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[ ... a nonzero Borel measure on RY

The log-Laplace transform A, of

Az RY 5 (~00, +oo]

9 in [, e pu(dx)

(-,-) ... the scalar product on RY
(the cumulant generating function of p)

A=A, ... is convex, lower-semicontinuous
dom(A) = {9 € RY: A(¥) < 400} ... the effective domain of A

From now on it is assumed that A is finite on a ball.
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The (standard) exponential family based on p
£, ={Qy: 0 € dom(A)}

where dd&(x) = elX)-A0) x c RY.
I

¥ ... the canonical parameter

From now on it is assumed that v — Qy is one-to-one.
Equivalently, A is strictly convex,

or p is not supported by a hyperplane,

or the convex support cs(u) of u has nonempty interior.

(the smallest closed convex set with p-negligible complement)
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The gradient of A = A, at ¥ € int(dom(A)) exists and

A(9) = ﬁ@d x - e{0x)=A(0) wu(dx) = fRd x - Qy(dx)
is the mean of Qy.

For ¥ € dom(A) general, Qy need not have mean.
Two different pm’s in £, cannot have the same mean.

Hence, A": int(dom(A)) — int(cs(u)) is injective.

Let M denote A’(int(dom(A))) and ¢ the inverse of A’
Thus, Qw(a) has the mean a, once a € M, and
{Qy: 0 € int(dom(A))} = {Qya): a € M}
... parametrization via means (N.E.F./F.E.N.)

M = int(cs(p)) if and only if A is essentially smooth (€ is steep).
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Given a sample mean a € R, ¢ > (99, a) — A(9)
... the normalized log-likelihood of data w.r.t. £
Maximum likelihood principle advises to maximize over .
The Fenchel conjugate A*: RY — (—o0, +00] of A
A*(a) = supycpe [(9, ) — A()]
If a € M then ¢(a) is a maximizer and Qy,) is the unique MLE.
A maximizer exists if and only if a € int(cs(p)).
The supremum in finite for a € dom(A*)
M C int(cs(p)) € dom(A*) C cs(p)
dom(A*) = cc(p) + bar(dom(A))  [Csi&Ma 08]
cc(p) ... the convex core of
bar(C) ... the barrier cone of C C RY
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The Hessian of A at ¥ € int(dom(A)) exists and
A"(9) is the covariance matrix of Qy.
W) = [, [x— A@)]F - e@0-10) 1 (dx)
where yP2l € R9*9 for y = (y1,...,yq4) € RY

denotes the matrix (y; -yj);{j:l .

The variance function of u

V=V, MR
a— A"(1(a))

&, =&, if and only if V, coincides with V,, on a ball.
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&y ={Qy: ¥ = (¥1,92) € R?} ... the exponential family

where Qy =37, _7:_0’ m 601i+192j_A(19)5(;J).



Multinomial family

&y ={Qy: ¥ = (¥1,92) € R?} ... the exponential family

where Qo = 3" 4> " il (nn—!i—j)! eﬁliwzj_/l(ﬁ)‘s(i,j)'

the convex support cs(u) of p is



Multinomial family

&y ={Qy: ¥ = (¥1,92) € R?} ... the exponential family

where Qo = 3" 4> " il (nn—!i—j)! 6191'.Jrﬁzj_/l(ﬁ)5(/',1')'

the convex support cs(u) of p is




aplace transform
Multinomial family ential family

Means
Variances

A(W) = (e, &%) .. the mean of Qy

—_n___
eﬁl _;'_6192 +1



Multinomial family > ential family

Means
Variances

N(9) =

A’ is a bijection between R? and

N (gt et
1 re?2 11 (e ) € ) ... the mean of Qy



place transform
Multinomial family xponential family

A(9) = m (e, &%) ... the mean of Qy
A’ is a bijection between R? and

M ... the interior of the triangle cs(u)



Laplace transform
Multinomial family > ntial family

Means
Variances

A(9) = m (e, &%) ... the mean of Qy
A’ is a bijection between R? and

M ... the interior of the triangle cs(u)

Its inverse at a = (a1, a2) € int(cs(p)) is



Laplace transform
Multinomial family > ntial family

Means
Variances

A(9) = m (e, &%) ... the mean of Qy
A’ is a bijection between R? and

M ... the interior of the triangle cs(u)

Its inverse at a = (a1, a2) € int(cs(p)) is
1/)(3) = ( In n—:11—32 ’ In n_3312_a2 )




Multinomial family

A(9) = m (e, &%) ... the mean of Qy
A’ is a bijection between R? and

M ... the interior of the triangle cs(u)

Its inverse at a = ( ay, a) € /nt(cs(u)) is

| az
, In
n— 31—32 n—ai—a»

Qy(a) = Z Jn 6 W af 3’2 (n—a1—a)"’ J‘s(u)



Multinomial family

A(9) = m (e, &%) ... the mean of Qy
A’ is a bijection between R? and

M ... the interior of the triangle cs(u)

