
A primal-dual smooth perceptron-von Neumann
algorithm

Javier Peña
Carnegie Mellon University

(joint work with Negar Soheili)

Shubfest, Fields Institute
May 2012

1 / 34

Polyhedral feasibility problems

Given A :=
[
a1 a2 · · · an

]
∈ Rm×n, consider the alternative

feasibility problems

ATy > 0, (D)

and

Ax = 0, x ≥ 0, x 6= 0. (P)

Theme

Condition-based analysis of elementary algorithms for solving (P)
and (D).

2 / 34

Perceptron Algorithm

Algorithm to solve
ATy > 0. (D)

Perceptron Algorithm (Rosenblatt, 1958)

y := 0

while ATy 6> 0
y := y +

aj

‖aj‖ , where aT
j y ≤ 0

end while

Throughout this talk: ‖ · ‖ = ‖ · ‖2.

3 / 34

Von Neumann’s Algorithm

Algorithm to solve

Ax = 0, x ≥ 0, x 6= 0. (P)

Von Neumann’s Algorithm (von Neumann, 1948)

x0 := 1
n1; y0 := Ax0

for k = 0, 1, . . .
if aT

j yk := mini aT
i yk > 0 then halt: (P) is infeasible

λk := argminλ∈[0,1] ‖(1− λ)yk − λaj‖ =
1−aT

j yk

‖yk‖2−2aT
j yk+1

xk+1 := λkxk + (1− λk)ej , where j = argmini aT
i yk

end for

4 / 34

Elementary algorithms

The perceptron and von Neumann’s algorithms are
“elementary” algorithms.

“Elementary” means that each iteration involves only simple
computations.

Why should we care about elementary algorithms?

Some large-scale optimization problems (e.g., in compressive
sensing) are not solvable via conventional Newton-based
algorithms.

In some cases, the entire matrix A may not be explicitly
available at once.

Elementary algorithms have been effective in these cases.

5 / 34

Conditioning

Throughout the sequel assume

A =
[
a1 · · · an

]
, where ‖aj‖ = 1, j = 1, . . . , n.

Key parameter

ρ(A) := max
‖y‖=1

min
j=1,...,n

aT
j y .

Goffin-Cheung-Cucker condition number

C (A) :=
1

|ρ(A)|
.

(This is closely related to Renegar’s condition number.)

6 / 34

Conditioning

Notice

ATy > 0 feasible ⇔ ρ(A) > 0.

Ax = 0, x ≥ 0, x 6= 0 feasible ⇔ ρ(A) ≤ 0.

Ill-posedness

A is ill-posed when ρ(A) = 0. In this case both ATy > 0 and
Ax = 0, x > 0 are on the verge of feasibility.

Theorem (Cheung & Cucker, 2001)

|ρ(A)| = min
Ã
{max

i
‖ãi − ai‖ : Ã is ill-posed}.

7 / 34

Some geometry

When ρ(A) > 0, it is a measure of thickness of the feasible cone:

ρ(A) = max
‖y‖=1

{
r : B(y , r) ⊆ {z : ATz ≥ 0}

}
.

Condition Number

(Condition Number)−1 ↔ Thickness of

Feasibility Cone AT y ≤ 0

!

Figure: condition number and cone
thickness

Why is Condition Number important?

1 Sensitivity of solution to data
perturbation

2 Size of solution

3 Complexity of algorithm

4 Underlying geometry

Negar Soheili (Tepper) Condition-Based Algorithm for PFP June 1, 2010 6 / 17

large ρ(A)

Condition Number

(Condition Number)−1 ↔ Thickness of

Feasibility Cone AT y ≤ 0

!

Figure: condition number and cone
thickness

Why is Condition Number important?

1 Sensitivity of solution to data
perturbation

2 Size of solution

3 Complexity of algorithm

4 Underlying geometry

Negar Soheili (Tepper) Condition-Based Algorithm for PFP June 1, 2010 6 / 17

small ρ(A)

8 / 34

More geometry

Let
∆n := {x ≥ 0 : ‖x‖1 = 1}.

Proposition (From Renegar 1995 and Cheung-Cucker 2001)

|ρ(A)| = dist (0, ∂{Ax : x ≥ 0, x ∈ ∆n}) .

!

!

ρ(A) > 0

!

!

