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Applications of Solving Real Polynomial Systems

@ Maximum Likelihood Estimation in UQ
o Satellite Orbit Design, Geometric Modelling...
@ Refined bounds help in complexity theory
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Motivation

Motivating Problem/Theorem

Consider fi,..., f,€C[zy,...,z,] with maximal degree D.

Smale’s 17th Problem

Can a zero of n complex polynomial equations
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Motivation

Motivating Problem/Theorem

Consider fi,..., f,€C[zy,...,z,] with maximal degree D.

Smale’s 17th Problem

Can a zero of n complex polynomial equations in n unknowns be
found approximately,
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Motivation

Motivating Problem/Theorem

Consider fi,..., f,€C[zy,...,z,] with maximal degree D.

Smale’s 17th Problem

Can a zero of n complex polynomial equations in n unknowns be
found approxzimately, on the average, in polynomial time with a
uniform algorithm?
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Motivation

Motivating Problem/Theorem

Consider fi,..., f,€C[zy,...,z,] with maximal degree D.

Smale’s 17th Problem

Can a zero of n complex polynomial equations in n unknowns be
found approxzimately, on the average, in polynomial time with a
uniform algorithm?

Major recent progress has come from two near-solutions:
[Beltran & Pardo, 2008] and [Biirgisser & Cucker, 2010].
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Motivating Problem/Theorem

Consider fi,..., f,€C[zy,...,z,] with maximal degree D.

Smale’s 17th Problem

Can a zero of n complex polynomial equations in n unknowns be
found approxzimately, on the average, in polynomial time with a
uniform algorithm?

Major recent progress has come from two near-solutions:
[Beltran & Pardo, 2008] and [Biirgisser & Cucker, 2010].
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Resulting complexity bound is (d —rg n) ,
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Motivation

Motivating Problem/Theorem

Consider fi,..., f,€C[zy,...,z,] with maximal degree D.

Smale’s 17th Problem

Can a zero of n complex polynomial equations in n unknowns be
found approxzimately, on the average, in polynomial time with a
uniform algorithm?

Major recent progress has come from two near-solutions:
[Beltran & Pardo, 2008] and [Biirgisser & Cucker, 2010].

o(1)
. . . (d .
Resulting complexity bound is ( —;n) , but the real case is

of greater importance in certain settings.
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Motivation

Motivating Problem/Theorem

Consider fi,..., f,€C[zy,...,z,] with maximal degree D.

Smale’s 17th Problem

Can a zero of n complex polynomial equations in n unknowns be
found approxzimately, on the average, in polynomial time with a
uniform algorithm?

Major recent progress has come from two near-solutions:
[Beltran & Pardo, 2008] and [Biirgisser & Cucker, 2010].

o(1)
. . . (d .
Resulting complexity bound is ( —;n) , but the real case is

of greater importance in certain settings.
Can you go faster over the reals?
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Sparsity over R

Warm-Up: One Variable, Three Terms

Can you decide whether

L+ecxf+2P (0<d<D)
has 0, 1, or 2 positive roots, using a number of bit operations
sub-linear in D + logc?
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Sparsity over R

Warm-Up: One Variable, Three Terms

You can decide whether
1— Cx%90418 + x%17811

has 0, 1, or 2 positive roots,
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Sparsity over R

Warm-Up: One Variable, Three Terms

You can decide whether
1 — cpl96418 4 317811
has 0, 1, or 2 positive roots, by checking whether
Afo 196418 317811} (1, —¢, 1) :=196418196418121 393121393 317811 _ 317871317811
is <0, =0, or >0.
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Sparsity over R

Warm-Up: One Variable, Three Terms

You can decide whether
1 — cpl96418 4 317811
has 0, 1, or 2 positive roots, by checking whether
Afo 196418 317811} (1, —¢, 1) :=196418196418121 393121393 317811 _ 317871317811
is <0, =0, or >0.

...and the preceding condition = checking the sign of
1964181og(196418) + 121393 log(121393) + 317811 log(c) — 317811 log(317811),
which can be done in polynomial time via Baker’s
Theorem on Linear Forms in Logarithms [1967]!
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Sparsity over R

Warm-Up: One Variable, Three Terms

You can decide whether
1 — cpl96418 4 317811
has 0, 1, or 2 positive roots, by checking whether
Afo 196418 317811} (1, —¢, 1) :=196418196418121 393121393 317811 _ 317871317811
is <0, =0, or >0.

