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µ ... a nonzero Borel measure on Rd

The log-Laplace transform Λµ of µ

Λµ : Rd → (−∞,+∞]

ϑ 7→ ln
∫
Rd

e〈ϑ,x〉 µ(dx)

〈·, ·〉 ... the scalar product on Rd

(the cumulant generating function of µ)

Λ = Λµ ... is convex, lower-semicontinuous

dom(Λ) = {ϑ ∈ Rd : Λ(ϑ) < +∞} ... the effective domain of Λ

From now on it is assumed that Λ is finite on a ball.
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The (standard) exponential family based on µ

Eµ =
{

Qϑ : ϑ ∈ dom(Λ)
}

where dQϑ
dµ

(x) = e〈ϑ,x〉−Λ(ϑ), x ∈ Rd .

ϑ ... the canonical parameter

From now on it is assumed that ϑ 7→ Qϑ is one-to-one.

Equivalently, Λ is strictly convex,

or µ is not supported by a hyperplane,

or the convex support cs(µ) of µ has nonempty interior.

(the smallest closed convex set with µ-negligible complement)
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The gradient of Λ = Λµ at ϑ ∈ int(dom(Λ)) exists and

Λ′(ϑ) =
∫
Rd

x · e〈ϑ,x〉−Λ(ϑ) µ(dx) =
∫
Rd

x · Qϑ(dx)

is the mean of Qϑ.

For ϑ ∈ dom(Λ) general, Qϑ need not have mean.

Two different pm’s in Eµ cannot have the same mean.

Hence, Λ′ : int(dom(Λ))→ int(cs(µ)) is injective.

Let M denote Λ′(int(dom(Λ))) and ψ the inverse of Λ′.

Thus, Qψ(a) has the mean a, once a ∈ M, and{
Qϑ : ϑ ∈ int(dom(Λ))

}
= {Qψ(a) : a ∈ M}

... parametrization via means (N.E.F./F.E.N.)

M = int(cs(µ)) if and only if Λ is essentially smooth (E is steep).
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Given a sample mean a ∈ Rd , ϑ 7→ 〈ϑ, a〉 − Λ(ϑ)

... the normalized log-likelihood of data w.r.t. E
Maximum likelihood principle advises to maximize over ϑ.

The Fenchel conjugate Λ∗ : Rd → (−∞,+∞] of Λ

Λ∗(a) = supϑ∈Rd

[
〈ϑ, a〉 − Λ(ϑ)

]
If a ∈ M then ψ(a) is a maximizer and Qψ(a) is the unique mle.

A maximizer exists if and only if a ∈ int(cs(µ)).

The supremum in finite for a ∈ dom(Λ∗)

M ⊆ int(cs(µ)) ⊆ dom(Λ∗) ⊆ cs(µ)

dom(Λ∗) = cc(µ) + bar(dom(Λ)) [Csi&Ma 08]

cc(µ) ... the convex core of µ

bar(C ) ... the barrier cone of C ⊆ Rd
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The Hessian of Λ at ϑ ∈ int(dom(Λ)) exists and

Λ′′(ϑ) is the covariance matrix of Qϑ.

Λ′′(ϑ) =
∫
Rd

[x − Λ′(ϑ)][2] · e〈ϑ,x〉−Λ(ϑ) µ(dx)

where y [2] ∈ Rd×d for y = (y1, . . . , yd) ∈ Rd

denotes the matrix (yi · yj)di ,j=1 .

The variance function of µ

V = Vµ : M → Rd×d

a 7→ Λ′′(ψ(a))

Eµ = Eν if and only if Vµ coincides with Vν on a ball.
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d = 2, n > 1

µn =
∑n

i=0

∑n−i
j=0

n!
i! j! (n−i−j)!

δ(i ,j) ... a finite measure on R2

6

-
n = 7

i = 4

j = 2

7!
4! 2! 1!

• • • • • • • •
• • • • • • •
• • • • • •
• • • • •
• • • •
• • •
• •
•

•

ϑ = (ϑ1, ϑ2)

Λ(ϑ) = ln
(

eϑ1 + eϑ2 + 1
)n

... the log-Laplace transform

dom(Λ) = R2 ... the effective domain of Λ
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Eµ =
{

Qϑ : ϑ = (ϑ1, ϑ2) ∈ R2
}

... the exponential family

where Qϑ =
∑n

i=0

∑n−i
j=0

n!
i! j! (n−i−j)!

eϑ1i+ϑ2j−Λ(ϑ)δ(i ,j).

the convex support cs(µ) of µ is

n = 7

6

-• • • • • • • •
• • • • • • •
• • • • • •
• • • • •
• • • •
• • •
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Λ′(ϑ) = n
eϑ1 +eϑ2 +1

(
eϑ1 , eϑ2

)
... the mean of Qϑ

Λ′ is a bijection between R2 and

M ... the interior of the triangle cs(µ)

Its inverse at a = (a1, a2) ∈ int(cs(µ)) is

ψ(a) =
(

ln a1

n−a1−a2
, ln a2

n−a1−a2

)
Qψ(a) =

∑n
i=0

∑n−i
j=0

n!
i! j! (n−i−j)!

ai1 aj2 (n − a1 − a2)n−i−jδ(i ,j).

Eµ =
{

Qψ(a) : a ∈ int(cs(µ))
}

... ‘multinomial family’

(of the dimension d = 2 with the parameter n)
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Approximation of Λ∗

Approximation of Qϑ and V

In the topology of the total variation on pm’s on Rd ,

what is behavior of Qψ(an) for a convergent sequence an ∈ M?