ρ(A) < 0

9 / 34

Condition-based complexity

Recall our problems of interest

ATy > 0, (D)

and
Ax = 0, x ∈ ∆n. (P)

Theorem (Block-Novikoff 1962)

If ρ(A) > 0, then the perceptron algorithm terminates after at most

1

ρ(A)2
= C (A)2

iterations.

10 / 34

Condition-based complexity

Theorem (Dantzig, 1992)

If ρ(A) < 0, then von Neumann’s algorithm finds an ε-solution to
(P), i.e, x ∈ ∆n with ‖Ax‖ < ε in at most

1

ε2

iterations.

Theorem (Epelman & Freund, 2000)

If ρ(A) < 0, then von Neumann’s algorithm finds an ε-solution to
(P) in at most

1

ρ(A)2
· log

(
1

ε

)
iterations.

11 / 34

Main Theorem

Theorem (Soheili & P, 2012)

A smooth version of perceptron/von Neumann’s algorithm such
that:

(a) If ρ(A) > 0, then it finds a solution to ATy > 0 in at most

O
(√

n

ρ(A)
· log

(
1

ρ(A)

))
iterations.

(b) If ρ(A) < 0, then it finds an ε-solution to Ax = 0, x ∈ ∆n in
at most

O
(√

n

|ρ(A)|
· log

(
1

ε

))
iterations.

(c) Iterations are elementary (not much more complicated than
those of the perceptron or von Neumann’s algorithms).

12 / 34

Perceptron algorithm again

Perceptron Algorithm

y0 := 0

for k = 0, 1, . . .
aT
j yk := min

i
aT
i yk

yk+1 := yk + aj

end for

Observe

aT
j y := min

i
aT
i y ⇔ aj = Ax(y), x(y) = argmin

x∈∆n

〈ATy , x〉.

Hence in the above algorithm yk = Axk where xk ≥ 0, ‖xk‖1 = k.

13 / 34

Normalized Perceptron Algorithm

Recall x(y) := argmin
x∈∆n

〈ATy , x〉.

Normalized Perceptron Algorithm

y0 := 0

for k = 0, 1, . . .
θk := 1

k+1
yk+1 := (1− θk)yk + θkAx(yk)

end for

In this algorithm yk = Axk for xk ∈ ∆n.

14 / 34

Perceptron-Von Neumann’s Template

Both the perceptron and von Neumann’s algorithms perform
similar iterations.

PVN Template

x0 ∈ ∆n; y0 := Ax0

for k = 0, 1, . . .
xk+1 := (1− θk)xk + θkx(yk)
yk+1 := (1− θk)yk + θkAx(yk)

end for

Observe

Recover (normalized) perceptron if θk = 1
k+1

Recover von Neumann’s if
θk = argmin

λ∈[0,1]
‖(1− λ)yk − λAx(yk)‖.

15 / 34

Smooth Perceptron-Von Neumann Algorithm

Apply Nesterov’s smoothing technique (Nesterov, 2005).

Key step: Use a smooth version of

x(y) = argmin
x∈∆n

〈ATy , x〉,

namely,

xµ(y) := argmin
x∈∆n

{
〈ATy , x〉+

µ

2
‖x − x̄‖2

}
,

for some µ > 0 and x̄ ∈ ∆n.

16 / 34

Smooth Perceptron-Von Neumann Algorithm

Assume x̄ ∈ ∆n and δ > 0 are given inputs.

Algorithm SPVN(x̄ , δ)

y0 := Ax̄ ; µ0 := n; x0 := xµ0(y0)

for k = 0, 1, . . .
θk := 2

k+3

yk+1 := (1− θk)(yk + θkAxk) + θ2
kAxµk

(yk)
µk+1 := (1− θk)µk

xk+1 := (1− θk)xk + θkxµk+1
(yk+1)

if ATyk+1 > 0 then halt: yk+1 is a solution to (D)
if ‖Axk+1‖ ≤ δ then halt: xk+1 is δ-solution to (P)

end for

17 / 34

PVN update versus SPVN update

Update in PVN template

yk+1 := (1− θk)yk + θkAx(yk)
xk+1 := (1− θk)xk + θkx(yk)

Update in Algorithm SPVN

yk+1 := (1− θk)(yk + θkAxk) + θ2
kAxµk

(yk)
µk+1 := (1− θk)µk

xk+1 := (1− θk)xk + θkxµk+1
(yk+1)

18 / 34

Theorem (Soheili and P, 2011)

Assume x̄ ∈ ∆n and δ > 0 are given.