...and the preceding condition = checking the sign of

1964181og(196418) + 121393 log(121393) + 317811 log(c) — 317811 log(317811),

which can be done in polynomial time via Baker’s

Theorem on Linear Forms in Logarithms [1967]!

i.e., you can attain complexity logO(l)(Dc)

[Bihan, Rojas, Stella, 2009]. o
o: é‘(/
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Sparsity over R

Discriminant Chambers and Liftings

We call any connected component of_the complement of
{ceR\ {0} | Afp,a,p3(c)=0}

a (reduced) discriminant chamber.

O @

=0 c

= 106418196418/317811191393121303/317811

~21.944526275...
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Sparsity over R

Discriminant Chambers and Liftings

We call any connected component of_the complement of
{ceR\ {0} | Afp,a,p3(c)=0}

a (reduced) discriminant chamber.

}
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c=0 c

= 106418196418/317811191393121303/317811

~21.944526275...
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Sparsity over R

Discriminant Chambers and Liftings

We call any connected component of_the complement of
{ceR\ {0} | Afp,a,p3(c)=0}

a (reduced) discriminant chamber.

./moviel
v
| '
° .L Bi - e o I @
ower Binomials
O{1+xf)} . {1—cx(f,—cxil+xf)}

c=0 c

= 106418196418/317811191393121303/317811

~21.944526275...
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Sparsity over R

One Variable Not So Trivial

22013

Counting the roots of f(z1):=1+ azl* + ba?"" + ca?”” + 2P
can be done within (D + log(abc))?™M) bit operations [Sturm,
1835],
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One Variable Not So Trivial

22013

Counting the roots of f(z1):=1+ azl* + ba?"" + ca?”” + 2P
can be done within (D + log(abc))?™M) bit operations [Sturm,
1835], but can we attain complexity log®™") (Dabe)?
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Sparsity over R

One Variable Not So Trivial

22013

Counting the roots of f(z1):=1+ azl* + ba?"" + ca?”” + 2P
can be done within (D + log(abc))?™M) bit operations [Sturm,
1835], but can we attain complexity log®™") (Dabe)?

Indeed, while f has no more than 8 real roots, computational
algebra and numerical algebraic geometry do not (yet) give us
such a speed-up.
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Sparsity over R

One Variable Not So Trivial

22013

Counting the roots of f(z1):=1+ azl* + ba?"" + ca?”” + 2P
can be done within (D + log(abc))?™M) bit operations [Sturm,
1835], but can we attain complexity log®™") (Dabe)?

Indeed, while f has no more than 8 real roots, computational
algebra and numerical algebraic geometry do not (yet) give us
such a speed-up. However, you can go faster if you use
A-discriminants...
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Sparsity over R

One Variable Not So Trivial

22013

Counting the roots of f(z1):=1+ azl + ba?"”" + ca?”” + 2P
can be done within (D + log(abc))?™M) bit operations [Sturm,
1835], but can we attain complexity log®™") (Dabe)?

Note: The support of f here is {0,14,2'% 22013 D}
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Sparsity over R

One Variable Not So Trivial

22013

Counting the roots of f(z1):=1+ azl + ba?"”" + ca?”” + 2P
can be done within (D + log(abc))?™M) bit operations [Sturm,
1835], but can we attain complexity log®™") (Dabe)?

Note: The support of f here is {0, 14,2129 92013 D} and we
can identify f with a point in R® (or R?).
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Sparsity over R

One Variable Not So Trivial

22013

Counting the roots of f(z1):=1+ azl + ba?"”" + ca?”” + 2P
can be done within (D + log(abc))?™M) bit operations [Sturm,
1835], but can we attain complexity log®™") (Dabe)?

Note: The support of f here is {0, 14,2129 92013 D} and we
can identify f with a point in R® (or R?). Also, it makes sense
to say that this f has size log(Dabc)...

J. Maurice Rojas A Real Analogue of Smale’s 17th



Sparsity over R

Faster Real Root Counting (One Variable)

Theorem (Ascher, Avendano, Rojas, Rusek, 2012)

For any finite subset ACZ of cardinality 1 + k and mazximum
coordinate absolute value D, there is a subset SqCR!TF
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Sparsity over R

Faster Real Root Counting (One Variable)

Theorem (Ascher, Avendano, Rojas, Rusek, 2012)

For any finite subset ACZ of cardinality 1 + k and mazximum
coordinate absolute value D, there is a subset S 4 CRT* with
stable log-uniform content 1

e {
ﬁ;\w*
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Sparsity over R

Faster Real Root Counting (One Variable)

Theorem (Ascher, Avendano, Rojas, Rusek, 2012)

For any finite subset ACZ of cardinality 1 + k and mazximum
coordinate absolute value D, there is a subset S 4 CRT* with
stable log-uniform content 1 such that, on any input f €S 4, one
can count exactly the number of positive roots of f

e {
ﬁ;\w*
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Sparsity over R

Faster Real Root Counting (One Variable)

