
Optimization: Then and Now



Optimization: Then and NowThen Now



Optimization: Then and NowThen Now

Why would a dynamicist be interested in linear programming?



max cT x
s.t. Ax ≥ b ↔ αT

i x ≥ bi for i = 1, . . . ,m

�0

c

optimal solution

Linear Programming (LP)



First general algorithm: The Simplex Method, by George Dantzig (1947)

max cT x
s.t. Ax ≥ b ↔ αT

i x ≥ bi for i = 1, . . . ,m

�0

c

optimal solution

Linear Programming (LP)



optimal solution

First general algorithm: The Simplex Method, by George Dantzig (1947)

max cT x
s.t. Ax ≥ b ↔ αT

i x ≥ bi for i = 1, . . . ,m

�0

c

Linear Programming (LP)



max xn

s.t. � ≤ x1 ≤ 1− �
�xj ≤ xj+1 ≤ 1− �xj for j = 1, . . . , n− 1

The “Klee-Minty Cube”

Simplex Method visits all 2n vertices
(depending on the particular “pivot” rule)



• The Ellipsoid Method (Khachiyan, 1979)

– formally known as the “projective rescaling algorithm”

• “Karmarkar’s Algorithm” (Karmarkar, 1984)

• Barrier Method
This algorithm existed long before the others,

but was proven to be polynomial-time only later, by Gonzaga in 1986
– who was motivated by work that had established relations

between the Barrier Method and Karmarkar’s Algorithm
(Gill, Murray, Saunders, Tomlin and Wright (1985))

• Potential Reduction Methods
... Many other algorithms, too.

Polynomial-time algorithms*

* – polynomial-time, that is, in the Turing model of computation,
not in the Blum-Shub-Smale model!

Whether there exists a BSS polynomial-time LP algorithm
remains a major open question.



– formally known as the “projective rescaling algorithm”

• “Karmarkar’s Algorithm” (Karmarkar, 1984)

• Barrier Method
This algorithm existed long before the others,

but was proven to be polynomial-time only later, by Gonzaga in 1986
– who was motivated by work that had established relations

between the Barrier Method and Karmarkar’s Algorithm
(Gill, Murray, Saunders, Tomlin and Wright (1985))

• Potential Reduction Methods
... Many other algorithms, too.

Interior-Point Methods (IPM’s)

“All IPM’s follow the ‘central path’ ”

– a.k.a., the “path of analytic centers”



Ax ≥ b ↔ αT
i x ≥ bi for i = 1, . . . ,m

x

Think of each constraint as emitting a force that acts on feasible points x.

The direction of the force is perpendicular to the constraint
and the magnitude equals

the reciprocal of the distance from x to the constraint.

I.e., the force at x is 1
αT

i x−bi
αi



Ax ≥ b ↔ αT
i x ≥ bi for i = 1, . . . ,m

Think of each constraint as emitting a force that acts on feasible points x.

The direction of the force is perpendicular to the constraint
and the magnitude equals

the reciprocal of the distance from x to the constraint.

I.e., the force at x is 1
αT

i x−bi
αi



z

Ax ≥ b ↔ αT
i x ≥ bi for i = 1, . . . ,m

The equilibrium point z is called “the analytic center”

– thus, 0 =
�m

i=1
1

αT
i z−bi

αi
a very nice, (strictly) concave function

– that is, z maximizes

� �� �

f(x) :=
m�

i=1

ln(αT
i x− bi)



Analytic center z maximizes f(x) :=
�

ln(αT
i x− bi). “barrier function”

Newton’s method for maximizing f : x �→ x− (∇2f(x)−1)∇f(x)



Analytic center z maximizes f(x) :=
�

ln(αT
i x− bi). “barrier function”

Newton flow
=

Riemannian gradient flow

Newton’s method for maximizing f : x �→ x− (∇2f(x)−1)∇f(x)

Note: −(∇2f(x))−1∇f(x) is gradient
wrt inner product �u, v�x := −uT∇2f(x)v



Analytic center z maximizes f(x) :=
�

ln(αT
i x− bi). “barrier function”

Newton flow
=

Riemannian gradient flow

Riemannian
unit balls

Newton’s method for maximizing f : x �→ x− (∇2f(x)−1)∇f(x)

Note: −(∇2f(x))−1∇f(x) is gradient
wrt inner product �u, v�x := −uT∇2f(x)v



the Newton flow is preserved under invertible affine transformations



Of course restricting the inequalities Ax ≥ b to a supporting hyperplane

results in inequalities in a lower dimensional space



Of course restricting the inequalities Ax ≥ b to a supporting hyperplane

results in inequalities in a lower dimensional space

. . . and hence naturally induces a Newton flow on the face.



z

Mike and Jean-Pierre (2004):
For generic (A, b), the Newton flows on the faces

analytically extend the Newton flow on the interior.