(a) If δ < ρ(A), then Algorithm SPVN finds a solution to (D) in
at most

2
√

2n

ρ(A)
− 1.

iterations.

(b) If ρ(A) < 0, then Algorithm SPVN finds a δ-solution to (P) in
at most

2
√

2n

δ
− 1

iterations.

19 / 34

Iterated Smooth Perceptron-Von Neumann Algorithm

Assume γ > 1 is a given constant.

Algorithm ISPVN(γ)

x̃0 := 1
n1

for i = 0, 1, . . .

δi := ‖Ax̃i‖
γ

x̃i+1 = SPVN(x̃i , δi)

end for

20 / 34

Main Theorem Again

Theorem (Soheili & P, 2012)

(a) If ρ(A) > 0, then each call to SPVN in Algorithm ISPVN

halts in at most 2
√

2n
ρ(A) − 1 iterations. Consequently, Algorithm

ISPVN finds a solution to (D) in at most(
2
√

2n

ρ(A)
− 1

)
· log(1/ρ(A))

log(γ)

SPVN iterations.

(b) If ρ(A) < 0, then each call to SPVN in Algorithm ISPVN

halts in at most 2γ
√

2n
|ρ(A)| − 1 iterations. Hence for ε > 0

Algorithm ISPVN finds an ε-solution to (P) in at most(
2γ
√

2n

|ρ(A)|
− 1

)
· log(1/ε)

log(γ)

SPVN iterations.
21 / 34

Observe

A “pure” SPVN (δ = 0):

When ρ(A) > 0, it solves (D) in O
(√

n
ρ(A)

)
iterations.

When ρ(A) < 0, it finds ε-solution to (P) in O
(√

n
ε

)
iterations.

ISPVN (iterated SPVN with gradual reduction on δ):

When ρ(A) > 0, it solves (D) in O
(√

n
ρ(A) log

(
1

ρ(A)

))
iterations.

When ρ(A) < 0, it finds ε-solution to (P) in O
(√

n
|ρ(A)| log

(
1
ε

))
iterations.

22 / 34

Perceptron and von Neumann’s as subgradient algorithms
Let

φ(y) := −‖y‖
2

2
+ min

x∈∆n

〈ATy , x〉.

Observe

max
y
φ(y) = min

x∈∆n

1

2
‖Ax‖2 =


1
2ρ(A)2 if ρ(A) > 0

0 if ρ(A) ≤ 0.

PVN Template: yk+1 = yk + θk(−yk + Ax(yk)) is a subgradient
algorithm for

max
y
φ(y).

For µ > 0 and x̄ ∈ ∆n let

φµ(y) := −‖y‖
2

2 + min
x∈∆n

{
〈ATy , x〉+

µ

2
‖x − x̄‖2

}
= −‖y‖

2

2 + 〈ATy , xµ(y)〉+ µ
2‖xµ(y)− x̄‖2.

23 / 34

Proof of Main Theorem

Apply Nesterov’s excessive gap technique (Nesterov, 2005).

Claim

For all x ∈ ∆n and y ∈ Rm we have φ(y) ≤ 1
2‖Ax‖2.

Claim

For all y ∈ Rm we have φ(y) ≤ φµ(y) ≤ φ(y) + 2µ.

Lemma

The iterates xk ∈ ∆n, yk ∈ Rm, k = 0, 1, . . . generated by the
SPVN Algorithm satisfy the Excessive Gap Condition

1

2
‖Axk‖2 ≤ φµk

(yk).

24 / 34

Proof of Main Theorem (a): ρ(A) > 0

Putting together the two claims and lemma we get

1

2
ρ(A)2 ≤ 1

2
‖Axk‖2 ≤ φµk

(yk) ≤ φ(yk) + 2µk .

So

φ(yk) ≥ 1

2
ρ(A)2 − 2µk .

In the algorithm µk = n · 1
3 ·

2
4 · · ·

k
k+2 = 2n

(k+1)(k+2) <
2n

(k+1)2 .

Thus φ(yk) > 0, and consequently ATyk > 0, as soon as

k ≥ 2
√

2n

ρ(A)
− 1.

