Optimization: Then and Now

Optimization: T hen and Now

Optimizatio and Now

Why would a dynamacist be interested in linear programmang?

Linear Programming (LP)

T

max c'x
st. Az >b < alxz>b; fori=1,....,m
/ [

optimal solution

[

Linear Programming (LP)
First general algorithm: The Simplex Method, by George Dantzig (1947)

max clx
st. Az >b < alxz>b; fori=1,....,m
/ [

optimal solution

Linear Programming (LP)
First general algorithm: The Simplex Method, by George Dantzig (1947)

max CT X

st. Az >b < alxz>b; fori=1,....,m

|

optimal solution

The “Klee-Minty Cube”

max I
s.t. e<z1 <1-—c¢€
ex; <xzjp1 <1l—ex; forj=1,....,n—-1

Simplex Method visits all 2™ vertices

(depending on the particular “pivot” rule)

Polymomial-time>l< algorithms
e The Ellipsoid Method (Khachiyan, 1979)

e “Karmarkar’s Algorithm” (Karmarkar, 1984)

— formally known as the “projective rescaling algorithm”

e Barrier Method

This algorithm existed long before the others,
but was proven to be polynomial-time only later, by Gonzaga in 1986

— who was motivated by work that had established relations
between the Barrier Method and Karmarkar’s Algorithm
(Gill, Murray, Saunders, Tomlin and Wright (1985))

e Potential Reduction Methods

Many other algorithms, too.

* — polynomial-time, that is, in the Turing model of computation,
not in the Blum-Shub-Smale model!

Whether there exists a BSS polynomial-time LP algorithm
TeEMaiInNsS a major open question.

Interior-Point Methods (IPM’s)

(

e “Karmarkar’s Algorithm” (Karmarkar, 1984)

— formally known as the “projective rescaling algorithm”

e Barrier Method

This algorithm existed long before the others,
but was proven to be polynomial-time only later, by Gonzaga in 1986

— who was motivated by work that had established relations
between the Barrier Method and Karmarkar’s Algorithm
(Gill, Murray, Saunders, Tomlin and Wright (1985))

e Potential Reduction Methods

Many other algorithms, too.

_

“All IPM’s follow the ‘central path’ ”

— a.k.a., the “path of analytic centers”

Az >b < alx>b; fori=1,...,m
Think of each constraint as emitting a force that acts on feasible points x.

The direction of the force is perpendicular to the constraint
and the magnitude equals
the reciprocal of the distance from x to the constraint.

Le., the force at x is —¢

Az >b < alx>b; fori=1,...,m
Think of each constraint as emitting a force that acts on feasible points x.

The direction of the force is perpendicular to the constraint
and the magnitude equals
the reciprocal of the distance from x to the constraint.

Le., the force at x is —¢

Az >b < alx>b; fori=1,...,m
The equilibrium point z is called “the analytic center”

_ thUS, 0 = Zz’:l o o o - a very nice, (strictly) concave function
(2

Ve

m N\
— that is, z maximizes f(x) := Zln(a?m —b;)
1=1

“barrier function”

Analytic center z maximizes f(z) := > In(al z — b;).

z—x— (V2f(z))V f(z)

Newton’s method for maximizing f:

IIIIII

\\\:\t\\\\\\\\‘
A N e e e e e e e e . R 8

=

s

N
S

=

N
NS
N

——T— T — N ~ >

“barrier function”

Analytic center z maximizes f(z) := > In(al z — b;).

z—x— (V2f(z))V f(z)

Newton’s method for maximizing f:

—(V2f(x)) 'V f(x) is gradient

Note:

wrt inner product (u,v), := —u! V2 f(x)v

Newton flow

IIIIII

1 ~

Riemannian gradient flow

SN N
AN RS

=

NS

T — T T — — ~ >

[

Analytic center z maximizes f(z) := Y In(alx —b;). “barrier function”
Newton’s method for maximizing f: r—x— (V2f(x) ")V f(x)

