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The 7-Conjecture [Shub-Smale'95]

7(f) = length of smallest straight-line program for f € Z[X].
No constants are allowed.
Conjecture: f has at most 7(f)€ integer zeros (for a constant c).
Theorem [Shub-Smale’95]: 7-conjecture = P¢ # NPc.
Theorem [Biirgisser’07]:
T-conjecture  =- no polynomial-size arithmetic circuits
for the permanent.
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The 7-Conjecture [Shub-Smale'95]

7(f) = length of smallest straight-line program for f € Z[X].
No constants are allowed.
Conjecture: f has at most 7(f)€ integer zeros (for a constant c).
Theorem [Shub-Smale’95]: 7-conjecture = P¢ # NPc.
Theorem [Biirgisser’07]:

T-conjecture  =- no polynomial-size arithmetic circuits

for the permanent.

Remarks:

» What if constants are allowed?

» We must have ¢ > 2.

» Conjecture becomes false for real roots:
Shub-Smale (Chebyshev's polynomials), Borodin-Cook'76.
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The Real 7-Conjecture

Conjecture: Consider f(X) =K, (X,

where the f; are t-sparse.

If f is nonzero, its number of real roots is polynomial in kmt.
Theorem: If the conjecture is true then the permanent is hard.
Remarks:

» It is enough to bound the number of integer roots.

Could techniques from real analysis be helpful?
» Case k =1 of the conjecture follows from Descartes’ rule.
» By expanding the products, f has at most 2kt™ — 1 zeros.

» k =2 is open. An even more basic question
(courtesy of Arkadev Chattopadhyay):
how many real solutions to fg =17
Descartes’ bound is O(t?) but true bound could be O(t).
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Theorem:
If f has t monomials then f at most t — 1 positive real roots.



Descartes’s rule without signs

Theorem:

If f has t monomials then f at most t — 1 positive real roots.
Proof: Induction on t. No positive root for t = 1.

For t > 1: let a, X = lowest degree monomial.

We can assume a = 0 (divide by X® if not). Then:

(i) ' has t — 1 monomials = < t — 2 positive real roots.

(ii) There is a positive root of f' between 2 consecutive positive
roots of f (Rolle’s theorem).



Real 7-Conjecture = Permanent is hard

The 2 main ingredients:
» The Pochhammer-Wilkinson polynomials:
PWi(X) =TTy (X = ).
Theorem [Biirgisser’07-09]: If the permanent is easy,
PW, has circuits size (log n)°().

» Reduction to depth 4 for arithmetic circuits
(Agrawal and Vinay, 2008).



The second ingredient: reduction to depth 4

Depth reduction theorem (Agrawal and Vinay, 2008):
Any multilinear polynomial in n variables with an arithmetic circuit
of size 2°(" also has a depth four (XMXM) circuit of size 2°(7.

Our polynomials are far from multilinear, but:

Depth-4 circuit with inputs of the form X2, or constants

(Shallow circuit with high-powered inputs)

0

‘Sum of Products of Sparse Polynomials‘




How the proof does not go

Assume by contradiction that the permanent is easy.

Goal:

Show that SPS polynomials of size 2°(") can compute H?;I(X —1i)
= contradiction with real T-conjecture.

1. From assumption: Hil(X — i) has circuits of polynomial in n
(Biirgisser).

2. Reduction to depth 4 = SPS polynomials of size 2°(").
What's wrong with this argument:



How the proof does not go

Assume by contradiction that the permanent is easy.

Goal:

Show that SPS polynomials of size 2°(") can compute H?;I(X —1i)
= contradiction with real T-conjecture.

1. From assumption: Hil(X — i) has circuits of polynomial in n
(Biirgisser).
2. Reduction to depth 4 = SPS polynomials of size 2°(").
What's wrong with this argument:

No high-degree analogue of reduction to depth 4
(think of Chebyshev's polynomials).



How the proof goes (more or less)

Assume that the permanent is easy.
Goal:

Show that SPS polynomials of size 2°(") can compute H?;I(X —1i)
= contradiction with real 7-conjecture.

1. From assumption: H?;I(X — i) has circuits of polynomial in n
(Biirgisser).

2. Reduction to depth 4 = SPS polynomials of size 2°(").

For step 2: need to use again the assumption that perm is easy.
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What if the number of distinct f;; is very small (even constant)?
. k o

Consider (X) = >i_; [172, £ (X)),

where the f; are t-sparse.

