A primal-dual smooth perceptron-von Neumann
algorithm

Javier Peiia
Carnegie Mellon University
(joint work with Negar Soheili)

Shubfest, Fields Institute
May 2012

34

Polyhedral feasibility problems

Given A:=[a; a -+ an| € R™", consider the alternative
feasibility problems

ATy >0, (D)

and
Ax=0, x>0, x #0. (P)

Theme

Condition-based analysis of elementary algorithms for solving (P)
and (D).

N)

34

Perceptron Algorithm

Algorithm to solve
ATy > 0. (D)

Perceptron Algorithm (Rosenblatt, 1958)
oy =0
e while ATy %0
y=y+ ”z—j”, where aJTy <0
end while

Throughout this talk: ||- || = - |2

34

Von Neumann's Algorithm

Algorithm to solve

Ax=0, x>0, x#0. (P)

Von Neumann's Algorithm (von Neumann, 1948)
@ Xxg = %1; Yo = Axp
e for k=0,1,...
if ajTyk ‘= min; a;ryk > 0 then halt: (P) is infeasible
1-al yy
TP 23yt 1
Xkt1 = Mexk + (1 — Ak)ej, where j = argmin; a! yi

Ak 1= argminyco 1 [(1 = Nyk — Aajl| =

end for

34

Elementary algorithms

@ The perceptron and von Neumann's algorithms are
“elementary” algorithms.

@ “Elementary” means that each iteration involves only simple
computations.

Why should we care about elementary algorithms?

@ Some large-scale optimization problems (e.g., in compressive
sensing) are not solvable via conventional Newton-based
algorithms.

@ In some cases, the entire matrix A may not be explicitly
available at once.

@ Elementary algorithms have been effective in these cases.

5/34

Conditioning

Throughout the sequel assume

A=la1 -+ ap| where|a| =1, j=1,...,n

Key parameter

(A) := max m|n a y.
Iyll=1/=

Goffin-Cheung-Cucker condition number
1
lp(A)]

(This is closely related to Renegar’s condition number.)

C(A) =

34

Conditioning

Notice
o ATy > 0 feasible < p(A) > 0.
e Ax =0, x > 0, x # 0 feasible < p(A) < 0.

[ll-posedness

A is ill-posed when p(A) = 0. In this case both ATy > 0 and
Ax = 0,x > 0 are on the verge of feasibility.

Theorem (Cheung & Cucker, 2001)
|p(A)| = min{max ||3; — a;|| : A is ill-posed}.
A 1

34

Some geometry

When p(A) > 0, it is a measure of thickness of the feasible cone:

p(A) = ”r;”ezl {r B(y,r)C{z:ATz> 0}}

large p(A) small p(A)

8/34

More geometry

Let
Ap={x>0:]x|1 =1}

Proposition (From Renegar 1995 and Cheung-Cucker 2001)
|p(A)| = dist (0,0{Ax: x>0, x € A,}).

p(A) <0

/34

Condition-based complexity

Recall our problems of interest
ATy >0, (D)

and
Ax =0, x € A, (P)

Theorem (Block-Novikoff 1962)
If p(A) > 0, then the perceptron algorithm terminates after at most

p(i\)2 =6y

iterations.

10/34

Condition-based complexity

Theorem (Dantzig, 1992)

If p(A) < 0, then von Neumann's algorithm finds an e-solution to
(P), i.e, x € A, with |Ax|| < € in at most

€2
iterations.

Theorem (Epelman & Freund, 2000)

If p(A) < 0, then von Neumann's algorithm finds an e-solution to

(P) in at most
s <1>

iterations.

11 /34

Main Theorem

Theorem (Soheili & P, 2012)

A smooth version of perceptron/von Neumann's algorithm such
that:

(a) If p(A) > 0, then it finds a solution to ATy > 0 in at most

° (ﬂ) o8 <p(1A)>>

iterations.

(b) If p(A) < 0O, then it finds an e-solution to Ax =0, x € A, in

at most \/ﬁ 1
© <p(A)| o8 ())

(c) lIterations are elementary (not much more complicated than
those of the perceptron or von Neumann's algorithms).

iterations.

12 /34

Perceptron algorithm again

Perceptron Algorithm

@ yp:=0
e for k=0,1,...
aJTyk = miin a;ryk
Yk+1 = Yk + aj
end for
Observe

aJTy =mina]y & a; = Ax(y), x(y) = argmin(ATy, x).
! XEAn

Hence in the above algorithm y, = Ax, where x, > 0, |xk|[1 = k.