Note: —(V%f(z)) 'V f(z) is gradient
wrt inner product (u,v), := —ul' V2 f(x)v

Riemannian
unit balls

Newton flow

Riemannian gradient flow

[

IIIIII

\\\\
NSNS
S~ '
OSSO
VN e e N s

N
N

=N

\

/

¢ - S

IIIIII

e - Sy

e e e T N |
——————— N~

the Newton flow is preserved under invertible affine transformations

Of course restricting the inequalities Ax > b to a supporting hyperplane
results in inequalities in a lower dimensional space |

Of course restricting the inequalities Ax > b to a supporting hyperplane
results in inequalities in a lower dimensional space

... and hence naturally induces a Newton flow on the face.

Mike and Jean-Pierre (2004):

For generic (A, b), the Newton flows on the faces
analytically extend the Newton flow on the interior.

SN NN N\ .
AR R AN AN

- - A e e e, U O O |
\/__" A e e, N, e T T

WP P-4 ’\ 7,
W77 §\\§\\\\\\\§:§I\3": 3
i N
/7 \

e e e e U U U Y 1
T T T — — ~ A

.

max oC
s.t. Ax > b
optimal solution
; O

Ol

T e >k

Add a new constraint, perpendicular to ¢: ¢! x > k; for some constant k;

This changes the analytic center, the equilibrium point.

Denote the new analytic center by z(k1).

Add a new constraint, perpendicular to ¢: ¢! x > k; for some constant k;

This changes the analytic center, the equilibrium point.

Denote the new analytic center by z(k1).

Now increase k1 to a new constant ks, giving a new analytic center z(ks).

o 2(k3) 7
T o (ko) T .

o Z (k1) c'x > ks

Add a new constraint, perpendicular to ¢: ¢’z > k; for some constant k;

This changes the analytic center, the equilibrium point.
Denote the new analytic center by z(k1).

Now increase k1 to a new constant ks, giving a new analytic center z(ks).

And so on: z(k1), z(ks), z(k3), ...

T x> opt value

Add a new constraint, perpendicular to ¢: ¢! x > k; for some constant k;

This changes the analytic center, the equilibrium point.

Denote the new analytic center by z(k1).

Now increase k1 to a new constant ks, giving a new analytic center z(ks).

And so on: z(k1), z(ks), z(k3), ...

the “central path”

(a.k.a., “the path of analytic centers”)

the “central path”

(a.k.a., “the path of analytic centers”)

If we do likewise with ¢ replaced by —c,
the path extends to the feasible point minimizing ¢’ z.

the global central path

f(x) := Z In(o} — b;)

tangent vector

~(V*f(z)) e

=t}

f(z) := Z In(o} — b;)

tangent vector

(V> f(z) e

— T

=]
|

Natural to consider vector field x — — (V2 f(z)) ¢ for all interior x
(not just for x on the central path)

— this yields the “affine scaling algorithm”

~N / .m"/ / / N "~~~ - s I I / r|1 / / S I T
~ANNNN\NN~—— 27 7 S 2=

\ ~N—~—— - 7/ s | s =F
///|\\\\\\\\\.\......\\ — =~

/
/
/
~
—

— ~ \ '\ \' N~ —— —— s s s N =
-—~~\ W\ N~ S
——~ N\ N\ ~— — - s - A

II//%///\\\\\\\\»~\\\\\\\

— — ~ \ / \ -~ — — =~ - ~ - - ."n...m"" S T P
—— ~ ~ N\ N = = = 7 7 s 2 B —
—_ = N W\~ - s s s ~ S s /S

- — — -~ “mm"/ N \\ \\ /7 “m_ A i

— _ = N / - - s = o / 74 / \mm / s s e —

/ J - S = - / \ Ve -—
; / D
T A N |
e e — \."m\ / - - ————
y S e e — ——
B /) S — —

\\\\\\.\\.l ~N / // ~ - / \ S S — e — —
S — — ~ N\ / %./ - 7 \ /] -~ 5 —— =

\\\\\\\\\\\\\\lll//// N///// / \ \\\\ s ———— —

\\\\\\l/ //// ////u\\\\\\\\\\\\.\\\\\\

- — e — p— pE— -

\ N - \m\\ S —m——

A theorem in Mike’s first optimization paper (1985-86, with N. Megiddo):

When initiated at appropriate interior points,
the affine-scaling flow closely follows
the bad path of the Klee-Minty cube.

