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Applications of Solving Real Polynomial Systems

Maximum Likelihood Estimation in UQ

Satellite Orbit Design, Geometric Modelling...

Refined bounds help in complexity theory
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Consider f1, . . . , fn∈C[x1, . . . , xn] with maximal degree D.
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Can a zero of n complex polynomial equations
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Consider f1, . . . , fn∈C[x1, . . . , xn] with maximal degree D.
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Can a zero of n complex polynomial equations in n unknowns be
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Consider f1, . . . , fn∈C[x1, . . . , xn] with maximal degree D.

Smale’s 17th Problem

Can a zero of n complex polynomial equations in n unknowns be
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Consider f1, . . . , fn∈C[x1, . . . , xn] with maximal degree D.

Smale’s 17th Problem

Can a zero of n complex polynomial equations in n unknowns be
found approximately, on the average, in polynomial time with a
uniform algorithm?

Major recent progress has come from two near-solutions:
[Beltran & Pardo, 2008] and [Bürgisser & Cucker, 2010].
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Motivating Problem/Theorem

Consider f1, . . . , fn∈C[x1, . . . , xn] with maximal degree D.

Smale’s 17th Problem

Can a zero of n complex polynomial equations in n unknowns be
found approximately, on the average, in polynomial time with a
uniform algorithm?

Major recent progress has come from two near-solutions:
[Beltran & Pardo, 2008] and [Bürgisser & Cucker, 2010].

Resulting complexity bound is

(
d+ n

n

)O(1)

, but the real case is

of greater importance in certain settings.
Can you go faster over the reals?
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Warm-Up: One Variable, Three Terms

Can you decide whether
1 + cxd1 + xD1 (0<d<D)

has 0, 1, or 2 positive roots, using a number of bit operations
sub-linear in D + log c?
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Warm-Up: One Variable, Three Terms

You can decide whether
1− cx1964181 + x3178111

has 0, 1, or 2 positive roots, by checking whether
∆{0,196418,317811}(1,−c, 1) :=196418196418121393121393c317811 − 317811317811

is <0, =0, or >0.
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Warm-Up: One Variable, Three Terms

You can decide whether
1− cx1964181 + x3178111

has 0, 1, or 2 positive roots, by checking whether
∆{0,196418,317811}(1,−c, 1) :=196418196418121393121393c317811 − 317811317811

is <0, =0, or >0.

...and the preceding condition = checking the sign of
196418 log(196418) + 121393 log(121393) + 317811 log(c)− 317811 log(317811),
which can be done in polynomial time via Baker’s
Theorem on Linear Forms in Logarithms [1967]!
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Warm-Up: One Variable, Three Terms

You can decide whether
1− cx1964181 + x3178111

has 0, 1, or 2 positive roots, by checking whether
∆{0,196418,317811}(1,−c, 1) :=196418196418121393121393c317811 − 317811317811

is <0, =0, or >0.

...and the preceding condition = checking the sign of
196418 log(196418) + 121393 log(121393) + 317811 log(c)− 317811 log(317811),
which can be done in polynomial time via Baker’s
Theorem on Linear Forms in Logarithms [1967]!
i.e., you can attain complexity logO(1)(Dc)
[Bihan, Rojas, Stella, 2009].
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We call any connected component of the complement of
{c∈R \ {0} | ∆̄{0,d,D}(c)=0}

a (reduced) discriminant chamber.

c=0
≈1.944526275...

c= 317811
196418196418/317811121393121393/317811
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a (reduced) discriminant chamber.

c=0
≈1.944526275...

c= 317811
196418196418/317811121393121393/317811

{1 + xD1 }
Lower Binomials

J. Maurice Rojas A Real Analogue of Smale’s 17th



Outline
Motivation

Sparsity over R

Chamber Cuttings

Discriminant Chambers and Liftings

We call any connected component of the complement of
{c∈R \ {0} | ∆̄{0,d,D}(c)=0}

a (reduced) discriminant chamber.

c=0
≈1.944526275...

c= 317811
196418196418/317811121393121393/317811

{1 + xD1 }
Lower Binomials

./movie1

{1− cxd1,−cxd1 + xD1 }
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One Variable Not So Trivial

Counting the roots of f(x1) :=1 + ax141 + bx2
129

1 + cx2
2013

1 + xD

can be done within (D + log(abc))O(1) bit operations [Sturm,
1835],
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Counting the roots of f(x1) :=1 + ax141 + bx2
129

1 + cx2
2013

1 + xD

can be done within (D + log(abc))O(1) bit operations [Sturm,
1835], but can we attain complexity logO(1)(Dabc)?

