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Gaps ...

Duality gaps: convex problems, combinatorial optimization
problems

Optimality gaps: how close to optimality can we solve problems
in various classes?

Algorithmic gaps in our understanding and in bounds for
iteration complexity of convex programming.



Algorithmic Gaps

Gaps between the worst-case and typical-case behavior of an
algorithm (or in the theory supporting an algorithm).

Prime example: the simplex method for linear programming:
min{c'z: Az =05, x>0},
where A is m X n.

For (almost) all (local) pivoting rules, there is a family of
instances requiring an exponential (in the dimension) number or
iterations.

In practice, for (almost) all instances, the number of iterations
grows (almost) linearly in the smaller dimension of the problem.

An exponential gap!



Related Theory

There is an (almost) exponential gap between the upper and
lower bounds known on the diameter of a polytope:

a d-polytope with n-facets has diameter at most

n2+10g(d)

(Kalai and Kleitman);

there are pairs (d,n) and d-polytopes with n facets and

diameter at least
2y
200 "

(Santos, improved by Matschke-Santos-Weibel).

How can we explain the good behavior of the simplex method
in practice?



Probabilistic Analysis

There is a family of distributions on triples (A,b,¢) (A an
m X m matrix, b an m-vector, ¢ an n-vector) so that

Theorem 1 (Adler-Karp-Shamir, Adler-Megiddo, T., 1983) If
the data for a linear programming problem is drawn from a
distribution in this family, the expected number of iterations for
a particular simplex variant to “solve” the instance is at most

m2+5m+11 2d> +5d+5
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where d :=n — m.

There is related work by Smale, Borgwardt, Haimovich, and
others.



Smoothed Analysis

Theorem 2 (Spielman and Teng, 2004) For any (A, b, c), if the
data of a linear programming problem are drawn independently
from Gaussian distributions centered at (A, b, c) with variances
o, then the expected number of iterations of a particular
simplex variant to solve the problem is polynomial in m, n, and

1/o.

This is a beautiful interpolation between worst-case and
average-case analyses.

But now we have polynomial algorithms for LP! What's the big
deal?



Polynomial Algorithms, |

The ellipsoid method of Yudin-Nemirovskii (1976) and Shor
(1977), as applied to linear programming by Khachiyan (1979),
obtains an e-approximate solution to a linear programming
problem in O(d*In(1/¢)) iterations and O(n d*In(1/¢))
arithmetic operations. (d is the dimension, n the number of
inequalities.)

Polynomial, but it seems to need this many iterations, which is
not competitive with the simplex method in practice. No
exponential gap, but not the practical answer!



Polynomial Algorithms, II

Primal-dual interior-point methods obtain an e-approximate
solution to a linear programming problem in O(y/n1In(1/¢)) or
O(nln(1/e€)) iterations and O(n>?1In(1/€) or O(ntIn(1/e))
arithmetic operations.

Polynomial, but in practice these algorithms seem to need a
number of iterations which is either constant, or maybe grows
logarithmically with n. This is why they are successful in
practice.

Another exponential gap to be explained!



Polynomial Algorithms, IlI

Is this a real gap, or is the analysis too loose? We want lower
bounds, as given by the exponential instances for the simplex
method.

Megiddo-Shub (1989) showed that the affine-scaling algorithm
gave rise to trajectories which could visit small neighborhoods
of every vertex of the Klee-Minty cube. But this method had no
polynomial bound.

T. (1993) and T.-Ye (1996) show that, for a large class of
long-step primal-dual interior-point methods, the number of
iterations required to decrease the duality gap by a constant is

Q(nl/g).



Deza, Nematollahi, Terlaky, and Zinchenko (2008-2009) show
that the d-dimensional Klee-Minty cube can be defined using
n = O(d*2%?) constraints so that the central path visits small
neighborhoods of every vertex, so that closely-path-following

methods require
2d — () o
Inn

Thus it seems the upper bound is (close to) tight in the worst
case!

iterations.



Polynomial Algorithms, IV

There have been attempts to mirror the probabilistic or
smoothed analysis of the simplex method.

Nemirovskii (1987) for the projective algorithm, and Gonzaga
and T. (1992) and Mizuno, T., and Ye (1993) for primal-dual
algorithms, gave “plausibility” arguments that for “most”
problems, the number of iterations required would be
O(Innln(1/e)).

There have also been smoothed analyses of the termination
criteria or of condition numbers arising in the complexity of
interior-point methods (Spielman, Teng, and others).

Dedieu, Malajovich, and Shub (2005) showed that the average
curvature of the dual central paths in all the bounded feasible
regions corresponding to sign switches is at most

2mm

(improved slightly by De Loera, Sturmfels, and Vinzant).



First-order methods

There are also exponential gaps in the dependence of the
iteration complexity of certain algorithms on the accuracy e:

The minimum-volume ellipsoid problem asks for the smallest
d-dimensional ellipsoid centered at the origin that contains a set
of n points, and arises in computational geometry and, via its
dual, in optimal experiment design in statistics.



Figure 1: The minimum-volume ellipsoid problem.



Complexity Results

Khachiyan (1996) showed that a variant of the Frank-Wolfe
algorithm (also developed by the statisticians Fedorov and
Wynn) could obtain a d(1 + ¢)-rounding of the points in

1
O(nd*(= +Ind + Inlnn))
€
arithmetic operations.

Ahipasaoglu, Sun, and T. (2008) showed that a variant of this
method had linear convergence, so that it ultimately required

only
, 1
@, <1n )
€

Can a rigorous global bound with such a dependence on ¢ be
proved?

iterations.



Convergence like In(1/¢)
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Figure 2: Linear convergence of the error.



Conclusion

There are several intriguing challenges in optimization to
explain the excellent behavior of certain algorithms in practice
by removing the exponential gaps in our understanding!
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