S .

/

Mike’s result (and subsequent results) indicate the importance for algorithms
to remain near the central path in order to acheive polynomial time.

For example, the predictor-corrector method:

1) “Predict”

— move in affine-scaling direction |

Mike’s result (and subsequent results) indicate the importance for algorithms
to remain near the central path in order to acheive polynomial time.

For example, the predictor-corrector method:

1) “Predict”

— move in affine-scaling direction

2) “Correct”

(i.e., re-center)

Mike’s result (and subsequent results) indicate the importance for algorithms
to remain near the central path in order to acheive polynomial time.

For example, the predictor-corrector method:

1) “Predict”

— move in affine-scaling direction

2) “Correct” ‘

(i.e., re-center)

Mike’s result (and subsequent results) indicate the importance for algorithms
to remain near the central path in order to acheive polynomial time.

For example, the predictor-corrector method:

1) “Predict”

— move in affine-scaling direction

2) “Correct”

(i.e., re-center)

] |

The straighter the central path, the better!

Duality

Many contributors, all the way back to:

N. Megiddo, “Pathways to the optimal set in linear programming” (1988)

M. Kojima, S. Mizuno, and A. Yoshise,
“A primal-dual interior point algorithm for linear programming” (1988)

R.D.C. Monteiro, I. Adler,
“Interior path following primal-dual algorithms” (1989)

Ax =10
x>0

{x: Ax b}/'\

Ol

Ax =10
x>0

{x: Ax b}/'\

Ol

analytic center solves

max », lnz;

st. Ax =50

Axr =10
x>0
{az:A:cb}/'\

Ol

)
N \x\

— fix 2 satisfying Ax = b
and let L be the nullspace of A

re L+x

6—» \T‘\

— fix 2 satisfying Ax = b
and let L be the nullspace of A

min
S.t.

“min” rather than “max”

CTLIZ

rel+x
x>0

T

L+ 2z

Ol

5‘3/—)

min
S.t.

“min” rather than “max”

CTLIZ

rel+x
x>0

T

L+ 2z

Ol

5‘3/—)

min
S.t.

“min” rather than “max”

CTLIZ

relL+x

N
L+

Ol

5‘3/—)

min
S.t.

“min” rather than “max”

CT$

relL+x

N
L+

Ol

LJ‘—I—C

\

S

“min” rather than “max”

N
min, c!x
st. x€e L+

x>0

H{%\i?

Ol

“dual linear program”
min, z's
st. s€L+4c

s >0

The primal-dual
linear programming problem:

Given a subspace L

and points z, s,
find x and s satisfying
relL+x
>
serttg sl

R"™ x R" — R"

(,8) — x5 :=

Restricted map

L1S1

LnSn

— : o LS

i1s a diffeo with Rfﬁ n

The Riemannian structure induced on R%
depends on the particular affine spaces
L+ % and L+ + 3

For algorithmic purposes,
it is useful to endow R’} with a different
— albeit particularly elementary —
Riemannian structure

Specifically, for v € R,
let
(u, 1)y = ul 4/ (min ’Uj)2

IS
: unit ball
in tangent space
: at xs
E TS
! [
0

The Riemannian structure induced on R%
depends on the particular affine spaces
L+ % and L+ + 3

For algorithmic purposes,
it is useful to endow R’} with a different
— albeit particularly elementary —
Riemannian structure

Specifically, for v € R,
let
(u, 1)y = ul 4/ (min ’Uj)2

=)

je=li]

IS
: unit ball
in tangent space
: at xs
E T8
! L

unit ball
in tangent space

Key fact: at (z, s)

_/\G

The image of 23(%3)(0, 13
under the differential for |
covers B,s(0,1)

J/

N

unit ball
in tangent space
at xs

IS
: unit ball
in tangent space
: at xs
: TS
! [
0

Key fact:

The image of B, ¢(0,1)
under the differential for |
covers B;4(0,1)

Consequence:
The image of u € B,4(0,1)
under the differential for T
is a vector (Ax, As)
for which £ + Az and s + As
are feasible.