Indeed, while f has no more than 8 real roots, computational
algebra and numerical algebraic geometry do not (yet) give us
such a speed-up.
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One Variable Not So Trivial

Counting the roots of f(x1) :=1 + ax141 + bx2
129

1 + cx2
2013

1 + xD

can be done within (D + log(abc))O(1) bit operations [Sturm,
1835], but can we attain complexity logO(1)(Dabc)?

Indeed, while f has no more than 8 real roots, computational
algebra and numerical algebraic geometry do not (yet) give us
such a speed-up. However, you can go faster if you use
A-discriminants...
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Counting the roots of f(x1) :=1 + ax141 + bx2
129

1 + cx2
2013

1 + xD

can be done within (D + log(abc))O(1) bit operations [Sturm,
1835], but can we attain complexity logO(1)(Dabc)?

Note: The support of f here is
{
0, 14, 2129, 22013, D

}
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Counting the roots of f(x1) :=1 + ax141 + bx2
129

1 + cx2
2013

1 + xD

can be done within (D + log(abc))O(1) bit operations [Sturm,
1835], but can we attain complexity logO(1)(Dabc)?

Note: The support of f here is
{
0, 14, 2129, 22013, D

}
and we

can identify f with a point in R
5 (or R3).
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One Variable Not So Trivial

Counting the roots of f(x1) :=1 + ax141 + bx2
129

1 + cx2
2013

1 + xD

can be done within (D + log(abc))O(1) bit operations [Sturm,
1835], but can we attain complexity logO(1)(Dabc)?

Note: The support of f here is
{
0, 14, 2129, 22013, D

}
and we

can identify f with a point in R
5 (or R3). Also, it makes sense

to say that this f has size log(Dabc)...
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Faster Real Root Counting (One Variable)

Theorem (Ascher, Avendano, Rojas, Rusek, 2012)

For any finite subset A⊂Z of cardinality 1 + k and maximum
coordinate absolute value D, there is a subset SA⊆R

1+k
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Theorem (Ascher, Avendano, Rojas, Rusek, 2012)

For any finite subset A⊂Z of cardinality 1 + k and maximum
coordinate absolute value D, there is a subset SA⊆R
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Theorem (Ascher, Avendano, Rojas, Rusek, 2012)

For any finite subset A⊂Z of cardinality 1 + k and maximum
coordinate absolute value D, there is a subset SA⊆R

1+k with
stable log-uniform content 1 such that, on any input f ∈SA, one
can count exactly the number of positive roots of f
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Faster Real Root Counting (One Variable)

Theorem (Ascher, Avendano, Rojas, Rusek, 2012)

For any finite subset A⊂Z of cardinality 1 + k and maximum
coordinate absolute value D, there is a subset SA⊆R

1+k with
stable log-uniform content 1 such that, on any input f ∈SA, one
can count exactly the number of positive roots of f within
O
(
k18 logD

)
time, relative to the BSS model over R.
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Faster Real Root Counting (One Variable)

Theorem (Ascher, Avendano, Rojas, Rusek, 2012)

For any finite subset A⊂Z of cardinality 1 + k and maximum
coordinate absolute value D, there is a subset SA⊆R

1+k with
stable log-uniform content 1 such that, on any input f ∈SA, one
can count exactly the number of positive roots of f within
O
(
k18 logD

)
time, relative to the BSS model over R.

Furthermore, restricting to inputs in SA with integer
coefficients, we can do the same within
O
(
size(f)1+k + k18 logD

)
bit operations.
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Faster Real Root Counting (One Variable)

Theorem (Ascher, Avendano, Rojas, Rusek, 2012)

For any finite subset A⊂Z of cardinality 1 + k and maximum
coordinate absolute value D, there is a subset SA⊆R

1+k with
stable log-uniform content 1 such that, on any input f ∈SA, one
can count exactly the number of positive roots of f within
O
(
k18 logD

)
time, relative to the BSS model over R.

