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This broad goal alternates its focus between two extremes:

(G) To develop a general theory of computational cost (which
includes formal models of computation, diverse cost notions,
complexity classes built upon them, complete problems in these
classes, and —the ultimate desideratum— separations beteeen
these complexity classes).

(P) To analyze (in terms of cost) the behavior of specific
algorithms (meant to solve specific problems).
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(3) Conditioning of Numerical Problems.
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1985. II. SIAM J. Comput., 1986.

One polynomial in one variable.

• M.S., S. Smale. “Complexity of Bézout’s Theorem.” I, II, III, IV,

and V, 1993–1996.

n polynomials in n+ 1 homogeneous variables.
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Smale’s 17th problem: Can one find an approximate zero of a
system (n polynomials in n + 1 homogeneous variables) in time
polynomial on the average?

approximate zero: a point from which Newton’s method converges
to a zero, immediately, quadratically fast.

polynomial time: number of arithmetic operations bounded by
NO(1) where N is the size of the input system f .

on the average: w.r.t. a Gaussian distribution on the input f .

D := max{d1, . . . , dn} N ≈ n
(

D+n
n

)
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◮ Given an initial pair (g , ζ) with g(ζ) = 0 and an input f :

◮ Consider the line segment [g , f ] connecting g and f . It
consists of the systems

qt := (1− t)g + tf for t ∈ [0, 1].

◮ If no qt has a multiple zero, then there exists a unique lifting
of this segment to a curve

t ∈ [0, 1] 7→ (qt , ζt)

such that ζ0 = ζ. Since q1 = f , ζ1 is a zero of f .





The idea is to follow this curve numerically: partition [0, 1] into
t0 = 0, . . . , tk = 1. Writing qi := qti , successively compute
approximations zi of ζti by Newton’s method starting with z0 := ζ.
More specifically, compute

zi+1 := Nqi+1
(zi ).
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◮ We compute ti+1 adaptively from ti such that

d(qi+1, qi ) =
0.0085

D3/2 µ2
norm(qi , zi )

.

◮ Denote by K (f , g , ζ) the number K of iterations performed to
follow the curve.

“Bézout VI” (M.S., Found. Comput. Math. 2009)

For all i , zi is an approximate zero of qi . In particular zK is an
approximate zero of f . Moreover,

K (f , g , ζ) ≤ 217D3/2 d(f , g)

∫ 1

0
µ2
norm(qτ , ζτ ) dτ.

Here τ ∈ [0, 1] is a ratio of angles and not of Euclidean distances.
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This result relates to cost in a clear manner. Each Newton step
takes O(N) arithemetic operations. Therefore, the total number of
such operations performed along the homotopy is O(N K (f , g , ζ)).

It has been used in the following:

(1) a randomized algorithm computing approximate zeros in
average randomized polynomial time: O(D3/2nN2)
[C. Beltán – L.M. Pardo].

(2) a deterministic algorithm working in near-polynomial time
(average polynomial time for all but a few pairs (n,D) and average
time NO(log logN) on those pairs). [P. Bürgisser – F.C.].
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• Projective Newton method introduced by Mike.

• Several extensions of Newton method to more general systems
(overdetermined, underdetermined, multihomogeneous, . . . )
studied by Mike, mostly in joint work with Jean-Pierre Dedieu.

• Back to the roots? [D. Armentano, M.S.]
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An algorithm solving a problem provides —through its analysis—
an upper bound on the resources necessary to solve this problem.

To obtain lower bounds one needs instead to consider all
algorithms solving the problem. Thus, the study of lower bounds
demands a formal notion of algorithm at hand.

Classical complexity theory (as studied in Theoretical Computer
Science) has the Turing machine for this notion. This is very useful
for discrete computations but not so for numerical computations.
A “continuous” complexity theory is needed in this context.

• L. Blum, M.S., S. Smale. “On a theory of computation over the

real numbers: NP-completeness, recursive functions and universal

machines”, Bull. AMS, 1989.
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A problem in NPR.

4FEAS Given a polynomial f in R[X1, . . . ,Xn] of degree
4, does there exist ξ ∈ R

n such that f (ξ) = 0?

A problem in NPC.

QUAD Given f1, . . . , fm in C[X1, . . . ,Xn] of degree 2, is
there a ξ ∈ C

n such that f1(ξ) = . . . = fm(ξ) = 0?
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• Existence of natural NPR-complete problems.

A complete problem P in NPR is one such that, if
P ∈ PR then PR = NPR.

Explanation: All problems in NPR “reduce” to P (negligible
overhead cost).

4FEAS is NPR-complete

QUAD is NPC-complete

These results put focus on the problems 4FEAS and QUAD.

Relations of QUAD and Smale’s 17th problem:

decision vs function problem

average-case vs worst-case
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• F.C., M.S. “Generalized knapsack problems and fixed degree
separations”, Theoret. Comput. Sci., 1996.

For every d ≥ 1

DTIME(O(nd )) 6= NDTIME(O(nd )).
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ϕ : Rn → R
m a ∈ R

n

The condition number of a is the worst-case magnification in ϕ(a)
of small relative errors in a:

condϕ(a) := lim
δ→0

sup
RelError(a)≤δ

RelError(ϕ(a))

RelError(a)
.

◮ The condition number plays a key role in finite-precision
analyses of algorithms.

◮ For many problems ϕ the quantity condϕ(a) can be
characterized (or approximated) in a more friendly manner.

◮ These characterizations have allowed, in many cases, to
obtain estimates of the expectation IE(condϕ) with respect to
a measure on R

n.

◮ Condition numbers have also been used in estimates for the
speed of convergence of iterative algorithms (complexity!).
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“average perturbation.” This is relevant for finite-precision
analyses.
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Mike’s first work in conditioning studies a notion of condition
number obtained by replacing “worst-case perturbation” by
“average perturbation.” This is relevant for finite-precision
analyses.

• N. Weiss, G. Wasikowski, H. Wozniakowski, M.S. “Average

condition number for solving linear equations.” Linear Algebra Appl.,

1986.

Then attention turned to the relationship between condition and
complexity. This relationship pervades the Bézout series.
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µnorm(f , ζi ) is a condition number in the sense above!

The problem is, the map system → zero is multivalued.
What should we define as the condition of input f ?

In the Bézout series the answer to this problem is

µmax(f ) := max
i≤D

µnorm(f , ζi ).

The main result in Bézout VI allows one to use instead

µav(f ) :=

√

1

D

∑

i≤D

µ2
norm(f , ζi ).

This fact is, as we already pointed out, at the core of the recent
advances towards a final solution to Smale’s 17th problem.



A Unifying Theory?