Theorem (Ascher, Avendano, Rojas, Rusek, 2012)

For any finite subset ACZ of cardinality 1 + k and mazximum
coordinate absolute value D, there is a subset S 4 CRT* with
stable log-uniform content 1 such that, on any input f €S 4, one
can count exactly the number of positive roots of f within
O(k18 log D) time, relative to the BSS model over R.
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Sparsity over R

Faster Real Root Counting (One Variable)

Theorem (Ascher, Avendano, Rojas, Rusek, 2012)

For any finite subset ACZ of cardinality 1 + k and mazximum
coordinate absolute value D, there is a subset S 4 CRT* with
stable log-uniform content 1 such that, on any input f €S 4, one
can count exactly the number of positive roots of f within
O(k18 log D) time, relative to the BSS model over R.
Furthermore, restricting to inputs in S with integer
coefficients, we can do the same within

O(size(f)'™ + k'8log D) bit operations.

e {
ﬁ;\w*
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Sparsity over R

Faster Real Root Counting (One Variable)

Theorem (Ascher, Avendano, Rojas, Rusek, 2012)

For any finite subset ACZ of cardinality 1 + k and mazximum
coordinate absolute value D, there is a subset S 4 CRT* with
stable log-uniform content 1 such that, on any input f €S 4, one
can count exactly the number of positive roots of f within
O(k18 log D) time, relative to the BSS model over R.
Furthermore, restricting to inputs in S with integer
coefficients, we can do the same within

O(Size(f)l‘*']C + k¥ log D) bit operations. In particular, if
Baker’s refinement of the abc-Conjecture is true, then we can
improve the last bound to size(F)°M),

e {
ﬁ;\w*
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Sparsity over R

Chambers Can Be Complicated...

./movie2
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Sparsity over R

Sparsity in General

Consider fi,..., fn€R[z1,...,x,], each having exponent
vectors contained in the same set of n + k points.
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Sparsity over R

Sparsity in General

Consider fi,..., fn€R[z1,...,x,], each having exponent
vectors contained in the same set of n + k points. We call F a
(real) (n + k)-nomial n x n system.
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Sparsity over R

Sparsity in General

Consider fi,..., fn€R[z1,...,x,], each having exponent
vectors contained in the same set of n + k points. We call F a
(real) (n + k)-nomial n x n system.

For instance, the supports of

2012 —1 44 ,1006,,.—1
) + 372wy — 1

%012 —1 /1 .%'1006 —1 -1
3012 —|—646 1006 2—1 1

all lie in
{(0,0,0),(2012,0,-1),(0,1006, -1), (~1,2012,0),(-1,0,1006), (0, —1,2012), (1006, -1,0)}
and we thus have a 7-nomial 3 x 3 system.

o &
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Sparsity over R

Sparsity in General

Consider fi,..., fn€R[z1,...,x,], each having exponent
vectors contained in the same set of n + k points. We call F a
(real) (n + k)-nomial n x n system.

For instance, the supports of

2012 —1 44 ,1006,,.—1
) + 372wy — 1

—1 —1
%012 /1 .%'1006 -1

%OIQ —|—646 1006 2—1 1

all lie in
{(0,0,0),(2012,0,-1),(0,1006, -1), (~1,2012,0),(-1,0,1006), (0, —1,2012), (1006, -1,0)}

and we thus have a 7-nomial 3 x 3 system.

This system has exactly 8,144,865, 727 complex roots but no

more than 124 roots in ]Ri_. © : é‘?

&
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Sparsity over R

Sparsity in General

Consider fi,..., fn€R[z1,...,x,], each having exponent
vectors contained in the same set of n + k points. We call F a
(real) (n + k)-nomial n x n system.
For instance, the supports of

22012501 g;zllxéoo%gl 1

—1 —1
%012 /1 .%'1006 -1

%OIQ —|—646 1006 2—1 1

all lie in
{(0,0,0),(2012,0,-1),(0,1006, -1), (~1,2012,0),(-1,0,1006), (0, —1,2012), (1006, -1,0)}
and we thus have a 7-nomial 3 x 3 system.

This system has exactly 8,144,865, 727 complex roots but no .
more than 124 roots in R3. (See Khovanskii, Sottile, Bates, @ &=y:
Bihan, Rusek...) ¢
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Sparsity over R

Sparse Size

Consider fi,..., fn€R[x1,...,x,], each having exponent
vectors contained in the same set of n 4+ k points. We call F' a
(real) (n + k)-nomial n x n system.