Furthermore, restricting to inputs in SA with integer
coefficients, we can do the same within
O
(
size(f)1+k + k18 logD

)
bit operations. In particular, if

Baker’s refinement of the abc-Conjecture is true, then we can
improve the last bound to size(F )O(1).
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Chambers Can Be Complicated...
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Sparsity in General

Consider f1, . . . , fn∈R[x1, . . . , xn], each having exponent
vectors contained in the same set of n+ k points.
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Sparsity in General

Consider f1, . . . , fn∈R[x1, . . . , xn], each having exponent
vectors contained in the same set of n+ k points. We call F a
(real) (n+ k)-nomial n× n system.
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Sparsity in General

Consider f1, . . . , fn∈R[x1, . . . , xn], each having exponent
vectors contained in the same set of n+ k points. We call F a
(real) (n+ k)-nomial n× n system.

For instance, the supports of
x20121 x−1

3 + 44
31x

1006
2 x−1

3 − 1

x20122 x−1
1 −

√
12x10063 x−1

1 − 1
x20123 x−1

2 + e46x10061 x−1
2 − 1

all lie in
{(0, 0, 0), (2012, 0,−1), (0, 1006,−1), (−1, 2012, 0), (−1, 0, 1006), (0,−1, 2012), (1006,−1, 0)}
and we thus have a 7-nomial 3× 3 system.
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Sparsity in General

Consider f1, . . . , fn∈R[x1, . . . , xn], each having exponent
vectors contained in the same set of n+ k points. We call F a
(real) (n+ k)-nomial n× n system.

For instance, the supports of
x20121 x−1

3 + 44
31x

1006
2 x−1

3 − 1

x20122 x−1
1 −

√
12x10063 x−1

1 − 1
x20123 x−1

2 + e46x10061 x−1
2 − 1

all lie in
{(0, 0, 0), (2012, 0,−1), (0, 1006,−1), (−1, 2012, 0), (−1, 0, 1006), (0,−1, 2012), (1006,−1, 0)}
and we thus have a 7-nomial 3× 3 system.

This system has exactly 8, 144, 865, 727 complex roots but no
more than 124 roots in R

3
+.
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Sparsity in General

Consider f1, . . . , fn∈R[x1, . . . , xn], each having exponent
vectors contained in the same set of n+ k points. We call F a
(real) (n+ k)-nomial n× n system.

For instance, the supports of
x20121 x−1

3 + 44
31x

1006
2 x−1

3 − 1

x20122 x−1
1 −

√
12x10063 x−1

1 − 1
x20123 x−1

2 + e46x10061 x−1
2 − 1

all lie in
{(0, 0, 0), (2012, 0,−1), (0, 1006,−1), (−1, 2012, 0), (−1, 0, 1006), (0,−1, 2012), (1006,−1, 0)}
and we thus have a 7-nomial 3× 3 system.

This system has exactly 8, 144, 865, 727 complex roots but no
more than 124 roots in R

3
+. (See Khovanskii, Sottile, Bates,

Bihan, Rusek...)
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Sparse Size

Consider f1, . . . , fn∈R[x1, . . . , xn], each having exponent
vectors contained in the same set of n+ k points. We call F a
(real) (n+ k)-nomial n× n system.

For instance, the supports of

F :=





x2D1 x−1
3 + axD2 x

−1
3 ± 1

x2D2 x−1
1 + bxD3 x

−1
1 ± 1

x2D3 x−1
2 + cxD1 x

−1
2 ± 1

all lie in {(0, 0, 0), (D,−1, 0), . . .} and we thus have a 7-nomial
3× 3 system.

This system has exactly 8D3 − 1 complex roots but no more
than 124 roots in R

3
+.

size(F ) here is O(log(D) + log(a) + log(b) + log(c)).
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Motivating Conjecture 1

Consider f1, . . . , fn∈R[x1, . . . , xn], each having exponent
vectors contained in the same set of n+ k points. Let Ω(n, k)
denote the maximal number of nondegenerate roots in R

n
+ over

all such F .
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Motivating Conjecture 1

Consider f1, . . . , fn∈R[x1, . . . , xn], each having exponent
vectors contained in the same set of n+ k points. Let Ω(n, k)
denote the maximal number of nondegenerate roots in R

n
+ over

all such F .

Local Fewnomial Conjecture (real case)

There are absolute constants C1, C2>0 such that for all n, k≥1,
we have (n+ k − 1)C1 min{n,k−1} ≤ Ω(n, k) ≤ (n+ k − 1)C2 min{n,k−1}.
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Motivating Conjecture 1

Consider f1, . . . , fn∈R[x1, . . . , xn], each having exponent
vectors contained in the same set of n+ k points. Let Ω(n, k)
denote the maximal number of nondegenerate roots in R

n
+ over

all such F .