25 / 34

Proof of Main Theorem (continued)

Suppose now ρ(A) < 0, i.e., (P) is feasible.

Let
S := {x ∈ ∆n : Ax = 0},

and for v ∈ Rn let

dist(v , S) := min{‖v − x‖ : x ∈ S}.

Lemma

If ρ(A) < 0 then for all v ∈ ∆n

dist(v , S) ≤ 2‖Av‖
|ρ(A)|

.

26 / 34

Proof of Main Theorem (b): ρ(A) < 0

As in part (a), at iteration k of Algorithm SPVN we have

1
2‖Axk‖2 ≤ ϕµk

(yk)

≤ minx∈S

{
−‖yk‖2

2 + 〈ATyk , x〉+ µk
2 ‖x − x̄‖2

}
≤ µk

2 min
x∈S
‖x − x̄‖2

= µk
2 dist(x̄ ,S)2.

Thus by previous lemma and the fact that µk <
2n

(k+1)2 we get

‖Axk‖2 ≤ µk · dist(x̄ , S)2 ≤ 4µk‖Ax̄‖2

ρ(A)2
≤ 8n‖Ax̄‖2

(k + 1)2ρ(A)2
.

So when k ≥ 2γ
√

2n
|ρ(A)| − 1 we have ‖Axk‖ ≤ ‖Ax̄‖

γ and Algorithm
SPVN halts.

27 / 34

About the key smoothing step
We could instead use the entropy function

d(x) =
n∑

j=1

xj log(xj).

Bregman distance:

h(x , x̄) := d(x)− d(x̄)− 〈∇d(x̄), x − x̄〉.

Given µ > 0 and x̄ ∈ ∆n, smooth

x(y) = argmin
x∈∆n

〈ATy , x〉,

to
xµ(y) := argmin

x∈∆n

{
〈ATy , x〉+ µh(x , x̄)

}
.

————————
Replace 1

2‖x − x̄‖2 with h(x , x̄).
28 / 34

About the key smoothing step

With the entropy we get stronger result for SPVN:

Theorem (Soheili and P, 2011)

Assume x̄ ∈ ∆n and δ > 0 are given.

(a) If δ < ρ(A), then Algorithm SPVN finds a solution to (D) in
at most

2
√

log(n)

ρ(A)
− 1.

iterations.

(b) If ρ(A) < 0, then Algorithm SPVN finds a δ-solution to (P) in
at most

2
√

log(n)

δ
− 1

iterations.

However, the proof of Main Theorem (b) for ISPVN breaks down.

29 / 34

More general feasibility problems

Given A ∈ Rm×n and a regular closed convex cone K ⊆ Rn,
consider the alternative feasibility problems

ATy ∈ int(K ∗), (D)

and

Ax = 0, x ∈ K , x 6= 0. (P)

Assume

For some 1 ∈ int(K ∗), we have an oracle that solves

x(y) := argmin
x

{
〈ATy , x〉 : x ∈ K , 〈1, x〉 = 1

}
.

30 / 34

More general feasibility problems

Recall Renegar’s condition number

C (A) =
‖A‖

inf
A
{‖A− Ã‖ : Ã ill-posed}

.

Theorem (Epelman & Freund, 2000)

A generalized von Neumann’s algorithm solves (D) in

O(β · C (A)2)

iterations, or finds an ε-solution to (P) in

O(β · C (A)2 · log(‖A‖/ε))

iterations.

β: constant depending on specific choice of norms and 1 ∈ int(K).

31 / 34

Smooth version

Assume

For some fixed 1 ∈ int(K), we have an oracle that solves

argmin
x

{
〈ATy , x〉+

1

2
‖x‖2 : x ∈ K , 〈1, x〉 = 1

}
.

Theorem (Soheili & P, 2012)

A smooth generalized von Neumann’s algorithm solves (D) in

O(β
√

n · C (A) · log(C (A)))

iterations, or finds an ε-solution to (P) in

O(β
√

n · C (A) · log(‖A‖/ε))

iterations.

32 / 34

Summary

Smooth perceptron-von Neumann algorithm improves
condition-based complexity roughly from C (A)2 to C (A).

Smooth version preserves most of the algorithms’ original
simplicity.

There seems to be room for sharper complexity results.

33 / 34

Happy Birthday to Mike Shub!

34 / 34