�0

c

max cT x
s.t. Ax ≥ b

optimal solution



�0

c

This changes the analytic center, the equilibrium point.
Denote the new analytic center by z(k1).

cT x ≥ k1

• z(k1)

cT x ≥ k1 for some constant k1Add a new constraint, perpendicular to c:



�0

c
• z(k1)

This changes the analytic center, the equilibrium point.
Denote the new analytic center by z(k1).

Now increase k1 to a new constant k2, giving a new analytic center z(k2).

cT x ≥ k2

• z(k2)

cT x ≥ k1

cT x ≥ k1 for some constant k1Add a new constraint, perpendicular to c:



�0

c
• z(k1)
• z(k2)

This changes the analytic center, the equilibrium point.
Denote the new analytic center by z(k1).

Now increase k1 to a new constant k2, giving a new analytic center z(k2).

And so on: z(k1), z(k2), z(k3), . . .

cT x ≥ k3

• z(k3)

cT x ≥ k2

cT x ≥ k1 for some constant k1Add a new constraint, perpendicular to c:



�0

c
• z(k1)
• z(k2)

This changes the analytic center, the equilibrium point.
Denote the new analytic center by z(k1).

Now increase k1 to a new constant k2, giving a new analytic center z(k2).

And so on: z(k1), z(k2), z(k3), . . .

• z(k3)

cT x ≥ opt value

cT x ≥ k1 for some constant k1Add a new constraint, perpendicular to c:



�0

c

(a.k.a., “the path of analytic centers”)

the “central path”



�0

c

(a.k.a., “the path of analytic centers”)

If we do likewise with c replaced by −c,
the path extends to the feasible point minimizing cT x.

the “central path”



c



c

the global central path



�0

c

·

f(x) :=
�

ln(αT
i x− bi)

tangent vector
=

−(∇2f(x))−1c



�0

c

·

f(x) :=
�

ln(αT
i x− bi)

(not just for x on the central path)

– this yields the “affine scaling algorithm”

Natural to consider vector field x �→ −(∇2f(x))−1c for all interior x

tangent vector
=

−(∇2f(x))−1c





A theorem in Mike’s first optimization paper (1985-86, with N. Megiddo):

When initiated at appropriate interior points,
the affine-scaling flow closely follows

the bad path of the Klee-Minty cube.



For example, the predictor-corrector method:

·

1) “Predict”

– move in affine-scaling direction

Mike’s result (and subsequent results) indicate the importance for algorithms
to remain near the central path in order to acheive polynomial time.

�0

c



For example, the predictor-corrector method:

·

2) “Correct”

1) “Predict”

– move in affine-scaling direction

(i.e., re-center)

Mike’s result (and subsequent results) indicate the importance for algorithms
to remain near the central path in order to acheive polynomial time.

�0

c

·



For example, the predictor-corrector method:

2) “Correct”

1) “Predict”

– move in affine-scaling direction

(i.e., re-center)

Mike’s result (and subsequent results) indicate the importance for algorithms
to remain near the central path in order to acheive polynomial time.

�0

c

·



For example, the predictor-corrector method:

·

2) “Correct”

1) “Predict”

– move in affine-scaling direction

(i.e., re-center)

Mike’s result (and subsequent results) indicate the importance for algorithms
to remain near the central path in order to acheive polynomial time.

The straighter the central path, the better!