Local Fewnomial Conjecture (real case)

There are absolute constants C1, C2>0 such that for all n, k≥1,
we have (n+ k − 1)C1 min{n,k−1} ≤ Ω(n, k) ≤ (n+ k − 1)C2 min{n,k−1}.

True for n=1 [Descartes, 1637] and k=1 [anon].
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Motivating Conjecture 1

Consider f1, . . . , fn∈R[x1, . . . , xn], each having exponent
vectors contained in the same set of n+ k points. Let Ω(n, k)
denote the maximal number of nondegenerate roots in R

n
+ over

all such F .

Local Fewnomial Conjecture (real case)

There are absolute constants C1, C2>0 such that for all n, k≥1,
we have (n+ k − 1)C1 min{n,k−1} ≤ Ω(n, k) ≤ (n+ k − 1)C2 min{n,k−1}.

True for n=1 [Descartes, 1637] and k=1 [anon]. Evidence in
general comes from [Khovanski, 1980s], [Rojas, 2004], [Bihan &
Sottile, 2007], [Bihan, Rojas, Sottile, 2007], and [Avendaño,
Pébay, Rojas, Rusek, & Thompson, 2012].
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Real Analogue I of Smale’s 17th Problem

Consider f1, . . . , fn∈R[x1, . . . , xn], each having exponent
vectors contained in the same set of n+ k points. Let Ω(n, k)
denote the maximal number of nondegenerate roots in R

n
+

Conjecture (Exact Counting over R)

Suppose we consider random F with maximum exponent
coordinate D. Then there is a uniform algorithm that, in time
polynomial in Ω(n, k) + logD, computes a positive integer that,
with high probability, is exactly the number of roots of F with all
coordinates positive.
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2× 2 Trinomial Systems

The discriminant polynomial ∆(a, b) for

F̃ :=

{
y41 + ax82 − x82y40

x41 + by82 − x40y82

has degree 23206 and coefficients having thousands of digits:
hopeless on any computer algebra system...
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2× 2 Trinomial Systems

The discriminant polynomial ∆(a, b) for

F̃ :=

{
y41 + ax82 − x82y40

x41 + by82 − x40y82

has degree 23206 and coefficients having thousands of digits:
hopeless on any computer algebra system...

...however, the Horn-Kapranov Uniformization
parametrizes the underlying zero set with a one-line formula!
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Horn-Kapranov Uniformization

Succinctly,

F :=

{
a1y

41 + a2x
82 + a3x

82y40

b1x
41 + b2y

82 + b3x
40y82

,

has discriminant variety ∇A ⊂ P
5
C
parametrized via
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Horn-Kapranov Uniformization

Succinctly,

F :=

{
a1y

41 + a2x
82 + a3x

82y40

b1x
41 + b2y

82 + b3x
40y82

,

has discriminant variety ∇A ⊂ P
5
C
parametrized via

{(
λBT

)
⊙ tA

∣∣ λ∈C
2 , t∈(C∗)3

}
,
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Horn-Kapranov Uniformization

Succinctly,

F :=

{
a1y

41 + a2x
82 + a3x

82y40

b1x
41 + b2y

82 + b3x
40y82

,

has discriminant variety ∇A ⊂ P
5
C
parametrized via

{(
λBT

)
⊙ tA

∣∣ λ∈C
2 , t∈(C∗)3

}
,

where A =



0 82 82 41 0 40
41 0 40 0 82 82
0 0 0 1 1 1


 and the columns of B are any

basis for the right nullspace of Â :=

[
1 · · · 1

A

]
.

J. Maurice Rojas A Real Analogue of Smale’s 17th



Outline
Motivation

Sparsity over R

Chamber Cuttings

Horn-Kapranov Uniformization

Succinctly,

F :=

{
a1y

41 + a2x
82 + a3x

82y40

b1x
41 + b2y

82 + b3x
40y82

,

has discriminant variety ∇A ⊂ P
5
C
parametrized via

{(
λBT

)
⊙ tA

∣∣ λ∈C
2 , t∈(C∗)3

}
,

where A =



0 82 82 41 0 40
41 0 40 0 82 82
0 0 0 1 1 1


 and the columns of B are any

basis for the right nullspace of Â :=

[
1 · · · 1

A

]
.

