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MATRIX COMPLETION PROBLEMS

m A matrix completion problem: asks whether for a given pattern
the unspecified entries of each incomplete matrix can be chosen
in such a way that the resulting conventional matrix is of a
desired type.

m Ann X n pattern &7: a subset of positions in an # X n matrix in
which the entries are present.

m A (symmetric) incomplete matrix Y': the entries corresponding
to the positions in & specified, the rest unspecified (free to be
chosen).

m Positive definite completion problem: asks which incomplete
matrices have positive definite completions, with or without
additional features.



ExamMPLE

m A 4 x4 pattern:
Z = {{1,1},{2,2},{4,4},{1,4},{2,3}}
m An incomplete matrix:

30 ? 7 2.00
?7 625 400 ?
?7 400 ? ?
20 ? ?7 225

T =

m A positive definite completion of Y’

3.0 150 3.50 2.00
1.5 6.25 4.00 3.00
35 4.00 625 3.00
20 3.00 3.00 2.25



THE GRONE ET AL'S THEOREM (1984)

m T is a partial positive definite matrix if Y¢ > O for each clique C

of G.

m A chordal (decomposable) graph is an undirected graph G that
has no induced cycle of length greater than or equal to 4.

Theorem

Every incomplete matrix X' corresponding to a given pattern & has a
positive definite completion iff

Y is a partial positive definite matrix.

The pattern & considered as a set of edges, forms a chordal (or
equivalently decomposable) graph G.

Grone et al.’s theorem (1984) has had a significant impact in graphical
models research.



REMARKS

m T has a unique positive definite completion £ = Z(7) if we
require

=0 V{ijle 2.

ij
m Equivalently, positive definite completion in the space of
covariance matrices corresponding to a concentration graph
model is unique.

m When G is decomposable
m Z(T) can be completed via a polynomial time process.
m There exists an explicit one-to-one mapping ¢ : T — Z(T)~".
m The Jacobian of the mapping ¢ can be explicitly computed

[Dawid & Lauritzen (1993), Roverato (2000), Letac & Massam
(2007)].



APPLICATIONS IN GRAPHICAL MODELS

Positive definite completion problems frequently arise (explicitly or
implicitly) in the study of Graphical Models. For example:

Maximum likelihood estimation for Gaussian graphical models,
Dempster (1972).

Hyper-Markov laws for decomposable graphs, Dawid &
Lauritzen (1993).

Wishart distributions for decomposable graphs, Letac & Massam
(2007).

Flexible covariance estimation for decomposable graphs,
Rajaratnam, Massam et al. (2008).

Wishart distributions for decomposable covariance graph
models, Khare & Rajaratnam (2011).

Generalized hyper Markov laws for directed acyclic graphs,
Ben-David & Rajaratnam (2012).



MOTIVATION FOR CURRENT WORK

m DAG models (or Bayesian networks): one of the widely used
classes of graphical models.

Completion problems for DAGs

In the DAG setting, we consider positive definite completions of
incomplete matrices specified by a directed acyclic graph 9. Here the
incomplete matrices are desired to be completed in

m the space of covariance, or

m the space of inverse covariance / concentration matrices

corresponding to the DAG model.

m The need for studying this new class of problems naturally arises
when studying spaces of covariance & concentration matrices
corresponding to DAG models, Ben-David & Rajaratnam (2011).



(GGRAPH THEORETIC NOTATION

m An undirected graph UG: denoted by G = (V, ¥)

m An (undirected) edge in #": denoted by an unordered pair {i, j}

m A directed acyclic graph DAG: denoted by D = (V, &)

m A (directed) edge in &: denoted by a ordered pair (i, )

m (i,j) € &: denoted by i — j, say i a parent of j

m The set of parents of j: denoted by pa(j) ={i: i — j}

m The family of j: denoted by fa(j) = pa(j) U {j}

m The undirected version of D: denoted by D"

m An immorality in O: an induced subgraph of the form
i—je—k

m The moral graph of D: denoted by D™



BASIC DEFINITIONS

m A perfect DAG is a DAG D that has no immoralities, i.e.,
Du — Dm

m A DAG is parent ordered ifi - j] — i>j

m For a parent ordered DAG 9, i is a predecessor of j if
i>j but i-»j (notational convenience)
m The set of predecessors of j is denoted by pr(j)

