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Motivation

Regular convex cones

� Fix a regular cone C ⊂ Rn, i.e., a closed convex cone with nonempty
interior that does not contain a nontrivial linear subspace.

� The dual cone of C is defined as C̆ := {z ∈ Rn | ∀x ∈ C : zT x ≤ 0}.
We call C self-dual if C̆ = −C .

� The positive orthant Rn
+ and products Ln1 × . . .× Lnr of Lorentz

cones Ln := {x ∈ Rn | xn ≥ (x21 + · · ·+ x2n−1)
1/2} are self-dual.

� The cone of positive semidefinite matrices Symk
+ is self-dual as well.
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Renegars condition number

� The homogeneous convex feasibility problem is to decide for a given
matrix A ∈ Rm×n, 1 ≤ m < n, the alternative

∃x ∈ Rn
\ 0 s.t. Ax = 0 , x ∈ C̆ , (P)

∃y ∈ Rm
\ 0 s.t. A

T
y ∈ C . (D)

� The set of ill-posed inputs ΣR is defined as the set of matrices A, for
which (P) and (D) are both feasible. The feasibility problem has no
unique solution if A ∈ ΣR.

� Renegar’s condition number RC (A) of A is defined as inverse
distance to ill-posedness with respect to spectral norm:

RC (A) :=
�A�

d(A,ΣR)
,

where d(A,ΣR) = min{�A− A�� | A� ∈ ΣR}.
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Relevance for complexity

� Jim Renegar realized that the complexity of solving linear—and
more generally convex optimization problems—can be bounded in
terms of the condition number RC (A).

� For simplicity, we only focus here on the homogeneous convex
feasibility problem.

� Vera, Rivera, Peña, Hui: There is an interior-point algorithm that
solves the homogeneous convex feasibility problem, for C ⊆ Rn a
self-scaled cone with a self-scaled barrier function, in
O(

√
νC · log(νC · RC (A))) interior-point iterations.

� νC ≤ n for the cones C of (LP), (SOCP), (SDP).
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Average probabilistic analysis for C = Rn
+

� To understand the complexity of convex optimization, we want to
analyze the probabilistic behaviour of RC (A).

� First step: average analysis. Assume that entries of A ∈ Rm×n are
iid standard Gaussian, i.e., A ∼ N(0, I ).

� For C = Rn
+ several papers on average analysis: B, Cheung, Cucker,

Hauser, Lotz, Müller, Wschebor (also for condition numbers closely
related to R(A)).

� As a result:

We have E logR(A) = O(logm) for C = Rn
+.
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Smoothed probabilistic analysis for C = Rn
+

� More realistic viewpoint: Smoothed analysis.

� Fix σ > 0. Let Ā ∈ Rm×n st �Ā� ≤ 1 and assume A ∼ N(Ā, σI ).

Dunagan, Spielman, Teng (2011). For C = Rn
+,

sup
�Ā�≤1

EA∼N(Ā,σI ) logR(A) = O
�
log

n

σ

�
.

� Extension to more general distributions by Amelunxen & B.

Future goal: Smoothed analysis for any regular cone!

So far achieved for average analysis: this talk.
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The Grassmann condition number

The Grassmann manifolds Grn,m

� The known probabilistic analyses of RC (A) rely on the product
structure of the cone C = R+ × · · · × R+ and cannot be extended.

� Working with a coordinate-free, geometric notion of condition allows
to overcome this difficulty, at the price of working in the intrinsic
geometric setting of Grassmann manifolds.

� The Grassmann manifold Grn,m is the set of m-dimensional linear
subspaces W of Rn.

� Grn,m is a compact manifold on which the orthogonal group O(n)
acts transitively.

� Grn,m is a Riemannian manifold with orthogonal invariant metric.

� The corresponding volume form defines an orthogonal invariant
probability measure on Grn,m.
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The Grassmann condition number

The homogeneous convex feasibility problem

� Let C ⊂ Rn be a regular cone and 1 ≤ m < n. We define the sets of
dual feasible and primal feasible subspaces, resp., as

Dm(C ) :=
�
W ∈ Grn,m | W ∩ C �= {0}

�

Pm(C ) :=
�
W ∈ Grn,m | W

⊥
∩ C̆ �= {0}

�
.

� Farkas Lemma: W ∩ int(C ) �= ∅ ⇐⇒ W⊥ ∩ C̆ = {0}, hence
Dm(C ) ∪ Pm(C ) = Grn,m.

� The boundaries of Dm(C ) and Pm(C ) coincide with

Σm(C ) := Dm(C ) ∩ Pm(C ) .

