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Lecture 2: Automorphic representations

1 Automorphic representations

Let G “ a connected reductive group over a number field k. We denote by A the ring of adeles of k. We will give
three different definitions of automorphic representations, underlining the standard one, and then we will explain the
connections between them. When no confusion arises, we set G “ GpAq (for instance, pG denotes the unitary dual –
the set of isomorphism classes of irreducible unitary representations (not to be confused with the dual group Ǧ) – of
GpAq; and Γ “ Gpkq.

Definition. An automorphic representation is an irreducible unitary representation that appears (i.e. is in the support
of Plancherel measure) in a Plancherel decomposition:

L2pΓzGq “

ż

pG

Hπµpπq.

(Every unitary representation of G has an essentially unique such decomposition into a direct integral of irreducibles
with multiplicities. Compare: the decomposition of L2pR{Zq or L2pRq into direct sums/integrals of one-dimensional
spaces spanned by unitary exponentials. However, here we will have both a continuous and a discrete (modulo center)
spectrum.

Definition. An automorphic representation is an admissible representation π of GpAq, together with an injective
morphism:

ν : π ãÑ C8pΓzGq.

An automorphic form is a (K8-finite) vector in the image of such a ν.

Admissible means: “each K-type has finite multiplicity” (where K denotes a “good” maximal compact subgroup of
GpAq), but it also implicitly means that we are in the category of representations π such that: as a representation of
Gpk̂q, π is smooth, i.e. every vector has an open stabilizer; and for fixed level (=compact open subgroup of Gpk̂q) Kf ,
πKf is a smooth representation of moderate growth (defined in the first lecture) of Gpk8q. Such a π is topologized as the
direct limit of the Fréchet spaces πKf over a basis of neighborhoods of the identity in Gpk̂q. Because of admissibility,
every K-finite vector generates a subrepresentation of finite length over

ś

vPS Gpkvq, for any finite set S of places.
This definition implies the usual moderate growth condition for automorphic forms, as well as the fact that they

are annihilated by an ideal of finite codimension in zpgq.

Definition. An automorphic representation is an irreducible subquotient of a representation π as in the previous defini-
tion.

I now explain how to go from the first to the third (more standard) definition. Langlands has proven that a
representation is automorphic if and only if it is a subquotient of a parabolically induced cuspidal automorphic repre-
sentation of a Levi subgroup. Since cuspidal representations are, up to twist by an idele class character of the group,

˚Last updated March 25, 2012. Thanks to Florian Herzig for many corrections and comments.
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in the discrete (modulo center) spectrum of L2pΓzGq, it is clear that if one is interested in knowing all automorphic
representations, it is enough to know only those which appear discretely in L2pΓzGq (and the analogous spaces for
Levi subgroups).

Now, an automorphic representation (as in the third, standard definition, hence irreducible) is a restricted tensor
product over all places:

π “ b1vπv,

where πv is an irreducible representation (in the same category as described in the second definition) of Gpkvq, which
is unramified for almost all (finite) v, i.e.: πGpovq

v ‰ 0 for almost all v – say for v R S.
We will discuss how to attach invariants to this representation, more precisely:

• Satake parameters ptvqvRS;

• infinitesimal character pλvqv|8.

2 L-group

Recall: the category of tori over a field k is (contravariantly) equivalent to the category of free, finitely generated
Z-modules with Galpk̄{kq-action (by passing from a torus to its character group).

Given a torus A over k, the dual torus (over, say, an algebraically closed field) is defined (because of this equivalence
of categories) by the condition X ˚pǍqk̄ “ Homk̄pǍ,Gmq “ Homk̄pGm, Aq “ X˚pAqk̄. We would like to think of
Ǎ as a split torus over Z (or the field over which our representations are defined in each particular case), hence
Ǎ “ specZrX˚pAqk̄s. It carries a natural action of Galpk̄{kq, induced from its action on the character group of A. The
L-group of A is the semidirect product:

LA “ Ǎ¸Galpk̄{kq.

Let G be a connected reductive group over k, and assume that it is quasisplit (i.e. has a Borel subgroup B over k).
Let N be the unipotent radical of B, and A “ B{N , a torus. (This torus doesn’t really depend on the choice of B, in
the sense that for any two choices there is a canonical isomorphism of the corresponding A’s, using the fact that all
Borels are conjugate, self-normalizing, and A is abelian; this torus A is called the “universal Cartan” of G.)