¢ Algorithm:

e Choose “target” v
satisfying ||v — xs]|zs < 1

Algorithm:

e Choose “target” v
satisfying ||[v — zsl|zs < 1

e Replace map (x,s) — xs
with first-order approximation at (z, s)
and let (x4 ,s.) be the pair
mapping to v

Algorithm:

e Choose “target” v
satisfying ||[v — zsl|zs < 1

e Replace map (x,s) — xs
with first-order approximation at (z, s)
and let (x4 ,s.) be the pair
mapping to v

Then x4 and sy are feasible and ...

CI?+S.|_

Algorithm:

e Choose “target” v
satisfying ||[v — zsl|zs < 1

e Replace map (x,s) — xs
with first-order approximation at (z, s)
and let (x4 ,s.) be the pair
mapping to v

Then x; and s, are feasible and ...

Fact:
|25 —vllas < 5llv— 252,

Strategies in choosing the target v:

e Bad: Move directly towards the origin.

Strategies in choosing the target v:

e Bad: Move directly towards the origin.

e Good: Get away from boundary,
then move towards origin.

Strategies in choosing the target v:

e Bad: Move directly towards the origin.

e Good: Get away from boundary,
then move towards origin.

that is, start by moving towards
the line {t1:¢ > 0}

Strategies in choosing the target v:

e Bad: Move directly towards the origin.

e Good: Get away from boundary,
then move towards origin.

that is, start by moving towards
the line {t1:¢ > 0}

This line happens to be
the image of the primal-dual central path
under the map (x,s) — xs

¢ In designing primal-dual algorithms,
xS vector field flows are thus
most naturally defined on R’} __,
then pulled back to the feasible regions.

¢ In designing primal-dual algorithms,
xS vector field flows are thus
most naturally defined on R _,

then pulled back to the feasible regions.

For example,
the Tanabe-Todd-Ye
potential-reduction method

relies on the vector field v — —v + %E—U\/%l

... and on the potential function

(,8) — (n++/n)Inzt's —> Inz; — > Ins;

The primal-dual central path
1s not necessarily a geodesic
but it is a “\/§—geodesic”

— Nesterov & Todd (2002)

(results for
symmetric-cone programming,
not just for LP)

The primal (or dual) central path
is an O(n'/*)-geodesic

— Nesterov & Nemirovski (2008)

(results are very general)

video by Yuriy Zinchenko

min c¢lx -
s.t. Ax =0
x>0

min c¢ x
s.t. Ax =0
x>0

relaxation of LP:

min clx
s.t. Ax =0
r € K(e)

\

EEDY

Lid 4
?:<j €i€j

>0 and Zji—jZO}

video by Yuriy Zinchenko

optimal solution

Imax CT.CU

s.t. Ax > b

Recall the predictor-corrector method:

1) “Predict”

— move in affine-scaling direction

2) “Correct”

(i.e., re-center)

.

-

The straighter the central path, the better!

Mike, Jean-Pierre, Gregorio (2005):

For generic (A, b, c),
the expected Euclidean curvature of the central path
for bounded regions
does not exceed 27n.

Mike, Jean-Pierre, Gregorio (2005):

For generic (A, b, c),
the expected Euclidean curvature of the central path
for bounded regions
does not exceed 27n.

De Loera, Sturmfels and Vinzant (soon to be published):

For generic (b, ¢),
the expected Euclidean curvature of the central path
for bounded regions
does not exceed 27mn

and potentially can be much better depending on A

You’re great, Mike!!!