So let’s consider the amoeba of ∇A(R), i.e., the image of the
real part under Log| · |...
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Inner/Outer Chambers
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Walls and Chamber Cuttings
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Cutting Complex in Higher Dimensions

./movie3
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Lower Binomial Systems

./movie4
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One Sparse Multivariate Polynomial

Theorem (Avendano, Pébay, Rojas, Rusek, Thompson, 2012)

For any finite subset A⊂Z
n of cardinality n+ k and maximum

coordinate absolute value D, there is a subset SA⊆FA

J. Maurice Rojas A Real Analogue of Smale’s 17th



Outline
Motivation

Sparsity over R

Chamber Cuttings

One Sparse Multivariate Polynomial

Theorem (Avendano, Pébay, Rojas, Rusek, Thompson, 2012)

For any finite subset A⊂Z
n of cardinality n+ k and maximum

coordinate absolute value D, there is a subset SA⊆FA with
stable log-uniform content 1
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One Sparse Multivariate Polynomial

Theorem (Avendano, Pébay, Rojas, Rusek, Thompson, 2012)

For any finite subset A⊂Z
n of cardinality n+ k and maximum

coordinate absolute value D, there is a subset SA⊆FA with
stable log-uniform content 1 such that, on any input F ∈SA, one
can count exactly the number of connected components of the
positive zero set of F
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One Sparse Multivariate Polynomial

Theorem (Avendano, Pébay, Rojas, Rusek, Thompson, 2012)

For any finite subset A⊂Z
n of cardinality n+ k and maximum

coordinate absolute value D, there is a subset SA⊆FA with
stable log-uniform content 1 such that, on any input F ∈SA, one
can count exactly the number of connected components of the
positive zero set of F within O

(
(n+ k)8.5min{n+1,k−1}+1 logD

)

time, relative to the BSS model over R.
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One Sparse Multivariate Polynomial

Theorem (Avendano, Pébay, Rojas, Rusek, Thompson, 2012)

For any finite subset A⊂Z
n of cardinality n+ k and maximum

coordinate absolute value D, there is a subset SA⊆FA with
stable log-uniform content 1 such that, on any input F ∈SA, one
can count exactly the number of connected components of the
positive zero set of F within O

(
(n+ k)8.5min{n+1,k−1}+1 logD

)

time, relative to the BSS model over R. Furthermore,
restricting to inputs in SA with integer coefficients, we can do
the same within O

(
size(F )n+k + (n+ k)8.5min{n+1,k−1}+1 logD

)

bit operations.
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One Sparse Multivariate Polynomial

Theorem (Avendano, Pébay, Rojas, Rusek, Thompson, 2012)

For any finite subset A⊂Z
n of cardinality n+ k and maximum

coordinate absolute value D, there is a subset SA⊆FA with
stable log-uniform content 1 such that, on any input F ∈SA, one
can count exactly the number of connected components of the
positive zero set of F within O

(
(n+ k)8.5min{n+1,k−1}+1 logD

)

time, relative to the BSS model over R. Furthermore,
restricting to inputs in SA with integer coefficients, we can do
the same within O

(
size(F )n+k + (n+ k)8.5min{n+1,k−1}+1 logD

)

bit operations. In particular, if Baker’s refinement of the
abc-Conjecture is true, then we can improve the last bound to
polynomial in size(F )min{n+1,k−1}.
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Idea

−2 −1 0

−6

−4

−2

0

2

4

6

x2D + ayD − z

y2D + bzD − x

z2D + cxD − y

Polynomial
System

−→ Exponent Vectors
yield data structure

−→
Coefficients yield
point location

problem
−→

Optimal Start
Systems for

Polyhedral Homotopy
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Log|∇A| as a surface

...let’s see how the complement of the last line arrangement
parametrizes the underlying A-discriminant amoeba...

./movie5

(thanks to Korben Rusek)
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♥♥♥ Thank you for listening!