Remarks

m If D is perfect then D" is decomposable

m If G is decomposable, then it has a perfect DAG version D

m We can assume w.l.o.g. that each DAG 9 is parent ordered



GaussiaN DAG MODELS

Let X = (X1, ..., X,) be arandom vector in R”, with p = |V|.
m X obeys the ordered Markov property w.r.t. D if
Xi 1L Xpr(i)\pa(i) Xpai) VieV

m The Gaussian DAG model /(D) is the family of multivariate
normal distributions N,(u, X), u € RP, X > 0 that obey the
ordered Markov property w.r.t. D.

m For an undirected graph G, the Gaussian UG model .4 (G) is
the family of Gaussian Markov random fields over G.

Remark

m A key observation: N,(u,X) € A (D) iff Z > 0 and

Zprq),j = Epr(]-)’pa(j)(Zpa(j))‘lEpa(j)J V] ev, (Andersson (1998))



ExAMPLES

o——0
(a) (b)

m Let G be given by Figure (a). If (X1,...,X4) € R* obeys the local
Markov property w.r.t. G, then
X1 UL X4|(X2,X3) and  Xo L X3|(X7, Xy)

m Let D be given by Figure (b). If (X1, ..., X4) obeys the ordered
Markov property w.r.t. O, then

X1 UL X4|(X2,X3) and Xo 1L X3|X4



PRELIMINARY NOTATION

Let D = (V, &) be a DAG.

m A D-incomplete matrix is a symmetric function
F:{i,j->rjeR, sty =T; VY(ijed&.

m [ is partially positive definite, denoted by I' >4 0, if I'c >0
for each clique C of D",

m The space of covariance and the inverse-covariance matrices
over D are defined as

PDp = {Z:Ny(0,5) € #(D)} and Pp={Q:Q"' € PDyp)}.
m Similar spaces for an undirected graph G are

PDg = {Z:N,(0,) € A(G)} and Pg={Q:Q"' e PDg}.



A FEW OBSERVATIONS

m Let Ly denote the linear space of all lower triangular matrices
with unit diagonal entries such that

LeLp=L;=0 V(@) ¢é&.

Then Q € Py &< 1L € Ly and a diagonal matrix A, with
strictly positive diagonal entries s.t. in the modified Cholesky
decomposition Q = LAL’, Wermuth (1980).

m PDy C PDgm, Wermuth (1980).
m PDyp = PDgpv &< 9D is a perfect DAG.

Convention

Unless otherwise stated, hereafter G = (V, #') denotes the undirected
version of D = (V, &).




A FORMAL DEFINITION OF MATRIX COMPLETION

Let M C S,(R), the space of p X p symmetric matrices.

m We say that a D-incomplete matrix I can be completed in M if

AreM st T;=Ty; V(Gj)ed&

m We refer to 7" as a completion of I" in M, or

m simply a completion of T', if M is the whole space S,(R).



POSITIVE DEFINITE COMPLETION IN P D

m Let Ip denote the set of D-incomplete matrices.

Proposition

LetI' be a D-incomplete matrix in Ip. If I'j; # 0, then

m Part (a) Almost everywhere (w.r.t. Lebesgue measure on Ip),
there exist a unique lower triangular matrix L € Ly and a unique
diagonal matrix A € RP* s.t.

T =LAL isacompletionof T

m Part (b) The matrix T is the unique positive definite completion
of I' in Py iff the diagonal entries of A are all strictly positive.



SKETCH OF THE PROOF

Set L;; = 0 for each (i,)) ¢ &.
Set Aj1 =11, Ljg = Aflll“,-l for each i € pa(1) and setj = 1.

Ifj < p, then setj = j + 1 and proceed to step iv), otherwise L and
A are constructed such that they satisfy the condition in part (a).

j-1
Set Ajj =T} — Z AkijZk and proceed to the next step.
k=1
For each i € pa(j) if Aj; # 0, then set
j-1
Lj= Aj;l @Iy - Z AwLixLjx), and return to step iii). If Aj;; = 0,
k=1

then no completion of I" exists that satisfies the condition in part
(a). Consequently, I' cannot also be completed in Py.