The adjoint representation of G gives rise to “root data”, which can be thought of as an embellishment of the
character and cocharacter groups of A by dual sets of roots (Φ) and coroots (Φ̌). There is an obvious symmetry in the
quadruple pX ˚pAq Ą Φ,X˚pAq Ą Φ̌q, and by switching the two abelian groups we get the data for a split dual group
Ǧ (over, say, Z), with maximal torus Ǎ and Galois action (not totally obvious) extending the Galois action on Ǎ. The
semidirect product:

LG “ Ǧ¸Galpk̄{kq

is the L-group of G.
The construction G ù LG is not functorial, but it is functorial with respect to homomorphisms which induce the

identity on adjoint groups. We discuss the following example (where we can forget about the action of Galois, because
it is trivial):

• Consider the sequence:
SL2 Ñ GL2 Ñ PGL2 .

We can identify the universal Cartan AGL of GL2 with G2
m by

ˆ

a ˚

b

˙

ÞÑ pa, bq, then ǍGL “ G2
m. On the

other hand, the characters of a Borel of PGL2 are those characters of AGL which vanish on the diagonal, i.e.
we can identify ǍPGL with the subgroup pχ, χ´1q of G2

m. Finally, the characters of ASL extend non-uniquely to
characters of AGL, and the kernel of the restriction map is all characters of the form pχ, χq. The dual tori Ǎ are
maximal tori for the following sequence of dual groups:

PGL2 Ð GL2 Ð SL2 .
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3 Satake isomorphism

Here v denotes a finite place, ov “ the integers of kv, Gv “ Gpkvq.
For any f P M8

c pGvq (compactly supported, smooth measures on Gv) we can define a convolution operator on
C8pGpkqzGpAqq (or any smooth representation, for that matter):

f ‹ Φpxq “

ż

G

Φpxgqfpgq.

Notice that for a compact open subgroup
ś

vă8Kv of the finite adeles of G, the Hecke algebra HpGv,Kvq :“
M8
c pGvq

KvˆKv preserves the subspace C8pGpkqzGpAq{
ś

vKvq. Now we assume that G has a reductive integral
model away from a finite number S of places, and v R S; this implies, in particular, that Gv is unramified (=it is
quasisplit, and splits over an unramified extension); and by enlarging S let us assume also that Kv “ Gpovq for v R S.
We will discuss the Hecke algebra HpGv,Kvq for such a v.

Theorem (Satake). Let G be unramified over kv; in particular, the decomposition group at v acts on Ǧ via its unramified
quotient 〈Frobv〉. Then there is a canonical isomorphism:

HpGv,Kvq “ CrǦ � Frobv-twisted conjugacys,

where � denotes the quotient in the category of affine varieties (i.e. by definition CrǦ � Frobv-twisted conjugacys “
CrǦsFrobv-twisted conjugacy).

If Gv is split, this is the same as CrǍ{W s, where Ǎ is the dual of the abstract Cartan and W is the Weyl group. This
(Chevalley isomorphism) is also the same as CrǦsǦ-conj, which is the same as ReppǦq b C (by associating to each –
finite dimensional, algebraic – representation its character). In the general case, replace Ǧ-conjugacy by Frobenius-
twisted Ǧ-conjugacy.

Given πv: an irreducible smooth representation with πKv
v ‰ 0, the HpGv,Kvq-module πKv

v is irreducible, and since
HpGv,Kvq is abelian this means that it is one-dimensional, and HpGv,Kvq acts by a scalar. In other words, from
πv we get a C-valued point in specHpGv,Kvq “ Ǧ � Frobv-twisted conjugacy, i.e. a semisimple (=closed) (Frobv-
twisted) conjugacy class tp in ǦpCq. This is the Satake parameter of πv. Equivalently, it is the image of Frobv under any
unramified homomorphism

ρv :Wkv Ñ
LG

over Galpk̄v{kvq with semisimple image. (Here Wkv denotes the Weil group of kv, and “unramified” means that the
projection to Ǧ factors through the mapWkv Ñ 〈Frobv〉.)

Where does the Satake isomorphism come from? Consider the action of HpG,Kq (we drop the indices v for now)
on the module M :“ C8c pNzGq

K by convolution. The orbit map on 1NK gives a linear map:

HpG,Kq Q h ÞÑ h ‹ 1NK P C
8
c pNzGq

K . p˚q

On the other hand, we have a commuting action of A{A0 (where A0 is the maximal compact subgroup of A) “on the
left”, and the action map of HpA,A0q on 1NK identifies M with HpA,A0q (by the Iwasawa decomposition: G “ BK).
Here we must normalize the action of A on the left so that it is unitary:

a ¨ fpNxq “ δpaq´
1
2 fpNaxq.