...and Happy Birthday Mike!
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The abc-Conjecture

Let a, b, c∈N with no common factors and a+ b=c.
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The abc-Conjecture

Let a, b, c∈N with no common factors and a+ b=c. Also let
Rad(n) :=

∏
p|n and p prime

p.
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The abc-Conjecture

Let a, b, c∈N with no common factors and a+ b=c. Also let
Rad(n) :=

∏
p|n and p prime

p.

abc [Masser, Oesterlé, 1985]: For any ε>0, and all
such a, b, c, there is a constant Kε>0 with
c<KεRad(abc)

1+ε.
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The abc-Conjecture

Let a, b, c∈N with no common factors and a+ b=c. Also let
Rad(n) :=

∏
p|n and p prime

p.

abc [Masser, Oesterlé, 1985]: For any ε>0, and all
such a, b, c, there is a constant Kε>0 with
c<KεRad(abc)

1+ε.
Baker’s Refined abc [1998]: Define
ω(n) :=

∑
p|n and p prime

1. Then for all such a, b, c,

c=O
(
logω(abc) Rad(abc)

ω(abc)! Rad(abc)
)
.
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The abc-Conjecture

Let a, b, c∈N with no common factors and a+ b=c. Also let
Rad(n) :=

∏
p|n and p prime

p.

abc [Masser, Oesterlé, 1985]: For any ε>0, and all
such a, b, c, there is a constant Kε>0 with
c<KεRad(abc)

1+ε.
Baker’s Refined abc [1998]: Define
ω(n) :=

∑
p|n and p prime

1. Then for all such a, b, c,

c=O
(
logω(abc) Rad(abc)

ω(abc)! Rad(abc)
)
.

abc implies:
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The abc-Conjecture

Let a, b, c∈N with no common factors and a+ b=c. Also let
Rad(n) :=

∏
p|n and p prime

p.

abc [Masser, Oesterlé, 1985]: For any ε>0, and all
such a, b, c, there is a constant Kε>0 with
c<KεRad(abc)

1+ε.
Baker’s Refined abc [1998]: Define
ω(n) :=

∑
p|n and p prime

1. Then for all such a, b, c,

c=O
(
logω(abc) Rad(abc)

ω(abc)! Rad(abc)
)
.

abc implies: (1) Effective Falting’s Theorem [Elkies,
1991],
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The abc-Conjecture

Let a, b, c∈N with no common factors and a+ b=c. Also let
Rad(n) :=

∏
p|n and p prime

p.

abc [Masser, Oesterlé, 1985]: For any ε>0, and all
such a, b, c, there is a constant Kε>0 with
c<KεRad(abc)

1+ε.
Baker’s Refined abc [1998]: Define
ω(n) :=

∑
p|n and p prime

1. Then for all such a, b, c,

c=O
(
logω(abc) Rad(abc)

ω(abc)! Rad(abc)
)
.

abc implies: (1) Effective Falting’s Theorem [Elkies,
1991], (2) Effective∗ Roth’s Theorem [Bombieri, 1994;
Surroca 2007],
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The abc-Conjecture

Let a, b, c∈N with no common factors and a+ b=c. Also let
Rad(n) :=

∏
p|n and p prime

p.

abc [Masser, Oesterlé, 1985]: For any ε>0, and all
such a, b, c, there is a constant Kε>0 with
c<KεRad(abc)

1+ε.
Baker’s Refined abc [1998]: Define
ω(n) :=

∑
p|n and p prime

1. Then for all such a, b, c,

c=O
(
logω(abc) Rad(abc)

ω(abc)! Rad(abc)
)
.

abc implies: (1) Effective Falting’s Theorem [Elkies,
1991], (2) Effective∗ Roth’s Theorem [Bombieri, 1994;
Surroca 2007], (3)∗ non-existence of Siegel zeroes for
certain L-functions [Granville, 2000].
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The abc-Conjecture

Let a, b, c∈N with no common factors and a+ b=c. Also let
Rad(n) :=

∏
p|n and p prime

p.

abc [Masser, Oesterlé, 1985]: For any ε>0, and all
such a, b, c, there is a constant Kε>0 with
c<KεRad(abc)

1+ε.
Baker’s Refined abc [1998]: Define
ω(n) :=

∑
p|n and p prime

1. Then for all such a, b, c,

c=O
(
logω(abc) Rad(abc)

ω(abc)! Rad(abc)
)
.

abc implies: (1) Effective Falting’s Theorem [Elkies,
1991], (2) Effective∗ Roth’s Theorem [Bombieri, 1994;
Surroca 2007], (3)∗ non-existence of Siegel zeroes for
certain L-functions [Granville, 2000]. Conversely, suitably
sharp versions of (1) or (2) imply variants of abc!
[Surroca 2007, van Frankenhuysen 2007]J. Maurice Rojas A Real Analogue of Smale’s 17th
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