ExamMPLE

Let © and I be given as follows:

1 0 0 0 0 O

0 -10 0 0 O
A= 0 02 0 0 O
0 0 0 -3 0 of
0 0 0 0 =20
0 0 0 0 o0 1

x =2
-3 %

* =5

4 2

0 0
1 0
2 1
0 -5
5 0
-2 0
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EXAMPLE CONTINUED

This yields the completed matrix T given as follows:

1 0 0 -3 0 4

o -1 -2 0 =5 2
T= o -2 -2 -10 -10 4

-3 0 -10 56 3 -12f

0 -5 -10 3 =30 10

4 2 4 -12 10 13

As the diagonal elements of A are not strictly positive, I' cannot be
completed in Pyy.



POSITIVE DEFINITE COMPLETION IN PDy,

Proposition

Let I' be a partial positive definite matrix. The following completion
process (of polynomial complexity) determines if a completion in
PDy exists, and if so, it uniquely constructs the completed matrix X.

SetX; =T;; foreach {i,j} € 7 andsetj = p.
Ifj > 1, then set j = j — 1 and proceed to the next step, otherwise
Y is successfully completed.

If Xy > O, then proceed to the next step, otherwise the
completion in PDg, does not exist.

If pr(j) is empty, then return to step (2), otherwise proceed to the
next step.

If pa(j) is non-empty, then set Xy, = Zpr(,-),pa(,-)(Zpa(,-))‘lZpa(,-) >
2or) = ZI'H(].)J. and return to step (2). If pa(j) is empty, then set
2oy = 0 and return to step (2).



ExamMPLE

Let O and I be given as follows.

Iy T'p Iz ox
Iy T % T
I3 = Iz I’y

o—0 ¥ Ty Tz T

m Layer: j=4. In step (1)

X 22 X3 ?

X1 Xop 7 Xy

231 7 X3z Zu
7 Za Iz T

Y=



EXAMPLE CONTINUED

m Layer: j=3. In step (2) letj =4 — 1 = 3. In step (3) either
Y33 X . .
Zhi) = ( 33 34) > 0, otherwise the completion in PDy, does
243 X4
not exist. Assuming the former, we proceed to step (5). Since
pr(3) = 0, the layer down to j = 3 is thus completed.

m Layer: j=2. Return to step (2) withj =3 — 1 = 2. In step (3) we
2o X4
240 Zas
then in step (5), as pr(2) = {3}, we set X3 = 23423242 and the
layer down to j = 2 is thus completed.

check whether Z¢,0) = ( ) > 0. Assuming 2g2) > 0,



EXAMPLE CONTINUED

m Layer: j=1. Process is returned to step (2) withj =2 -1 =1. In
step (3) we first check whether

211 212 213
Zra) = [ Z21 P $343,, 240 | > 0.
31 Il Za 233

m Assuming g,y > 0, then in step (5), as pr(1) = {4} we set

-1
2 Xy, 242) (221)

241 = g, 2 Z
41 = (242 43)(234244%242 Tas Sl

m The processed yields a completion. The matrix X is the
completion of I in PDy,.



AN ALTERNATIVE PROCEDURE

m Step (1) We construct a finite sequence of DAGs, Dy, ..., D,
such that O, at the end of this sequence is perfect. Let I',, denote
the incomplete matrix over D,,.

mStep(2) SetD=D,and " =T,.

m Step (3) If I' > 0, then proceed as follows.

SetX; =T} foreach{i,jle ¥,
Set ZpruiJ = Eplrm,pamE;;@Zpaw and X o) = 2
J=pP—L...,

m Let D be a perfect DAG and I € Ip

7
- for each

I" can be competed in PDyp <= T € Op (i.e., T >p 0)

m Thus the alternative procedure yields a completion iff I', >p, 0.



