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Motivation

Consider a pendulum like system under forcing and dissipation.
Forcing: elliptic point — a repellor. Dissipation: move the dynamics
towards the separatrix. Figenvalues at the saddle: v, —A with 0 < v < A.
The usual cylinder-sphere-stereo projection allows to have a dissi-
pative figure-eight.

Compare left plot (unfolding a dissipative loop) to the right one: figure-
eight before unfolding.

Next plot shows the bifurcation diagram for flows.




The flow case: the bifurcation diagram

Let 11, o be splitting parameters.

Theorem: :
Six regions appear in the @ @
. . ©) "
+ B+

Turaev bifurcation

diagram. The boundaries

correspond to:
WUt = W5t (I=I1):

- WS+ (T1—T11); '
W= ~ (IIT—=IV);

Wt — WS+ (IV=sV): @
WUt — W= (Vo V1), /
Wi =Ws= (VI=I);

The ones with same
connection differ on the

behavior of the other branch.

If every line splits in 2 (first-last tangency) we shall have 17 regions.



The diffeomorphism case: the bifurcation diagram

(e.g.: Poincaré map of a time-periodic perturbed vector field).

Theorem:

There appear 35 regions,
separated by first/last
tangencies: L7, L,

L, Ly L, Ly, L, LT,
and by complicated
transitions “simple” to
strange attractor: BD™T,
BD~ BD" ", e.g. by
folding of invariant curve.
Only the LIF”Q_ are smooth.
Notes:

1) attractors depend on
starting near W%+ W4,
2) possible multiplicity.
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Different kinds of strange attractors

A priori we can consider that different kinds of attractors will show up:

e Attractors which appear after a period doubling cascade of sinks.
They have a local character.

e The ones in region 19 or global attractors when all the manifolds
mtersect.

e Attractors in regions 18, 26 or tail attractors with partial intersec-
tions of manifolds.

e The ones obtained by folding of the invariant curves around Q7 or
(o, which appear when the invariant curve becomes tangent to the
stable foliation of the saddle.

e Attractors obtained by folding of the invariant curves around both Oq
and 09, with the same mechanism.



A dissipative figure-eight separatrix model. Ranges

We introduce the following model

2 z+w; + Alog(|y|)
Myppaw: | 1| sign(y)|y|¥ ,
S sign(y)s

where y = a; + 1 + b;sin(27z) and the index j takes the value 1 if s =1
and the value 2 if s = —1. n (resp. y) position wrt unstable (resp. stable)
manifolds. Positive pointing to the saddle.

[t can be seen as a generalization of the separatrix map (Chirikov et al.)
and also of the fattened Arnold map (Broer,S Tatjer).

In the simulations we shall use w; =0, A = 2,9 = A\/y = 1.6.
Lemma: To recover qualitatively the flow case for by = by = 0 one requires
aj| < (¢ — 1) /¥ =12

by, by are perturbation parameters set to by = 0.003,bo = 0.0015.
ai,as are taken as leading parameters ranging in [—0.15,0.15].



A preliminary exploration
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Bifurcation curves corresponding to first and last tangencies. They
bound different homoclinic zones in the parameter space (ay, as). Right
plot is a detail of the boundary of the homoclinic zone HZE.

Li, Li, Lf and L; are obtained by joining different segments of
biturcation curves corresponding to different primary quadratic tan-
gencies. On next page we focus on the boundaries of HZT and some
magnifications.
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Quadratic tangencies and cusps. In red interlaced links accumulat-
ing to a and c¢. In blue curves which accumulate to b and d.



Kinds of tangencies and some homoclinic intersections

Homoclinic tangencies related
to bifurcation curves.
a) p1 € Ly, pp < 0;

b),uELl 1 < 0;
¢) € L, po <0
d),uEL u1<0



(b)

Homoclinic intersections:

(a) in case u € 26 in the bifurcation diagram. A “tail” strange attrac-
tor AT exists.

(b) in case p € 19 in the bifurcation diagram. A “global” strange
attractor GA exists.



The boundaries of HZ = %F
intersect at points of

double primary homoclinic
tangencies b,d, e, f, g, h and
at double not primary
homoclinic tangencies a, c.




Bifurcation structure in the HZ®=F domains
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Top: creation of cubic tangency between parabolas.

Bottom: primary cubic homoclinic tangencies: (a) and (b) are
of type “+4” while (c¢) and (d) are of type *“-”. The different type and
other characteristics depend on coefficients of the normal form of
the return map.



Sketch of double
quadratic and
cubic tangencies
found following
the path
S—c—S—
64-—%A9.

d) pointd,
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+
HZ™

Accumulation of links to the square abcd.