In combination with p˚q we get a map:

HpG,Kq Ñ C8c pNzGq
K Ñ HpA,A0q, p˚˚q

and the composition is a homomorphism of algebras (easy!).
If S is the maximal split subtorus of A, we have: A{A0 “ X˚pSq, hence HpA,A0q “ CrX˚pSqs “ CrŠs, and it turns

out that (**) is injective and its image lies in the invariants of the relative Weyl group Wk. Thus:

HpG,Kq “ CrŠsWk ,

and it turns out again that this is the same as CrǦ�Frobv-twisted conjugacys. (All these facts, except for the statement
about the image of (**), are very easily seen in the split case.)
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Notice that both sides of the Satake isomorphism have natural Z-structures: the Hecke algebra from identifying it
with McpKvzGvq

Kv and considering measures which are integral on the discrete set KvzGv, and the coordinate ring
CrŠsWk by the basis of CrŠs by cocharacters of S (equivalently, in the split case, as the representation ring of Ǧ over
Z.) These structures are not compatible, in general, not even over Q, because of the necessary normalization of the
action of A. In the general case, one needs to adjoin square roots of q˘1 (the residual degree) to Z. See the article of
Gross “On the Satake isomorphism” for a good discussion of the issue.

4 Infinitesimal character

If G is a reductive group over R (if it is defined over C we consider it as a group over R by restriction of scalars) then
we set zpgq “ CentpUpgCqq, the center of the complexified1 universal enveloping algebra.

In the case of SL2pRq we mentioned in the previous lecture that zpgq is a polynomial algebra generated by the
Casimir operator C. In general, Harish-Chandra proved:

Theorem 4.1 (Harish-Chandra isomorphism). There is a canonical isomorphism: zpgq » CrǎsW .

Here ǎ is what you can imagine from the notation, namely the Lie algebra of the dual Cartan. Equivalently,
ǎ “ X ˚pAqC bZ C. We can rewrite the quotient ǎ{W as ǧ � Ǧ (affine quotient under the adjoint action).

A comment on “canonical”: again, the isomorphism is defined by reference to the torus case. In the torus case,
zpaq “ UpaCq “ S‚aC “ Crǎs. The general case is obtained by considering the natural filtration of zpgq (by degree),
and relating the associated graded to UpaCq.

Since (by a version of Schur’s lemma) zpgq acts by scalars on irreducible admissible representations, every irre-
ducible admissible representation π corresponds to a closed point in spec zpgq “ ǎ{W . This is the infinitesimal character
of π.

Again, if G is quasisplit we can understand Harish-Chandra parameters in terms of generalized principal series,
since every irreducible representation is a subquotient of a generalized principal series. Namely, we let Ipχq “
Indpχδ

1
2 q, where χ is a character of the Borel subgroup. The differential of χ defines a character of a, i.e. a point

of ǎ “ a˚C. The Harish-Chandra parameter of Ipχq is the image of this point in ǎ{W .
An infinitesimal character λ P ǎ{W is called integral if it is in the image of X ˚pAqC Ă ǎ.

Conjecture. If π is an automorphic representation with λpπvq integral for all v|8, then there is a Galois representation:

ρ : Galpk̄{kq Ñ LGpQlq.

associated to π.

Here l is a chosen prime, and “associated to π” means (at least) that at all places v not dividing l where G, πv are
unramified the restriction of ρ to the decomposition group at v is unramified and coincides with the representation
〈Frobv〉 Ñ LG associated to πv by the Satake isomorphism. See the article of Buzzard and Gee for more properties
that ρ should have.

Example 4.2. The following example may seem a bit surprising. Consider a holomorphic modular form of weight 2 with
trivial nebentypus and rational Fourier coefficients. We have seen that it corresponds to an automorphic representation
π of GL2 with trivial central character (hence, an automorphic representation of PGL2, really) and infinity type equal
to the discrete series representation of PGL2pRq with restriction D2 to SL2. This is a subquotient of the (normalized)
induced character:

χ :

ˆ

a ˚

b

˙

ÞÑ

ˇ

ˇ

ˇ

a

b

ˇ

ˇ

ˇ

1
2

.

This is an integral character when restricted to SL2, but it is not integral for GL2 (or PGL2). So, why can we attach a
Galois representation to it?

Notice that the Galois representation is obtained by the action of the Galois group on the Tate module of an elliptic
curve, which has determinant equal to the cyclotomic character. Hence, it does not have image in SL2 (the dual group
of PGL2), and cannot even be twisted by a character to have image in SL2 (the cyclotomic character does not have a

1There is a choice of isomorphism R̄ » C implicit here, which for global purposes is better to avoid; see the paper of Buzzard and Gee “The
conjectural connections ...” for better formulations, and a precise statement of the conjecture on algebraicity.
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square root). The answer to this riddle is that the Galois representation is not really associated to π itself, but to the
twist π b |det |

1
2 of π, which is not any more an automorphic representation of PGL2, but of GL2. You can check that

this twist has integral infinitesimal character.
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