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Optimizatio and Now

Why would a dynamacist be interested in linear programmang?



Linear Programming (LP)
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The “Klee-Minty Cube”

max I
s.t. e<z1 <1-—c¢€
ex; <xzjp1 <1l—ex; forj=1,....,n—-1

Simplex Method visits all 2™ vertices

(depending on the particular “pivot” rule)



Polymomial-time>l< algorithms
e The Ellipsoid Method (Khachiyan, 1979)

e “Karmarkar’s Algorithm” (Karmarkar, 1984)

— formally known as the “projective rescaling algorithm”

e Barrier Method

This algorithm existed long before the others,
but was proven to be polynomial-time only later, by Gonzaga in 1986

— who was motivated by work that had established relations
between the Barrier Method and Karmarkar’s Algorithm
(Gill, Murray, Saunders, Tomlin and Wright (1985))

e Potential Reduction Methods

Many other algorithms, too.

* — polynomial-time, that is, in the Turing model of computation,
not in the Blum-Shub-Smale model!

Whether there exists a BSS polynomial-time LP algorithm
TeEMaiInNsS a major open question.



Interior-Point Methods (IPM’s)

(

e “Karmarkar’s Algorithm” (Karmarkar, 1984)

— formally known as the “projective rescaling algorithm”

e Barrier Method

This algorithm existed long before the others,
but was proven to be polynomial-time only later, by Gonzaga in 1986

— who was motivated by work that had established relations
between the Barrier Method and Karmarkar’s Algorithm
(Gill, Murray, Saunders, Tomlin and Wright (1985))

e Potential Reduction Methods

Many other algorithms, too.

\_

“All IPM’s follow the ‘central path’ ”

— a.k.a., the “path of analytic centers”



Az >b < alx>b; fori=1,...,m
Think of each constraint as emitting a force that acts on feasible points x.

The direction of the force is perpendicular to the constraint
and the magnitude equals
the reciprocal of the distance from x to the constraint.

Le., the force at x is —¢
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Az >b < alx>b; fori=1,...,m
The equilibrium point z is called “the analytic center”

_ thUS, 0 = Zz’:l o o o - a very nice, (strictly) concave function
(2

Ve

m N\
— that is, z maximizes f(x) := Zln(a?m —b;)
1=1




“barrier function”

Analytic center z maximizes f(z) := > In(al z — b;).

z—x— (V2f(z) )V f(z)

Newton’s method for maximizing f:
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“barrier function”

Analytic center z maximizes f(z) := > In(al z — b;).

z—x— (V2f(z) )V f(z)

Newton’s method for maximizing f:

—(V2f(x)) 'V f(x) is gradient

Note:

wrt inner product (u,v), := —u! V2 f(x)v

Newton flow
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Riemannian gradient flow
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Analytic center z maximizes f(z) := Y In(alx —b;).  “barrier function”
Newton’s method for maximizing f: r—x— (V2f(x) ")V f(x)

Note: —(V%f(z)) 'V f(z) is gradient
wrt inner product (u,v), := —ul' V2 f(x)v

Riemannian
unit balls

Newton flow

Riemannian gradient flow

[
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the Newton flow is preserved under invertible affine transformations



Of course restricting the inequalities Ax > b to a supporting hyperplane
results in inequalities in a lower dimensional space |




Of course restricting the inequalities Ax > b to a supporting hyperplane
results in inequalities in a lower dimensional space

... and hence naturally induces a Newton flow on the face.



Mike and Jean-Pierre (2004):

For generic (A, b), the Newton flows on the faces
analytically extend the Newton flow on the interior.
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max oC
s.t. Ax > b
optimal solution
; O
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T e >k

Add a new constraint, perpendicular to ¢: ¢! x > k; for some constant k;

This changes the analytic center, the equilibrium point.

Denote the new analytic center by z(k1).
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This changes the analytic center, the equilibrium point.
Denote the new analytic center by z(k1).

Now increase k1 to a new constant ks, giving a new analytic center z(ks).
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Add a new constraint, perpendicular to ¢: ¢! x > k; for some constant k;
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the “central path”
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the “central path”

(a.k.a., “the path of analytic centers”)

If we do likewise with ¢ replaced by —c,
the path extends to the feasible point minimizing ¢’ z.






the global central path




f(x) := Z In(o}  — b;)

tangent vector

~(V*f(z)) e

=t}



f(z) := Z In(o}  — b;)

tangent vector

(V> f(z) e

— T

=]
|

Natural to consider vector field x — — (V2 f(z)) ¢ for all interior x
(not just for x on the central path)

— this yields the “affine scaling algorithm”
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A theorem in Mike’s first optimization paper (1985-86, with N. Megiddo):

When initiated at appropriate interior points,
the affine-scaling flow closely follows
the bad path of the Klee-Minty cube.

S .
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Mike’s result (and subsequent results) indicate the importance for algorithms
to remain near the central path in order to acheive polynomial time.

For example, the predictor-corrector method:

1) “Predict”

— move in affine-scaling direction |
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Mike’s result (and subsequent results) indicate the importance for algorithms
to remain near the central path in order to acheive polynomial time.