Theorem [with Grenet, Portier and Strozeckil:

If f is nonzero, it has at most £0(m-2") real roots.
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The limited power of powering (a tractable special case)

What if the number of distinct f;; is very small (even constant)?
Consider f(X) = Y"1, [T77 £ (X),

where the f; are t-sparse.

Theorem [with Grenet, Portier and Strozeckil:

If f is nonzero, it has at most t2(m2) real roots.

Remarks:

» For this model we also give a permanent lower bound
and a polynomial identity testing algorithm (f =0 7).
See also [Agrawal-Saha-Saptharishi-Saxena, STOC'2012].
» Bounds from Khovanskii's theory of fewnomials are
exponential in k, m, t.
Today's result:
Theorem [with Portier and Tavenas]:
If f is nonzero, it has at most t0(m-k?) veal roots.
The main tool is...



The Wronskian

Definition: Let fi,...,f, : | — R. Their Wronskian is the
determinant of the Wronskian matrix

fl f2 . fk

£ £ L £

W(fi,... f) =det| : )
(D gl e

» Linear dependence = W(f,...,fx) = 0.
» Converse is not always true (Peano, 1889):
Let fi(x) = x2, f2(x) = x|x|. Then
2

_ x?  sign(x)x? =
(e ) = dee |5 S50 =0

» Converse is true for analytic functions (Bdcher, 1900).



The Wronskian and Real Roots
Upper Bound Theorem: Assume that the k wronskians
W(f]_), W(fla f2)7 W(ﬂ: f27 fé)a B W(f17 ) fk)

have no zeros on /.
Let f = a1fi + - + axfx where a; # 0 for some .
Then f has at most kK — 1 zeros on /, counted with multiplicities.
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The Wronskian and Real Roots

Upper Bound Theorem: Assume that the k wronskians
W(f]_), W(fla f2)7 W(ﬂ: f27 fé)a ey W(f17 ceey fk)

have no zeros on /.
Let f = a1fi + - + axfx where a; # 0 for some .
Then f has at most kK — 1 zeros on /, counted with multiplicities.
Remark:
Connections between real roots and the Wronksian were known.
Typical application:
Divide R into intervals where the k wronskians have no zeros.
Case k = 2:
1. If a =0, f = a1f; has no zero on /.
2. If ap # 0, write f = f1g where g = a1 + axfh/fi.
g = a(fifh — Lf])/f = aaW(f, f)/f has no zero =
by Rolle’s theorem, g has at most 1 zero, and f too.



Linear Dependence for Analytic Functions (1/3)

Theorem [Bocher]: If fi,...,fc : | — R are analytic
and W(fi,...,fx) =0, these functions are linearly dependent.
Proof: By induction on k. Pick J C | where f; #£ 0. On J:

afi+--+afk=0
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Theorem [Bocher]: If fi,...,fc : | — R are analytic
and W(fi,...,fx) =0, these functions are linearly dependent.
Proof: By induction on k. Pick J C | where f; #£ 0. On J:
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Theorem [Bocher]: If fi,...,fc : | — R are analytic
and W(fi,...,fx) =0, these functions are linearly dependent.
Proof: By induction on k. Pick J C | where f; #£ 0. On J:

aafh+- - +afk=0
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Linear Dependence for Analytic Functions (1/3)

Theorem [Bocher]: If fi,...,fc : | — R are analytic
and W(fi,...,fx) =0, these functions are linearly dependent.
Proof: By induction on k. Pick J C | where f; #£ 0. On J:

aafh+- - +afk=0
< a1+ a(h/Ah)+ -+ a(fk/f) =0
& a(h/A) +---+ak(fi/fh) =0. (*)

(*) follows from induction hypothesis and the recursive formula:

W(A, ..., f) = fFW({(R/A), ..., (f/R)).