Σm(C ) is called the set of ill-posed subspaces and consists of the
subspaces W touching the cone C .

� Duality: W �→ W⊥ maps Dm(C ) to Pn−m(C̆ ) and maps Pm(C ) to
Dn−m(C̆ ).



Condition of convex optimization and spherical intrinsic volumes

The Grassmann condition number

Grassmann condition number

� Let ΠWi denote the orthogonal projection onto Wi ∈ Grn,m. The
spectral norm dp(W1,W2) := �ΠW1 − ΠW2� is called the projection
distance of W1,W2 ∈ Grn,m.

� We define the Grassmann condition as the function

CC : Grn,m → [1,∞] , CC (W ) :=
1

dp(W ,Σm(C ))
,

where dp(W ,Σm(C )) := min{dp(W ,W �) | W � ∈ Σm(C )}.

� We may characterize CC also in term of the geodesic distance dg of
the Riemannian manifold Grn,m.

� Prop. dp(W ,Σm(C )) = sin dg (W ,Σm(C )).
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The Grassmann condition number

Comparison with Renegar’s condition number

� Let A ∈ Rm×n with rk(A) = m and put W := imAT . Belloni &
Freund essentially showed:

CC (W ) ≤ RC (A) ≤ κ(A) · CC (W ) ,

where κ(A) denotes the usual matrix condition number, i.e., the
ratio between the largest and the smallest singular value of A.

� In particular, CC (W ) = RC (A) if κ(A) = 1.

� Can break up the probabilistic study of Renegar’s condition number
RC (A) into the study of CC and κ. In particular, for random A,

E logRC (A) ≤ E log κ(A) + E logCC (A).
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Main results

Average analysis of Grassmann CN: I

If A ∈ Rm×n is a Gaussian random matrix, then W := imAT is uniformly
distributed in Grn.m.

Theorem I (Amelunxen, B)

Let C ⊂ Rn be a regular cone. For W ∈ Grn,m uniformly distributed,

Prob[CC (W ) > t] < 6 ·
�
m(n −m) ·

1

t
, if t > n

3
2 ,

E [lnCC (W )] < 1.5 · ln(n) + 1.5 .

� Recall: CC (W ) > t iff dp(W ,Σm(C )) < 1/t

� Prob[CC (W ) > t] equals the relative volume of the tube of radius
1/t around Σm(C ), relative to the volume of Grn,m.
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Average analysis of Grassmann CN: II

Theorem II (Amelunxen, B)

Let C ⊂ Rn be a regular self-dual cone. For W ∈ Grn,m uniformly
distributed,

Prob[CC (W ) > t] < 20 · v(C ) ·
√
m ·

1

t
, if t > m ,

E [lnCC (AW )] < ln(m) + max{ln(v(C )), 0}+ 3 ,

with the excess over the Lorentz cone v(C ) bounded as follows:

C Rn
+ Ln Ln1 × . . .× Lnr

(assuming some conjecture)
Symk

+
(assuming Conjecture SDP)

v(C ) ≤
√
2 1 2r−1 2

.
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Intrinsic volumes

Spherical intrinsic volumes

� A set K ⊆ Sn−1 is called spherical convex iff C := cone(K ) is a
convex cone. Then K = Sn−1 ∩ C .

� The α-tube T (K , α) around K is defined as the α-neighborhood
of K in Sn−1 with respect to angular distance d .

� Put On−1 := voln−1(Sn−1) = 2πn/2

Γ(n/2) .

� H. Weyl’s tube formula:

voln−1 T (K , α) = Vn(C ) · On−1 +
n−1�

j=1

Vj(C ) · voln−1 T (S i−1, α) .

� The uniquely determined coefficients V1(C ), . . . ,Vn(C ) are called
intrinsic volumes of C (or K ).

� Note Vn(C ) = voln−1 K
On−1

. We further set V0(C ) := voln−1(S
n−1

∩C̆)
On−1

.

� The intrinsic volumes are orthogonal invariant.
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Intrinsic volumes

Probabilistic interpretation
� Let C be a polyhedral cone and ΠC : Rn → C denote the projection

map onto C .
� ΠC (x) lies in the interior of a unique face of C . Let dC (x) denote

the dimension of this face.
� The proof of Weyl’s formula reveals: for 0 ≤ j ≤ n,

Vj(C ) = Prob
p∈Sn−1

[dC (p) = j ] = Prob
x∈N (0,In)

[dC (x) = j ]

� Ex. C ⊆ R2 with angle α ≤ π. Then C̆ has angle π − α.