For example, the predictor-corrector method:

1) “Predict”

— move in affine-scaling direction

2) “Correct”

(i.e., re-center)

] |

The straighter the central path, the better!




Duality

Many contributors, all the way back to:

N. Megiddo, “Pathways to the optimal set in linear programming” (1988)

M. Kojima, S. Mizuno, and A. Yoshise,
“A primal-dual interior point algorithm for linear programming” (1988)

R.D.C. Monteiro, I. Adler,
“Interior path following primal-dual algorithms” (1989)



Ax =10
x>0

{x: Ax b}/'\

Ol



Ax =10
x>0

{x: Ax b}/'\

Ol



analytic center solves

max », lnz;

st. Ax =50







Axr =10
x>0
{az:A:cb}/'\
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— fix 2 satisfying Ax = b
and let L be the nullspace of A



re L+x
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— fix 2 satisfying Ax = b
and let L be the nullspace of A
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“min” rather than “max”

N
min, c!x
st. x€e L+

x>0

H{%\i?

Ol

“dual linear program”
min, z's
st. s€L+4c

s >0







The primal-dual
linear programming problem:

Given a subspace L

and points z, s,
find x and s satisfying
relL+x
>
serttg sl




R"™ x R" — R"

(,8) — x5 :=

Restricted map

L1S1

LnSn

— : o LS

i1s a diffeo with Rfﬁ n



The Riemannian structure induced on R%
depends on the particular affine spaces
L+ % and L+ + 3

For algorithmic purposes,
it is useful to endow R’} with a different
— albeit particularly elementary —
Riemannian structure

Specifically, for v € R,
let
(u, 1)y = ul 4/ (min ’Uj)2



IS
: unit ball
in tangent space
: at xs
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IS
: unit ball
in tangent space
: at xs
E T8
! L

unit ball
in tangent space

Key fact: at (z, s)

_/\G

The image of 23(%3)(0, 13
under the differential for |
covers B,s(0,1)
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IS
: unit ball
in tangent space
: at xs
: TS
! [
0

Key fact:

The image of B, ¢(0,1)
under the differential for |
covers B;4(0,1)

Consequence:
The image of u € B,4(0,1)
under the differential for T
is a vector (Ax, As)
for which £ + Az and s + As
are feasible.
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and let (x4 ,s.) be the pair
mapping to v



Algorithm:

e Choose “target” v
satisfying ||[v — zsl|zs < 1

e Replace map (x,s) — xs
with first-order approximation at (z, s)
and let (x4 ,s.) be the pair
mapping to v

Then x4 and sy are feasible and ...



CI?+S.|_

Algorithm:

e Choose “target” v
satisfying ||[v — zsl|zs < 1

e Replace map (x,s) — xs
with first-order approximation at (z, s)
and let (x4 ,s.) be the pair
mapping to v

Then x; and s, are feasible and ...

Fact:
|25 —vllas < 5llv— 252,



Strategies in choosing the target v:

e Bad: Move directly towards the origin.
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Strategies in choosing the target v:

e Bad: Move directly towards the origin.

e Good: Get away from boundary,
then move towards origin.

that is, start by moving towards
the line {t1:¢ > 0}

This line happens to be
the image of the primal-dual central path
under the map (x,s) — xs



¢ In designing primal-dual algorithms,
xS vector field flows are thus
most naturally defined on R’} __,
then pulled back to the feasible regions.




¢ In designing primal-dual algorithms,
xS vector field flows are thus
most naturally defined on R _,

then pulled back to the feasible regions.

For example,
the Tanabe-Todd-Ye
potential-reduction method

relies on the vector field v — —v + %E—U\/%l

... and on the potential function

(,8) — (n++/n)Inzt's —> Inz; — > Ins;




The primal-dual central path
1s not necessarily a geodesic
but it is a “\/§—geodesic”

— Nesterov & Todd (2002)

(results for
symmetric-cone programming,
not just for LP)

The primal (or dual) central path
is an O(n'/*)-geodesic

— Nesterov & Nemirovski (2008)

(results are very general )



video by Yuriy Zinchenko
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min c¢ x
s.t. Ax =0
x>0

relaxation of LP:

min clx
s.t. Ax =0
r € K(e)

\

EEDY

Lid 4
?:<j €i€j

>0 and Zji—jZO}

video by Yuriy Zinchenko

optimal solution



Imax CT.CU

s.t. Ax > b

Recall the predictor-corrector method:

1) “Predict”

— move in affine-scaling direction

2) “Correct”

(i.e., re-center)

.

-

The straighter the central path, the better!



Mike, Jean-Pierre, Gregorio (2005):

For generic (A, b, c),
the expected Euclidean curvature of the central path
for bounded regions
does not exceed 27n.
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For generic (A, b, c),
the expected Euclidean curvature of the central path
for bounded regions
does not exceed 27n.

De Loera, Sturmfels and Vinzant (soon to be published):

For generic (b, ¢),
the expected Euclidean curvature of the central path
for bounded regions
does not exceed 27mn

and potentially can be much better depending on A



You’re great, Mike!!!