�0

c

·



Duality & Dynamics

Many contributors, all the way back to:

N. Megiddo, “Pathways to the optimal set in linear programming” (1988)

M. Kojima, S. Mizuno, and A. Yoshise,
“A primal-dual interior point algorithm for linear programming” (1988)

R.D.C. Monteiro, I. Adler,
“Interior path following primal-dual algorithms” (1989)



�0·
{x : Ax = b}

Ax = b
x ≥ 0



�0·
{x : Ax = b} ·

Ax = b
x ≥ 0



�0·
{x : Ax = b}

·
analytic center solves max

�
lnxj

s.t. Ax = b

Ax = b
x ≥ 0



�0·
{x : Ax = b}

Ax = b
x ≥ 0

The relevant inner product at interior x is

�u, û�x =
� uj ûj

x2
j

·x



�0· ·̂x
– fix x̂ satisfying Ax = b

and let L be the nullspace of A

Ax = b
x ≥ 0

{x : Ax = b}



x ∈ L + x̂
x ≥ 0

�0· ·̂x
– fix x̂ satisfying Ax = b

and let L be the nullspace of A

L + x̂



min cT x
s.t. x ∈ L + x̂

x ≥ 0

�0· ·̂x

L + x̂

“min” rather than “max”



min cT x
s.t. x ∈ L + x̂

x ≥ 0

�0· ·̂x

L + x̂

“min” rather than “max”

c



min cT x
s.t. x ∈ L + x̂

x ≥ 0

�0· ·̂x

L + x̂

“min” rather than “max”

c



min cT x
s.t. x ∈ L + x̂

x ≥ 0

�0· ·̂x

L + x̂

“min” rather than “max”

c

L⊥ + c



min cT x
s.t. x ∈ L + x̂

x ≥ 0

�0· ·̂x

L + x̂

“min” rather than “max”

c

L⊥ + c

“dual linear program”

mins x̂T s
s.t. s ∈ L⊥ + c

s ≥ 0



L⊥ + ŝ

�0· ·̂x

L + x̂

·̂s



L⊥ + ŝ

�0· ·̂x

L + x̂

·̂s

The primal-dual
linear programming problem:

Given a subspace L
and points x̂, ŝ,

find x and s satisfying
x ∈ L + x̂
s ∈ L⊥ + ŝ

x, s ≥ 0 xT s = 0



Rn × Rn → Rn

(x, s) �→ xs :=




x1s1

...
xnsn





Restricted map

is a diffeo with Rn
++

�0·

×·x
�0·

·s

�0·

·xs



�0·

×·x
�0·

·s

�0·

(x, s)

xs

·xs

The Riemannian structure induced on Rn
++

depends on the particular affine spaces
L + x̂ and L⊥ + ŝ

For algorithmic purposes,
it is useful to endow Rn

++ with a different
– albeit particularly elementary –

Riemannian structure

Specifically, for v ∈ Rn
++,

let
�u, û�v := uT û/(min vj)2



�0·

×·x
�0·

·s

�0·

(x, s)

xs

·xs

The Riemannian structure induced on Rn
++

depends on the particular affine spaces
L + x̂ and L⊥ + ŝ

For algorithmic purposes,
it is useful to endow Rn

++ with a different
– albeit particularly elementary –

Riemannian structure

Specifically, for v ∈ Rn
++,

let
�u, û�v := uT û/(min vj)2

unit ball
in tangent space

at xs



�0·

×·x
�0·

·s

�0·

(x, s)

xs

·xs

unit ball
in tangent space

at xs

unit ball
in tangent space

at (x, s)

unit ball
in tangent space

at xs

Key fact:

The image of
� �� �
B(x,s)(0, 1)

under the differential for ↓
covers Bxs(0, 1)� �� �



�0·

×·x
�0·

·s

�0·

(x, s)

xs

·xs

unit ball
in tangent space

at xs

Key fact:

The image of
� �� �
B(x,s)(0, 1)

under the differential for ↓
covers Bxs(0, 1)� �� �

Consequence:
The image of u ∈ Bxs(0, 1)

under the differential for ↑
is a vector (∆x,∆s)

for which x + ∆x and s + ∆s
are feasible.