(Qψ(a) is the mle if a is an empirical mean)

clv (E) matters, described in [Csi&Ma 05] via cc(µ)

For a sequence an ∈ M converging to a ∈ dom(Λ∗),

if Λ∗(an)→ Λ∗(a) then Qψ(an) converges [Csi&Ma 08, Thm 5.6]

In particular,

if a ∈ int(cs(µ)) then Qψ(an) has the limit in E ;

if a ∈ M then Qψ(an) → Qψ(a)
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Assume a ∈ dom(Λ∗) \ int(cs(µ)) and b ∈ int(cs(µ)).

For ε ↓ 0 what is behavior of

ε 7→ Λ∗(a + ε(b − a))

ε 7→ Qψ(a+ε(b−a))

ε 7→ V (a + ε(b − a))

...

Jørgensen, Mart́ınez, Tsao (1994) V when d = 1

Masmoudi (1999) V when d > 1, under many restrictions

Matúš (2007) Λ∗ when the support s(µ) of µ is finite
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Matúš (2007) Λ∗ when the support s(µ) of µ is finite



Exponential families
Multinomial family

Around boundary
Quadratic VF

Limiting with means
Limiting along segments
Approximation of Λ∗

Approximation of Qϑ and V

Assume a ∈ dom(Λ∗) \ int(cs(µ)) and b ∈ int(cs(µ)).

For ε ↓ 0 what is behavior of

ε 7→ Λ∗(a + ε(b − a))

ε 7→ Qψ(a+ε(b−a))

ε 7→ V (a + ε(b − a))

...

Jørgensen, Mart́ınez, Tsao (1994) V when d = 1

Masmoudi (1999) V when d > 1, under many restrictions
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Matúš (2007) Λ∗ when the support s(µ) of µ is finite



Exponential families
Multinomial family

Around boundary
Quadratic VF

Limiting with means
Limiting along segments
Approximation of Λ∗

Approximation of Qϑ and V

Assume a ∈ dom(Λ∗) \ int(cs(µ)) and b ∈ int(cs(µ)).

For ε ↓ 0 what is behavior of

ε 7→ Λ∗(a + ε(b − a))

ε 7→ Qψ(a+ε(b−a))

ε 7→ V (a + ε(b − a))

...

Jørgensen, Mart́ınez, Tsao (1994) V when d = 1

Masmoudi (1999) V when d > 1, under many restrictions
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Theorem (M07)

If µ is a pm on Rd concentrated on a finite set, a ∈ ri(F ) for a
proper face F of cs(µ), b ∈ int(cs(µ)) and ε > 0 then

Λ∗(a + ε (xab − a)) =Λ∗(a) + ε ln ε

+ ε
[
Ψ∗C ,Ξ(xab)− 1− Λ∗(a)

]
+ o(ε)

This approximation was applied to complete the first order
conditions for a probability measure to be a
maximizer of the divergence from an exponential
family (Ay (2002)).
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Theorem (unpubl)

Under the above assumptions,
if x ∈ s(µ) then Qψ(a+ε (xab−a))(x) equals

(1− ε) · QF ,ψF (a)(x) + ε · 〈xab − xab
∗ ,Q ′F ,ψF (a)(x)〉 , x ∈ F ,

ε · QG ,ψG (xab∗ )(x) , x ∈ G ,

0 , otherwise.

up to o(ε)-terms.
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Theorem (unpubl)

Under the above assumptions, V (a + ε (xab − a)) equals

(1− ε) VF (a) + ε
[

(xab − xab
∗ )V ′F (a) + VG (xab

∗ ) + [xab
∗ − a][2]

]
up to an o(ε)-term.
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F1,r = {N(a, r) : a ∈ R} V (a) = r r > 0

F2 = {Poi(a) : a > 0)} V (a) = a

Theorem (Morris 82)

If the variance function of an exponential family Eµ on R equals a
quadratic polynomial on the open interval Mµ

then Eµ is one of the families F1,· – F6,· up to an affine transform.

F3,n = {Bi(a, n) : 0 < a < n} V (a) = 1
n a(n − a) n > 1

F4,r = {NBi(a, r) : a > 0} V (a) = 1
r a(n + a) r > 0

F5,r = {Ga(a, r) : a > 0} V (a) = 1
r a2 r > 0

F6,r = {Ghs(a, r) : a ∈ R} V (a) = 1
r a2 + r r > 0

... generalized hyperbolic secant
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d = 1, VF cubic, Letac&Mora (1990), ten types

d = 1, Λ′ has a meromorphic extension,
Bar-Lev&Bshouty&Enis (1991)

Letac (1992) Lectures on NEF’s and their VF’s

The case d = 2 and VF quadratic is open.

d > 1, each diagonal element Vi ,i is a function of ai
Bar-Lev&Bshouty&Enis&Letac&Lu&Richards (1994)

d > 1, VF simple quadratic, Casalis (1996)

d > 1, VF simple cubic, Hassairi&Zarai (2006)

d > 1, Letac&Weso lowski (2008)

d = 2, each Vi ,i affine in ai , Chachulska (2010)
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Theorem (unpubl)

If an EF has a quadratic VF and finite support
then it coincides with the product of multinomial families
up to an affinity.

Proof by induction on d :

d = 1 by Morris classification

d > 2:

a facet F and edge E of the polytope cs(µ)

intersect in an extreme point

the restrictions of µ to F or E are known by induction

the approximation of V around a ∈ ri(F ) is applied

and combined with the assumption

on the quadratic behaviour of VF.
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