For instance, the supports of

:L‘%ng + axd Ty T+1
Fi={ 23Pxt +baloyt +1

x%D:UZ + C$1D$2_1 +1
all lie in {(0,0,0), (D, —1,0),...} and we thus have a 7-nomial

3 X 3 system.

This system has exactly 8D — 1 complex roots but no more
than 124 roots in Ri.

’size(F) here is O(log(D) + log(a) + log(b) + log(c)).‘ T é" £
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Sparsity over R

Motivating Conjecture 1

Consider fi,..., fn€R[zy, ..., x,], each having exponent
vectors contained in the same set of n + k points. Let Q(n, k)
denote the maximal number of nondegenerate roots in R’} over
all such F'.
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Sparsity over R

Motivating Conjecture 1

Consider fi,..., fn€R[zy, ..., x,], each having exponent
vectors contained in the same set of n + k points. Let Q(n, k)
denote the maximal number of nondegenerate roots in R’} over
all such F'.

Local Fewnomial Conjecture (real case)

There are absolute constants C1,Co >0 such that for all n, k>1,
we have (n+ k — 1) mintnk=1h < Q(n k) < (n+ k — 1)C2mintnk=1},
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Sparsity over R

Motivating Conjecture 1

Consider fi,..., fn€R[zy, ..., x,], each having exponent
vectors contained in the same set of n + k points. Let Q(n, k)
denote the maximal number of nondegenerate roots in R’} over
all such F'.

Local Fewnomial Conjecture (real case)

There are absolute constants C1,Co >0 such that for all n, k>1,
we have (n+ k — 1) mintnk=1h < Q(n k) < (n+ k — 1)C2mintnk=1},

True for n=1 [Descartes, 1637] and k=1 [anon].

J. Maurice Rojas A Real Analogue of Smale’s 17th



Sparsity over R

Motivating Conjecture 1

Consider fi,..., fn€R[zy, ..., x,], each having exponent
vectors contained in the same set of n + k points. Let Q(n, k)
denote the maximal number of nondegenerate roots in R’} over
all such F'.

Local Fewnomial Conjecture (real case)

There are absolute constants C1,Co >0 such that for all n, k>1,
we have (n+ k — 1) mintnk=1h < Q(n k) < (n+ k — 1)C2mintnk=1},

True for n=1 [Descartes, 1637] and k=1 [anon|. Evidence in
general comes from [Khovanski, 1980s]|, [Rojas, 2004], [Bihan &
Sottile, 2007], [Bihan, Rojas, Sottile, 2007], and [Avendano,
Pébay, Rojas, Rusek, & Thompson, 2012].
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Sparsity over R

Real Analogue I of Smale’s 17th Problem

Consider fi,..., fn€R[z1,...,x,], each having exponent
vectors contained in the same set of n + k points. Let Q(n, k)
denote the maximal number of nondegenerate roots in R’}

Conjecture (Exact Counting over R)

Suppose we consider random F with mazimum exponent
coordinate D. Then there is a uniform algorithm that, in time
polynomial in Q(n, k) + log D, computes a positive integer that,
with high probability, is exactly the number of roots of F with all
coordinates positive.

P £
aan
N 1

o1
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Chamber Cuttings

2 x 2 Trinomial Systems

The discriminant polynomial A(a,b) for
~ [y 4 agB? — 28240
T 2t byS2 - 40y82
has degree 23206 and coeflicients having thousands of digits:

hopeless on any computer algebra system...
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Chamber Cuttings

2 x 2 Trinomial Systems

The discriminant polynomial A(a,b) for
_ gt 4 azd? — 182440
= 24l 4 byB2 — 240,82
has degree 23206 and coeflicients having thousands of digits:

hopeless on any computer algebra system...

...however, the Horn-Kapranov Uniformization
parametrizes the underlying zero set with a one-line formula!

o &
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Chamber Cuttings

Horn-Kapranov Uniformization

Succinctly,
b {a1y41 + aga®? + azx®yt
. b13341 + b2y82 4 b3$40y82 )
has discriminant variety V4 C IP’?C parametrized via
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Chamber Cuttings

Horn-Kapranov Uniformization

Succinctly,
b {a1y41 + aga®? + azx®yt
. b13341 + b2y82 4 b3$40y82 )
has discriminant variety V4 C IP’?C parametrized via

{(ABT) ot | xeC? ,te(C*)3},
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Chamber Cuttings

Horn-Kapranov Uniformization

Succinctly,
b {a1y41 + aga®? + azx®yt
. b13341 + b2y82 4 b3$40y82 )
has discriminant variety V4 C IP’?C parametrized via