�0·

×·x
�0·

·s

�0·

(x, s)

xs

·xs

Algorithm:

• Choose “target” v
satisfying �v − xs�xs < 1

·v



�0·

×·x
�0·

·s

�0·

(x, s)

xs

·xs

Algorithm:

• Replace map (x, s) �→ xs
with first-order approximation at (x, s)

and let (x+, s+) be the pair
mapping to v

·
·

x+

s+

• Choose “target” v
satisfying �v − xs�xs < 1

·v



�0·

×·x
�0·

·s

�0·

(x, s)

xs

·xs

Algorithm:

• Replace map (x, s) �→ xs
with first-order approximation at (x, s)

and let (x+, s+) be the pair
mapping to v

·
·

x+

s+

Then x+ and s+ are feasible and . . .

• Choose “target” v
satisfying �v − xs�xs < 1

·v



�0·

×·x
�0·

·s

�0·

(x, s)

xs

·xs

Algorithm:

• Replace map (x, s) �→ xs
with first-order approximation at (x, s)

and let (x+, s+) be the pair
mapping to v

·
·

x+

s+

Then x+ and s+ are feasible and . . .

• Choose “target” v
satisfying �v − xs�xs < 1

Fact:
�x+s+ − v�xs ≤ 1

2�v − xs�2xs

··v x+s+



�0·

×

�0·

�0·

(x, s)

xs

...

• Bad: Move directly towards the origin.

Strategies in choosing the target v:



�0·

×

�0·

�0·

(x, s)

xs

Strategies in choosing the target v:

• Bad: Move directly towards the origin.

• Good: Get away from boundary,
then move towards origin.



�0·

×

�0·

�0·

(x, s)

xs

Strategies in choosing the target v:

• Bad: Move directly towards the origin.

• Good: Get away from boundary,
then move towards origin.

that is, start by moving towards
the line {t1 : t > 0}{t1 : t > 0}



�0·

×

�0·

�0·

(x, s)

xs

Strategies in choosing the target v:

• Bad: Move directly towards the origin.

• Good: Get away from boundary,
then move towards origin.

that is, start by moving towards
the line {t1 : t > 0}{t1 : t > 0}

This line happens to be
the image of the primal-dual central path

under the map (x, s) �→ xs



�0·

×

�0·

�0·

(x, s)

xs
In designing primal-dual algorithms,

vector field flows are thus
most naturally defined on Rn

++,
then pulled back to the feasible regions.



�0·

×

�0·

�0·

(x, s)

xs
In designing primal-dual algorithms,

vector field flows are thus
most naturally defined on Rn

++,
then pulled back to the feasible regions.

For example,
the Tanabe-Todd-Ye

potential-reduction method
relies on the vector field v �→ −v +

P
vj

n+
√

n
1

. . . and on the potential function
(x, s) �→ (n +

√
n) lnxT s−

�
lnxj −

�
ln sj



�0·

×

�0·

�0·

(x, s)

xs

{t1 : t > 0}

The primal-dual central path
is not necessarily a geodesic
but it is a “

√
2-geodesic”

– Nesterov & Todd (2002)
(results for

symmetric-cone programming,
not just for LP)

The primal (or dual) central path
is an O(n1/4)-geodesic

– Nesterov & Nemirovski (2008)

(results are very general )



video by Yuriy Zinchenko

min cT x
s.t. Ax = b

x ≥ 0



video by Yuriy Zinchenko

min cT x
s.t. Ax = b

x ≥ 0

min cT x
s.t. Ax = b

x ∈ K(e)

relaxation of LP:

{x :
�

i<j
xixj

eiej
≥ 0 and

�
j

xj

ej
≥ 0 }

e

x∗(e)
optimal solution



·

2) “Correct”

1) “Predict”

– move in affine-scaling direction

max cT x
s.t. Ax ≥ b

Recall the predictor-corrector method:

(i.e., re-center)

The straighter the central path, the better!

·



Mike, Jean-Pierre, Gregorio (2005):

For generic (A, b, c),
the expected Euclidean curvature of the central path

for bounded regions
does not exceed 2πn.



c



Mike, Jean-Pierre, Gregorio (2005):

For generic (A, b, c),
the expected Euclidean curvature of the central path

for bounded regions
does not exceed 2πn.

For generic (b, c),
the expected Euclidean curvature of the central path

for bounded regions
does not exceed 2πn

and potentially can be much better depending on A

De Loera, Sturmfels and Vinzant (soon to be published):



You’re great, Mike!!!