Its inverse at a = (a1, a2) € int(cs(p)) is

P(a) = (In—2 In —2—)

n—ai—ap’ n—ai—ap

Qui) = Lieo X mrtaigy 21 2 (1= a1 = 22)"™ o,

Eu = {Q¢(a): ac int(cs(p))} ... ‘'multinomial family’



Multinomial family

A(9) = m (e, &%) ... the mean of Qy
A’ is a bijection between R? and

M ... the interior of the triangle cs(u)

Its inverse at a = (a1, a2) € int(cs(p)) is
( In

w(a) a a )

, In
n—aj—ap n—a;—ap

Qy(a) = >0 Jn 6 W af 3’2 (n—a1—a)"’ J‘s(u)'

Eu = {Q¢(a): ac int(cs(p))} ... ‘'multinomial family’

(of the dimension d = 2 with the parameter n)
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W) — et [ (e 41)  —ere
(V) = (rremnsiy | _etig: e2(eh 1 1)

... the variance of Qy

The variance function is matrix-valued,

Ve = Awta) = ,11[31(_'731_3231) 32(_:1_322)] = diag(a) =2

... the variance of Qy(,)

each entry is a bivariate polynomial in a1, a»
of the degree < 2 (V is quadratic)
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Around boundary

Approximation of Qg and V

In the topology of the total variation on pm's on RY,
what is behavior of Qy,,) for a convergent sequence a, € M?

(Qy(a) is the MLE if a is an empirical mean)
cl, (€) matters, described in [Csi&Ma 05] via cc(p)

For a sequence a, € M converging to a € dom(A*),
if A*(a;) — A*(a) then Qy,,) converges [Csi&Ma 08, Thm 5.6]

In particular,
if a € int(cs(u)) then Qya,) has the limit in &;
if a € M then 01/,(3") — Qw(a)
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Assume a € dom(A*) \ int(cs(p)) and b € int(cs(p)).
For € | 0 what is behavior of

e A*(a+¢e(b—a))

€ = Qu(ate(b—a)

e— V(a+e(b—a))

Jérgensen, Martinez, Tsao (1994) V when d =1
Masmoudi (1999) V when d > 1, under many restrictions
Matud$ (2007) A* when the support s(u) of w is finite
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Around boundary

In the figure, i is concentrated on the five black squares.

cs(p) the pentagon

a inside a unique face F of cs(p)
b € int(cs(u))

C ... the convex hull of s(u) \ F
Cy = C+lin(F) ... the strip

Xab ... a nearest point of C.

G ... afaceof C

X3y ... a special point inside G



Around boundary

Theorem (MO07)

If 11 is a pm on RY concentrated on a finite set, a € ri(F) for a
proper face F of cs(p), b € int(cs(p)) and € > 0 then

A*(a+e(xap—a)) =A%(a) +elne
+€ [QIEE(Xab) —1= A*(a)} + o(e)
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Theorem (MO07)

If 11 is a pm on RY concentrated on a finite set, a € ri(F) for a
proper face F of cs(p), b € int(cs(p)) and € > 0 then

A*(a+e(xap—a)) =A%(a) +elne
+€ [QIEE(Xab) —1= A*(a)} + o(e)

This approximation was applied to complete the first order
conditions for a probability measure to be a
maximizer of the divergence from an exponential
family (Ay (2002)).



Around boundary

Theorem (unpubl)

Under the above assumptions,
if x € () then Qy(ate (xp—a))(X) equals

(1 =€) Qrup(a)(¥) + e+ (xab = X3, QE . (a) (X)) 5 x€F,
& Qg (X) x€G,
0, otherwise.

up to o(e)-terms.




Around boundary
Approximation of Qg and V'

Theorem (unpubl)

Under the above assumptions, V(a+ € (xap — a)) equals
(1— €) Vi(a) + & [(xab — X8 VE(3) + Ve 3s) + [t — 317

up to an o(e)-term.
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Fir={N(a,r): ae R} V(a)=r r>0

)

Fo = {Poi(a): a>0)} V(a) =a

Theorem (Morris 82)

If the variance function of an exponential family £, on R equals a
quadratic polynomial on the open interval M,,
then &, is one of the families F1,. — Fe,. up to an affine transform.

Fan={Bi(a,n): 0<a<n} V(a)=1a(n—a) nz1
Fur = {NBi(a,r): a > 0} V(a) =La(n+a) r>0
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... generalized hyperbolic secant
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Quadratic VF Multinomial families

Theorem (unpubl)

If an EF has a quadratic VF and finite support
then it coincides with the product of multinomial families
up to an affinity.

Proof by induction on d:
d = 1 by Morris classification
d>2:
a facet F and edge E of the polytope cs(u)
intersect in an extreme point
the restrictions of u to F or E are known by induction
the approximation of V around a € ri(F) is applied
and combined with the assumption

on the quadratic behaviour of VF.
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