To conclude: for analytic functions,
ff=afi+---+axfkx=0o0nJ, then f=0o0n /.
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Linear Dependence for Analytic Functions (2/3)

Lemma: W(flgv f2g7 ceey fkg) = ng(ﬂ’ f27 ceey fk)
For instance:

hg hg g
W(fg, heg,g)=| (1g) (Rg) (hg)’
(fig)// (f‘2g)// (f3g)//

fi 103 f3
=g flg + fig' g + fhg' fig + f2g’

fi"g+2flg' + hg" h'g+2fg +hHhg" f'g+2fg + hg"



Linear Dependence for Analytic Functions (2/3)

Lemma: W(fig, hg,...,fkg) = g"W(fi, h, ..., ).
For instance:

hg hg g
W(fg, heg,g)=| (1g) (Rg) (hg)’
(fig)// (f‘2g)// (f3g)//

fi 103 f3
=g flg + fig' g + fhg' f18 + f8’'
h'g+2flg' + hg" h'g+2fg +hg' K'g+2fig + g
fi f f3
=g fig f,g f18

fi'g+2flg’ h'g+2hg K'g+2Mfg



Linear Dependence for Analytic Functions (2/3)

Lemma: W(fig, fhg,...,fkg) = ng(fl, f,...,fk).
For instance:

hg hg g
W(fg, heg,g)=| (1g) (Rg) (hg)’
(fig)// (f‘2g)// (f3g)//

f f f3
=g flg+fg’ f,g + he' fig + f3g'
fi"g+2flg' +hg" hH'g+2fg +hg" K'g+2fg +he
f fa f3
=g fig f,g f18
h'g+2flg’ h'g+2hg f"g+26g
f f> f3
=g’ f f f; =g’ W(f1, f, ).

1 2 3
h'g+2flg h'g+26Gg £'g+2fg
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The Recursive Formula for the Wronskian
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Linear Dependence for Analytic Functions (3/3):
The Recursive Formula for the Wronskian

Proposition [Hesse - Christoffel - Frobenius]:
W(f,..., k) = FKW((R/A), ..., (f/A)).
From previous lemma:

H/h f/f
W(h,f, ) = £W(L, h/h, f/h) =

1
0 (R/A) (B/H)
0 (R/h)" (B/H)

Hence

winf.5) = 12| (RN (BT |~ dw(s/a). (5/A))



Proof of Upper Bound Theorem

Theorem: Assume that the k wronskians
W(h), W(f, f), W(f, f,),..., W(A,..., )

have no zeros on /.

Let f = a1fi + - -+ + akfx where a; # 0 for some i.

Then f has at most kK — 1 zeros on [/, counted with multiplicities.
Proof: By induction on k.

Assume k > 2 and ap, ..., ax not all 0.
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Theorem: Assume that the k wronskians
W(h), W(f, f), W(f, f,),..., W(A,..., )
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Proof of Upper Bound Theorem

Theorem: Assume that the k wronskians
W(h), W(f, f), W(f, f,),..., W(A,..., )

have no zeros on /.
Let f = a1fi + - -+ + akfx where a; # 0 for some i.
Then f has at most kK — 1 zeros on [/, counted with multiplicities.
Proof: By induction on k.
Assume k > 2 and ap, ..., ax not all 0.
Write f = fig where g = a1 + axfo/fi + -+ - + akfy/fi.
To apply induction hypothesis to g’ = ax(f2/f) + -+ + ak(fc/f)":
Note
W((f—2/f1),’ EER) (fl/fl),) = W(ﬂ? B fl)/fll

has no zero on /.
Hence g’ has at most k — 2 zeros on |/,
g and f at most kK — 1 by Rolle’s theorem.



Application: Intersection of a plane curve and a line (1/2)

Theorem (Avendano’09):

Let g = Zjlle ajx%yP and f(x) = f(x,ax + b). Assume f0.
If b/a > 0 then f has at most 2k — 2 in each of the 3 intervals
] —oo0,—b/a[, ] — b/a,0], ]0, +oc].

Remark: This bound is provably false for rational exponents.



Application: Intersection of a plane curve and a line (1/2)

Theorem (Avendano’09):

Let g = Zjlle ajx%yP and f(x) = f(x,ax + b). Assume f0.
If b/a > 0 then f has at most 2k — 2 in each of the 3 intervals
] —oo0,—b/a[, ] — b/a,0], ]0, +oc].

Remark: This bound is provably false for rational exponents.

Set a=b=1and f;(X) = X4(1+ X)%.
The entries of the wronskians are of the form:

i
) = 3 X H (1 + X)P7,
t=0
Factorizing common factors in rows and columns shows

k k
2 2

W(h, ..., f) = xZio ()1 + x)Z85G) det m

where det M has degree < (g)



Application: Intersection of a plane curve and a line (2/2)

Conclusion:
f(x) = Zf:l ajx% (14 x)ﬁf has O(k4) zeros in |0, +o0].
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Conclusion:
f(x) = Zf:l ajx% (14 x)ﬁf has O(k4) zeros in |0, +o0].