{(ABT) ot | xeC? ,te(C*)3},

0 8 82 41 0 40
where A = [41 0 40 0o 82 82| and the columns of B are any
00 0 1 1 1

basis for the right nullspace of A= [1 .A 1} .
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Chamber Cuttings

Horn-Kapranov Uniformization

Succinctly,
b {a1y41 + aga®? + azx®yt
. b13341 + b2y82 4 b3$40 82 »
has discriminant variety V4 C IP’(C parametrized via

{(ABT) ot | xeC? ,te(C*)3},
0 82 82 41 0 40
where 4 = [41 0 40 0 82 82} and the columns of B are any
00 0 1 1 1
. . ~ 1 .- 1
basis for the right nullspace of A:= A .
So let’s consider the amoeba of V 4(R), i.e., the image of the
real part under Log| - |... 0 é‘?

L
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Chamber Cuttings

Inner/Outer Chambers
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Chamber Cuttings

Walls and Chamber Cuttings
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Chamber Cuttings

Cutting Complex in Higher Dimensions

./movie3
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Chamber Cuttings

Lower Binomial Systems

./movied
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Chamber Cuttings

One Sparse Multivariate Polynomial

Theorem (Avendano, Pébay, Rojas, Rusek, Thompson, 2012)

For any finite subset ACZ"™ of cardinality n + k and maximum
coordinate absolute value D, there is a subset Sy C F 4
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Chamber Cuttings

One Sparse Multivariate Polynomial

Theorem (Avendano, Pébay, Rojas, Rusek, Thompson, 2012)

For any finite subset ACZ"™ of cardinality n + k and maximum
coordinate absolute value D, there is a subset S C F 4 with
stable log-uniform content 1
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Chamber Cuttings

One Sparse Multivariate Polynomial

Theorem (Avendano, Pébay, Rojas, Rusek, Thompson, 2012)

For any finite subset ACZ"™ of cardinality n + k and maximum
coordinate absolute value D, there is a subset S C F 4 with
stable log-uniform content 1 such that, on any input FF€S4, one
can count exactly the number of connected components of the
positive zero set of F'

€
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Chamber Cuttings

One Sparse Multivariate Polynomial

Theorem (Avendano, Pébay, Rojas, Rusek, Thompson, 2012)

For any finite subset ACZ"™ of cardinality n + k and maximum
coordinate absolute value D, there is a subset S C F 4 with
stable log-uniform content 1 such that, on any input FF€S4, one
can count exactly the number of connected components of the
positive zero set of F within O((n + o)l o= o D)
time, relative to the BSS model over R.

€
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Chamber Cuttings

One Sparse Multivariate Polynomial

Theorem (Avendano, Pébay, Rojas, Rusek, Thompson, 2012)

For any finite subset ACZ"™ of cardinality n + k and maximum
coordinate absolute value D, there is a subset S C F 4 with
stable log-uniform content 1 such that, on any input FF€S4, one
can count exactly the number of connected components of the
positive zero set of F within O((n + o)l o= o D)
time, relative to the BSS model over R. Furthermore,
restricting to inputs in S 4 with integer coefficients, we can do
the same within O (size(F)"** + (n + k)35 min{ntLk=1}+1 150 D)
bit operations.

€
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Chamber Cuttings

One Sparse Multivariate Polynomial

Theorem (Avendano, Pébay, Rojas, Rusek, Thompson, 2012)

For any finite subset ACZ"™ of cardinality n + k and maximum
coordinate absolute value D, there is a subset S C F 4 with
stable log-uniform content 1 such that, on any input FF€S4, one
can count exactly the number of connected components of the
positive zero set of F within O((n + o)l o= o D)
time, relative to the BSS model over R. Furthermore,
restricting to inputs in S 4 with integer coefficients, we can do
the same within O (size(F)"** + (n + k)35 min{ntLk=1}+1 150 D)
bit operations. In particular, if Baker’s refinement of the
abc-Congecture is true, then we can improve the last bound to
polynomial in size(F)™{n+1k-1}

€
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Chamber Cuttings

e ol -
Polynomial Exponent Vectors Coe. cients yie d Optimal Start
System yield data structure point location  — Systems for
[ problem Polyhedral Homotopy

6L

JcQD—I—ayD—z al
y?P bl — g
220 4 el -y

-2t

4} ¥

-2-1 0

J. Maurice Rojas A Real Analogue of Smale’s 17th



Chamber Cuttings

Log|V 4| as a surface

...let’s see how the complement of the last line arrangement
parametrizes the underlying .A-discriminant amoeba...

./movieb

(thanks to Korben Rusek)
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Q? Thank you for listening!

...and Happy Birthday Mike!
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