Some theoretical results

Lemma. The primary homoclinic cubic tangency points (or the primary
cusp points) ¢, ¢9, c3 and ¢y are of “-” type (i.e. spring-area). Concretely,
c1 and ¢y are topologically equivalent to the cubic tangency of type (d),
while the ¢9 and c3 are top. equivalent to the cubic tangency of type (c).
Concerning the rectangle abed of tull intersection:

Lemma. The point b is the final point of the boundary curves Lit and

ch and d is the final point of the boundary curves Li and ch
Lemma For parameters © € HZ* the following holds

1. The primary cubic tangencies of type ¢ can exist only if WY T NSt =
0 and WY~ NW*3~ = (). This means that ¢; can only exist in the regions
3 and 10 of the bifurcation diagram.

2. The primary cubic tangencies of type ¢y can exist if W5 N W4t = ().
Thus, they can exist within the regions 3, 10 and 18.

3. The primary cubic tangencies of type ¢z can exist if W5~ N W4~ = ().
Thus, they can exist within the regions 3, 10 and 15.

4. In the region 19 only primary cubic tangencies of type ¢4 can exist.



Some corollaries follow.

Corollary. The cusp points ¢y, ¢9, c3 and ¢4 accumulate to the points
a,b, c and d respectively, which are the vertices of the rectangle bounding

the zone GA.

Corollary. There exist infinitely many primary double quadratic tangen-
cies corresponding to the intersection of the homoclinic branches related to
the primary cubic tangency points of type ¢; and c4.



Further exploration of the model: global views
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Maximal Lyapunov exponents (A) for the orbit with initial condi-
tion (0.5,0,sg) with sy = 1 (left) and sy = —1 (right). Red points
correspond to A > 0 ( chaotic attractor), green points to A = 0 (in-
variant curve) and white points to A < 0 (periodic sink). Some
white domains are narrow and can be seen by magnifying.
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Left: Domains of sinks. Right: Blue and magenta are zones of tail
SA AT*. Red is a zone of global SA GA. Suggested: magnify.
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In blue: set of (aj,as)-parameters with computed A < 0 for the i.c.
(0.5,0,1). The attractor is a periodic sink. In red: parameters for
which there is a 2-periodic sink as attractor. Periods counted on the FD.



Domains of sinks, Lyapunov exponents, some attractors
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Top: A sample of attractors on a9 = 0 for different values of a;. Bottom:
Idem on a9 = —0.001.
In red: points with s = 1. In blue: points in s = —1.
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A sample of tools: cubic returns, sinks approaching a s-n
to derive a model for the return near a cubic tangency. The model

Suitable expansions, normalizations and approximations allow

fixed points with multiplier +1

IS 0
Left

).

ing
There exist cascades of sinks which accumulate to the cubic tangency:.

Cl 9

th multiplier +1;

W1



We consider the dynamics in an inv. curve approaching a s-n. Let F
be an analytic diffeomorphism in S' as 2+ z+a+bf(z) with f(z)>
0 Vo eSN\{0}, f(0)=0, df/dz(0)=0, d*f/dz*(0)>0, b>> a>0.

(k) . be the beginning of existence

of sinks of period k£ and a< ) nf be the ﬁnal

Proposition. Then, generically,

1. ™ and a( )f behave as ¢1/k? + O(1/k3).

SNt

2 (a<k> (k) )/(a(k) o (k+1)

sni ~ Qsnf a.. . ') has a limit depending on b.

SN SN
(k) (k)
nf’ @oni

For fixed b and a decreasing to 0 let a

3. the minimal multiplier in [a_ | has limit < 1, depending on b.

As an example consider the Arnold map with f(z) =1 — cos(z).
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Left: Plots as a function of log(k) from bottom to top of:
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Right: The function Ag(b) which measures the limit in 2) as a func-
tion of b. Plotted: log(Ag) versus b. Note the exponentially small
character of Ag.



An illustration of blowing up near the limit
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Note the progressive destruction of a previous cross-road domain.



Outlook: open problems and extensions

Several questions remain open, like
e The creation/destruction of SA by folding of IC.

e In particular the boundary green-red domains in the model, marked
as BD in the bifurcation diagram.

e The abundance of sinks, taking into account the existence of cross-
road and spring areas.

e Links with s-n boundaries connecting different cross-road and spring
areas.

e Relative size of the basins of attraction when there is multiplicity

of attractors.

And possible extensions to 3D and higher dimension diffeomor-
phisms. E.g.: Shilnikov-like, Hopt-Shilnikov-like maps, etc.