13 /34

Normalized Perceptron Algorithm

Recall x(y) := argmin(ATy, x).
XeAn

Normalized Perceptron Algorithm
@ yp:=0

o for k=0,1,...
1
ok = m
Vi1 = (1 = 0k)yk + 0k Ax(yk)

end for

In this algorithm y, = Axy for xx € A,.

14 /34

Perceptron-Von Neumann's Template

Both the perceptron and von Neumann's algorithms perform
similar iterations.

PVN Template
e xo € Ap; yo = Axp

e for k=0,1,...
X1 = (1= Or)xic + Oex(yi)

Yi+1 = (1 — 0k)yk + Ok Ax(yk)
end for

Observe
1

o Recover (normalized) perceptron if 0y = ;15

@ Recover von Neumann's if
O = argmin [[(1 — N)yx — AMx(yx)]|-
A€[0,1]

15/34

Smooth Perceptron-Von Neumann Algorithm

Apply Nesterov's smoothing technique (Nesterov, 2005).

Key step: Use a smooth version of

x(y) = argmin(ATy7 x),
x€A,

namely,

. 1% —
() 1= argmin {(ATy. 0+ Slx = =117} .
X n

for some ;1 > 0 and X € A,,.

16

34

Smooth Perceptron-Von Neumann Algorithm

Assume x € A, and § > 0 are given inputs.
Algorithm SPVN(X, ¢)
@ yo 1= AX; o = n; Xo 1= Xye(¥0)

e for k=0,1,...
¢9k::k2

+3

Yir1 = (1 = 0k) (v + Ok Axi) + 02 Ax,, (k)
k1 2= (1 — Ok) i
Xk+1 = (1 - Hk)xk + Hkxﬂkﬂ(yk-l-l)

if ATy, 1 > 0 then halt: y1 is a solution to (D)
if [|Axkt1]| < 0 then halt: xx41 is d-solution to (P)

end for

17 /34

PVN update versus SPVN update

Update in PVN template

Yk+1 = (]. — ek)yk + okAX(yk)
XK1 = (1 - Hk)Xk + ekx(yk)

Update in Algorithm SPVN

Yir1 = (1 — 0k) (v + Ok Axi) + 02 Ax, (k)
k1 2= (1 — 0k) ik
Xk4+1 = (1 - Hk)xk + 9kx#k+1 (Yk+1)

18 /34

Theorem (Soheili and P, 2011)
Assume x € A, and § > 0 are given.

(a) Ifd < p(A), then Algorithm SPVN finds a solution to (D) in
at most

2v2n)
p(A)
iterations.
(b) If p(A) < 0, then Algorithm SPVN finds a §-solution to (P) in
at most
2v2n
5 1

iterations.

19/34

Iterated Smooth Perceptron-Von Neumann Algorithm

Assume v > 1 is a given constant.

Algorithm ISPVN(~)

@ Xg = %1
e fori=0,1,...
5i = ||A';~<i||

)?,'Jrl = SPVN()?,‘, (5,')

end for

20/ 34

Main Theorem Again

Theorem (Soheili & P, 2012)
(a) If p(A) > 0, then each call to SPVN in Algorithm ISPVN

halts in at most 210\(//? — 1 iterations. Consequently, Algorithm

ISPVN finds a solution to (D) in at most

(zm - 1) log(1/p(A))

p(A) log(7)

SPVN iterations.
(b) If p(A) < 0, then each call to SPVN in Algorithm ISPVN
halts in at most ﬁgﬁ — 1 jterations. Hence fore >0

Algorithm ISPVN finds an e-solution to (P) in at most

29v2n 1) loe(l/e)
Ip(A)] log(7)

SPVN iterations.

21/34

Observe
o A “pure” SPVN (5 = 0):

o When p(A) > 0, it solves (D) in O (\(/;)) iterations.

b~

o When p(A) < 0, it finds e-solution to (P) in O (@) iterations.

@ ISPVN (iterated SPVN with gradual reduction on §):
o When p(A) > 0, it solves (D) in O (V1 Jog (p(lA)))

iterations.

o When p(A) < 0, it finds e-solution to (P) in (9(A)‘ log (2))
iterations.

Perceptron and von Neumann's as subgradient algorithms
Let

b(y) = IIyl? AT
y) ===+ min(Aly,x).

Observe
1 30(A)? if p(A) >0

max ¢(y) = min S[|Ax||" =
y x€A, 2 if ,O(A) <0.