V0(C ) = π−α
2π , V1 =

1
2 , V2(C ) = α

2π .

α

π − α

C

C̆
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Intrinsic volumes

Properties of intrinsic volumes

� Conclusions from Vj(C ) = Prob
x∈N (0,In)

[dC (x) = j ]:

� The V0(C ), . . . ,Vn(C ) form a probability distribution on
{0, 1, . . . , n}, i.e.,

�n
j=0 Vj(C ) = 1, Vj(C ) ≥ 0.

� Duality implies Vj(C̆ ) = Vn−j(C ).

� The vector Vj(C1 × C2) is obtained from Vj(C1) and Vj(C2) by
(cyclic) convolution.

� Ex. Rn
+ = R+ × · · · × R+. The n-fold convolution of

V (R+) = ( 12 ,
1
2 ) (Bernoulli) yields the symmetric binomial

distribution:

Vj(Rn
+) = 2−n

�
n

j

�
.
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Intrinsic volumes

Example

� We have explicit formulas of the intrinsic volumes of Ln (easy) and
for Symk

+ (complicated), see talk by Dennis Amelunxen.

� The following graphics compares Vj(Sym
5
+) with 2Vj(L15) (dashed);

note Sym5
� R15.
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Intrinsic volumes

The logconcavity conjecture

Logconcavity conjecture
For any closed convex cone C ⊂ Rn, the sequence of intrinsic volumes
V0(C ), . . . ,Vn(C ) is logconcave, i.e., Vj(C )2 ≥ Vj−1(C ) · Vj+1(C ).

� We proved this conjecture for Rn
+ and products of Lorentz cones.

� The conjecture is trivially true for n = 1, 2. For n = 3, K ⊆ S2, it
follows from the well known isoperimetric inequality

vol1(∂K )2 ≥ vol2(K )
�
4π − vol2(K )

�
.

� For euclidean space, the logconcavity of the inner volumes is true, as
a consequence of the Alexandrov-Fenchel inequalities.

� The euclidean case can obtained as a limit of the spherical case, but
apparently, the spherical case seems more general.



Condition of convex optimization and spherical intrinsic volumes
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Excess over Lorentz cones

� The Lorentz cone Ln = {x ∈ Rn | xn ≥ (x21 + · · ·+ xn−1)1/2} satisfies

fj(n) := Vj(L
n) =

�(n−2)/2
(j−1)/2

�

2n/2
.

� For a self-dual cone C ⊆ Rn we define the excess v(C ) over the
Lorentz cone as

v(C ) := max
0≤j≤n

Vj(C )

fj(n)
.

� By definition, v(Ln) = 1. We can show v(Rn
+) ≤

√
2.

Conjecture SDP

The cone Symk
+ of positive semidefinite matrices satisfies v(Symk

+) ≤ 2.

� The conjecture is numerically checked for small values of k .
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Tube formula for Grassmannians

The tube formula for Grn,m

Let C ⊂ Rn be a regular cone and T (Σm(C ), α) denote the α-tube
around Σm(C ) wrt geodesic distance.

Theorem
For 1 ≤ m ≤ n − 1 and 0 ≤ α ≤

π
2 ,

vol T (Σm(C ), α)

vol Grn,m
≤

4m(n −m)

n

�
n/2

m/2

� n−2�

j=0

Vj+1(C ) · F nm
j (α)

with the following functions (independent of C )

F nm
j (α) = On−2

OjOn−2−j
·
�n−2

i=0 dnm
ij ·

� α
0 (cos ρ)i (sin ρ)n−2−i dρ ,

where dnm
ij :=

� m−1
i−j
2 +m−1

2

�
·
� n−m−1
i+j
2 −m−1

2

�
·
�n−2

j

�−1
if i + j + m ≡ 1 (mod 2) and dnm

ij := 0

otherwise.
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Tube formula for Grassmannians

Discussion

vol T (Σm(C ), α)

vol Grn,m
≤

4m(n −m)

n

�
n/2

m/2

� n−2�

j=0

Vj+1(C ) · F nm
j (α)

� The result is an extension of Weyl’s spherical tube formula.

� The only dependence on C is through the intrinsic volumes!

� For the proof we may assume wlog that C has a smooth boundary
with positive curvature (by continuity)!

