrow G$ has $K_{3,3}$: To keep G \triangle -free, some vertices of K_5 must be contracted from more than one vertices from G. To keep G 1-path we will get a $K_{3,3}$.

Therefore we have: G has QS Cayley complexity on $f \Longrightarrow G$ has no $K_{3,3}$ or K_5 . Thus completes the proof.

Proof of O(1) Cayley Size Theorem

Theorem

For 1-dof QS graph G with QS Cayley complexity, given both forward and backward orientations, the Cayley size is O(1) and the Cayley computational complexity is O(|V|)

Proof of O(1) Cayley Size Theorem

Definition

Levels: construction partial order of a 1-dof QS graph from non-edge f L_0 : endpoints of f.

 L_1 : can directly construct on f. $L_i (i \ge 2)$: can directly construct given

 $L_0 \sim L_{i-1}$, cannot construct without

 L_{i-1} .

Proof of O(1) Cayley Size Theorem

Lemma

For a 1-path G with QS Cayley complexity,

- 1 Each level has one or two construction steps.
- ② If L_k has two construction steps, they are based the same pair of vertices.
- **§** From L_{k+1} on, each construction step must be based on QS subgraphs in L_k or higher levels.

Proof of O(1) Cayley Size Theorem.

1 For the 1-path case, the chain of quadrilateral is obvious. The algorithm maps the attainable interval of one diagonal of a quadrilateral to the attainable interval of the other diagonal. By Lemma (2) this mapping process can be repeated, so we can finally get the interval of *f*.

Since both forward and backward orientations are fixed, each mapping step is projection on a monotonic function.

Therefore the Cayley size is O(1).

Proof of O(1) Cayley Size Theorem (cont.)

- 2 For graphs with two "last vertices", we can find a base 4-cycle at the common "root" of both paths. Each path maps to a single interval of a diagonal of the root 4-cycle. Considering the constraints from both paths together, the result is the intersection of two intervals.
- 3 For graphs with more than 2 paths, we can prove by induction on number of paths.

Characterizing QS Cayley complexity Cayley Size & Computational Complexity Summary

Thank you!