PVN Template: yxi1 = yk + 0k(—yk + Ax(yk)) is a subgradient
algorithm for

max ¢(y).
y
For x>0 and x € A, let
._ ’ : T K -
duly) = L5+ min {(ATy.x) + §llx— %I

2 -
= R4 ATy () + Elxuly) — %12

23 /34

Proof of Main Theorem

Apply Nesterov's excessive gap technique (Nesterov, 2005).

Claim

For all x € A, and y € R™ we have ¢(y) < 3[|Ax|°.

Claim
For all y € R™ we have ¢(y) < ¢u(y) < é(y) + 24

Lemma

The iterates x, € A, yxk € R™, k=0,1,... generated by the
SPVN Algorithm satisfy the Excessive Gap Condition

1
SIAKI < 6, ().

24 /34

Proof of Main Theorem (a): p(A) > 0

Putting together the two claims and lemma we get

1
(AP <
2/7()_

L1 A2 < (i) < 600i) + 211k

N |

So 1
(yk) > EP(A)2 — 2.

. - 1 2 k _ 2n 2n
In the algorithm py =n-35-5--- 42 = (D) (k52) < (k12

Thus ¢(yx) > 0, and consequently ATy, > 0, as soon as

S 2v2n _

K2

1.

25 /34

Proof of Main Theorem (continued)

Suppose now p(A) < 0, i.e., (P) is feasible.

Let
S:={xe,: Ax =0},

and for v € R” let

dist(v,S) := min{||v — x|| : x € S}.

Lemma
If p(A) < 0 then for all v € A,

2||Av]

dist(v,S) < (A

26 /34

Proof of Main Theorem (b): p(A) <0

As in part (a), at iteration k of Algorithm SPVN we have

HAl? < oulw)

minces { —L45 + (ATyi x) + 4 1x = %12 |

IN N

IN

& min ||x — x||?
IS
= Hkdist(x, 5)2.
Thus by previous lemma and the fact that p, < (1<<2k7nl)2 we get

4| AR||? _ 8n||A%||?
p(A)> — (k+1)2p(A)*

JA? < g - dist(%, S)?

So when k > 2‘3(\/? — 1 we have ||Axg| < ”AX” and Algorithm
SPVN halts.

27 /34

About the key smoothing step

We could instead use the entropy function
n
d(x) =) xjlog(x;)-
j=1

Bregman distance:

Given p > 0 and x € A, smooth

x(y) = argmin(ATy, x),
x€EA,

to

xu(y) == a)r(gergin {(ATy, x) + ph(x, >‘<)} .

Replace |[x — %||? with h(x,X).
28 /34

About the key smoothing step

With the entropy we get stronger result for SPVN:
Theorem (Soheili and P, 2011)

Assume X € A, and § > 0 are given.
(a) If 6 < p(A), then Algorithm SPVN finds a solution to (D) in

at most

24/log(n) 1

p(A) ’
iterations.
(b) If p(A) < 0, then Algorithm SPVN finds a §-solution to (P) in

at most

24/log(n) B

)

iterations.

However, the proof of Main Theorem (b) for ISPVN breaks down.

29 /34

More general feasibility problems

Given A € R™*" and a regular closed convex cone K C R”,
consider the alternative feasibility problems

ATy € int(K*), (D)

and
Ax=0, xe K, x#0. (P)

Assume

For some 1 € int(K*), we have an oracle that solves

x(y) = arg)r(nin {(ATy,x> x €K, (1,x) = 1}.

30/34

More general feasibility problems
Recall Renegar’s condition number

_ Al |
ir)\f{HA — Al - Aill-posed}

Theorem (Epelman & Freund, 2000)

A generalized von Neumann's algorithm solves (D) in
o8- C(A)?)
iterations, or finds an e-solution to (P) in
O(5 - C(A)? - log([|All/¢))

iterations.

(: constant depending on specific choice of norms and 1 € int(K).

31/34

Smooth version

Assume

For some fixed 1 € int(K), we have an oracle that solves
T 1
argmm{(A y,x>+§||x|] x €K, <1,x):1}.

Theorem (Soheili & P, 2012)

A smooth generalized von Neumann's algorithm solves (D) in

O(Bv/n- C(A) - log(C(A)))

iterations, or finds an e-solution to (P) in

O(BVn- C(A) - log([|All/€))

iterations.

32/34

Summary

@ Smooth perceptron-von Neumann algorithm improves
condition-based complexity roughly from C(A)? to C(A).

@ Smooth version preserves most of the algorithms’ original
simplicity.

@ There seems to be room for sharper complexity results.

33/34

Happy Birthday to Mike Shub!