Proof:
Assume W(fi, ..., fx)#0 (otherwise, there is a linear dependence).

We have k Wronskians, each with O(k?) zeros in ]0, +o0.
= O(k3) intervals containing < k — 1 zeros each.



Application: Intersection of a plane curve and a line (2/2)

Conclusion:
f(x) = Zf:l ajxv(1 +x)ﬁf has O(k4) zeros in |0, +o0].

Proof:

Assume W(fi, ..., fx)#0 (otherwise, there is a linear dependence).
We have k Wronskians, each with O(k?) zeros in ]0, +o0.

= O(k3) intervals containing < k — 1 zeros each.

Remark: This can be adapted to a number of different models.



To learn more about the Wronskian

» M. Krusemeyer. Why does the Wronskian work?
American Math. Monthly, 1988.
(Recursive formula for the Wronskian)

» A. Bostan and P. Dumas.
Wronskians and Linear Independence.
American Math. Monthly, 2010. (New non-recursive proof for
analytic functions and power series)

> G. Pdlya and G. Szego.
Problems and Theorems in Analysis |I.
(Includes connection to Descartes’ rule of signs,
pointed out by Saugata Basu)



50 Rolle's Theorem and Descartes' Rule of Signs.

§7. What s the Basis of Descartes’ Rule of Signs?
We see from 36, 41, 77, 84, 85 that the sequences of functions

Looow A ®
e T at

o ow o -

1 L S T
b A SEEDETY

i Fleu), Fed)y Flaod),
considered there have a common property: The number of zeros lying in a certain
interval of their linear combinations with constant coefficients never exceeds the
number of changes of sign of these coefficients. What is the basis for this frequent
validity of Descartes’ rule of signs?

| QT Let the sequenc of functions

i @, A B, s B

i ab;y Descartes’ rule of signs in the open inverval a<x<b. More precisely: If

i a, denote any realnumbers whnch are not all zero, then the number of

i mos lymg in a<x<b of the linear combinat

| () a4 Mnhn(x)

i N‘%u‘m\i never exceeds the number of changes of sign of the sequence

For ths to hold, the Klloing propety nflh‘: sequence fy(x), ,(x)‘ Co )
condition: If v, v, . ., denote integers with 1 5v, <y <v5< -+ <

Wl (), by 1@, s o )]

i do not vanish in the interval (a, 5) and further any two Wronskian determinants

with the same number / of rows have the same sign, where =1,2,3, .., 71

i [Look at multiple zeros!]

1 88 (continued). In particular for the validity of Descartes’ rule of signs it is
necessary that in the interval a<x<b the quotien

(@) ), o)
hy(x)’ 76 R e}
! are all positive and are cither all monotonically decreasing or all monotonically

increasing.
i 89 (continued). Lot 1Sasn. I hu(x), Aa(x), .. ., hy(x) satisfy the determinantal
| conditions stated in 87, then so do the 51 functions

[VI 68



A lower bound for restricted depth 4 circuits, or:
the limited power of powering.

Consider representations of the permanent of the form:

k m

PER(X) = " [ £(X) (1)

i=1 j=1

where
» X is a n X n matrix of indeterminates.

» k and m are bounded, and the «;; are of polynomial bit size.

2

» The f; are polynomials in n variables,

with at most t monomials.

Theorem [with Grenet, Portier and Strozecki]:

No such representation if t is polynomially bounded in n.
Remark: The point is that the o;; may be nonconstant.
Otherwise, the number of monomials in (1) is polynomial in t.



Lower Bound Proof

» Assume otherwise:

k m
PER(X) =) [ (). (2)

i=1j=1

» Since PER is easy, P, = Hil(x — /) is easy too.
In fact [Biirgisser], P,(x) = PER(X) where X is of size n°(),
with entries that are constants or powers of x.

> By (2) and upper bound theorem, P, should have only n®(%)
real roots.

But P, has 2" integer roots!

Remark:

The current proof requires the Generalized Riemann Hypothesis
(to handle arbitrary complex coefficients in the f;).
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