� Theorems I-II follow by estimations using Vj(C ) ≤ 1 or, more
precisely, Vj(C ) ≤ v(C )fj(n), respectively.
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Tube formula for Grassmannians

Sharpness of the bound

vol T (Σm(C),α)
vol Grn,m

≤
4m(n−m)

n

�n/2
m/2

� �n−2
j=0 Vj+1(C ) · F nm

j (α)

� The bound is asymptotically sharp for α → 0.

� If the tube T (C ∩ Sn−1, α) is convex, we can even obtain get an
exact formula, by using modified functions F nm

j (α).

� If the cone C has smooth boundary with positive curvature, then
T (C ∩ Sn−1, α) is convex for sufficiently small radius α.

� However, for our cones of interest, this convexity assumption is
violated.

� Under the convexity assumption, the exact formula was already
obtained by Glasauer 1995 (PhD thesis, University of Freiburg).

� However, Glasauer’s works with measure theoretic techniques, which
don’t provide inequalities and thus results for our cones of interest.
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Ideas of proof

The main geometric idea of proof
� Grn,m is a Riemannian manifold and thus has exponential maps

expW : TW Grn,m → Grn,m at W ∈ Grn,m.

� Let C ⊆ Rn be a regular cone such that K := Sn−1 ∩ C has smooth
boundary M := ∂K with positive curvature.

� Then Σm := Σm(C ) is a smooth oriented hypersurface of Grn,m
bounding Dm(C ) and Pm(C ). Let ν denote the unit normal vector
field of Σm pointing inside Dm(C ).

� The α-tube T (Σm, α) around Σm is the image of

Ψ: Σm × [−α, α] → Grn,m, (W , θ) �→ expW
�
θ ν(W )

�
.

� By the coarea formula

vol T (Σm, α) =

� α

−α
dθ

�

Σm

NJΨ dΣm .

� Need a parametrization of Σm and need to compute NJΨ.
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Ideas of proof

Geometry of ill-posed set Σm

� Recall that Σm := Σm(C ) ⊆ Grn,m consists of the m-dimensional
subspaces W touching C .

� Each W touches K = Sn−1 ∩ C in a unique point p due to positive
curvature of M = ∂K . Write Y := p⊥ ∩W . Then
Y ∈ Gr(TpM,m − 1) and W = Rp + Y .

� The fiber over p of the map

ΠM : Σm → M,W �→ p, where W ∩ K = {p}

basically equals Fp := Gr(TpM,m − 1). We can thus view Σm as an
embedding of the (m − 1)th Grassmann bundle over M.

� By the coarea formula:
�

Σm

NJΨ dΣm =

�

p∈M
dM(p)

�

Y∈Fp

NJΠM ·NJΨ dFp(Y ) .
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Ideas of proof

Thank you, and

All the Best for You, Mike!!!
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Ideas of proof

Twisted characteristic polynomial

� Let Wp : TpM → TpM denote the Weingarten map of M at p: the
eigenvalues of Wp are the principle curvatures of the smooth
hypersurface M of Sn−1.

� Let σk(p) denote the kth elementary symmetric polynomial in the
principal curvatures of M at p.

� Weyl: For 1 ≤ j ≤ n − 1

Vj(C ) = 1
Oj−1·On−j−1

·
�
p∈M σn−j−1(p) dM ,

� Let Y ∈ Gr(TpM,m − 1) and ΠY : V → Y denote the orthogonal
projection onto Y .

� We define the twisted characteristic polynomial of Wp with respect
to Y as

chY (Wp, t) := det
�
Wp −

�
t · ΠY −

1
t · ΠY⊥

��
· t

n−m−1 .
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Ideas of proof

Normal Jacobians
Recall Ψ(W , θ) = expW

�
θ ν(W )

�
and Fp := Gr(TpM,m − 1)

Theorem (technical!)

(NJΠM ·NJΨ)(W , θ) = (cos θ)n−2 chY (Wp, tan θ)

E
Y∈Fp

��� chY (Wp, t)
��
�

≤

n−2�

i,j=0

d
nm
ij · σn−2−j(p) · t

n−i−2 .

Wrapping up:

vol T (Σm, α) =

� α

−α
dθ

�

p∈M
dM(p)

�

Y∈Fp

(cos θ)n−2
| chY (Wp, tan θ)

�� dFp(Y )

=

� α

−α
(cos θ)n−2

dθ

�

p∈M
vol(Fp) E

Y∈Fp

��� chY (Wp, tan θ)
��
�
dM(p)

Thm.
≤ vol(Fp)

�

i,j

d
nm
ij

�

p∈M
σn−2−j(p) dM(p)

� α

−α
(cos θ)n−2(tan θ)n−i−2

dθ
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