ExamMPLE

"
SN S O

D Dy Dy
Let D be as above.

m Starting from Dy = D, the only immorality in this DAG is
5 — 1 « 2. By adding the directed edge 5 — 2 we obtain D;.

m Next we obtain the perfect DAG D, by adding the directed edge
5 — 3 corresponding to the immorality 5 — 2 < 3 in Dj.

m Now consider the completion of the following 9-incomplete
matrix.



EXAMPLE CONTINUED

Iy I';p o« o=

Iy Tp Tz =
=[x TIxn I3 Iz
x  x Iy3

Iis o« x

['is

*

* .
[aq Tys
I'sq4 Tss

mI's3= 1"541:}}1"43, and T'sp = F531"g311"32 = 1"541"14%1"431"531 I'3

m Thus we obtain the following incomplete matrix over the perfect

DAG D,
I'yy I' *
I’ I'» I'3
1"(2) = k F32 F 33
* * I'43

Iis TsalTas Ts3l3Tn

* [ys

x Tsal'yyTus
I3 Ts3l3Ta .
T4 Iys
['sy ['ss



CoMPLETABLE DAGS AND GENERALIZATION OF GRONE ET AL’S
RESULT

Theorem

Every partial positive definite matrix over 9 can be completed in
PDy iff D is a perfect DAG.

Corollary

Suppose G is a decomposable graph. Then every partially positive
definite matrix I" over G can be completed to a unique X in PDg.
Consequently, every partial positive definite matrix over a
decomposable graph has a positive definite completion.

m The proof the theorem is based on an inductive argument
assuming the statement of the theorem is true for any DAG s.t.
Vi<p.

m For ANY DAG 9D, completion in PDy, implies completion in
PD g«



SOME INSIGHTS

m Interesting contrast between completing a given partial positive
definite matrix I' € Qg in PDg vs. completing it in PDy.

m Grone et al. (1984) asserts that I' € Qg can be completed in PDg
if any positive completion exists.

m A completion in PDy is therefore sufficient to guarantee a
completion in PDg.

m The other way around is unfortunately not true.

m In particular, I' may not be completed in PDg, even when it can
be completed in PDg.

m This is because completion in PDg is more restrictive than
completion in PDg.

m We illustrate this distinction in the following-example.



FEw QUESTIONS

More formally, let I" be an incomplete matrix over D and let G be the
undirected version of D.

m If I" can be completed in PDg, then can it be completed in PDp
as well?

Consider the partial positive definite matrix I" over the DAG D.

—©O
7 12 12 16
12 30 28 =
12 28 37 32
16 = 32 38

I =

Figure: A non-perfect DAG D



FEw QUESTIONS

Although 9 is not a perfect DAG we have that G, the undirected
version of P, is decomposable.

By Corollary above it can be completed to a positive definite
matrix in PDg.

Completion of I" in PDy, requires 245 = 1"43Fg31 '3 =24.2162

The completed matrix (below) however is not positive definite.

7 12 12 16
12 30 28 24.2162
12 28 37 32
16 242162 32 38

Consequently, I' cannot be completed in PD .



FEw QUESTIONS

Let I' be an incomplete matrix over D and let G be the undirected
version of D.

m If I can be completed in PDg, then can it be completed in PDy,
as well?

m The answer as we saw was negative.

m Then, can it at least be completed in PDgy for a DAG version 9
of G?

The answer is still negative. We show this by constructing a counter
example.



COUNTEREXAMPLE

Consider the following partial matrix I" over the four cycle Cy.

1 a d =
a 1l = b
1ﬂ_a'>x<lc
* b ¢ 1

m [ is a partial positive definite matrix over Cy if |al, |b], |c], |d| < 1.

m By Barrett et al. (1993), I" can be completed to a positive definite
matrix X iff

fa,b,c,d) = V(1 —a)(1 = b))+ (1 = )1 — d?)—|ab—cd| > 0

m An enumeration of the DAG versions of Cy4 are given as follows.



COUNTEREXAMPLE CONTINUED




COUNTEREXAMPLE CONTINUED

m We can show I can be completed in a DAG version above iff

(1 -cH(1 —d*) - (ab - cd)* > 0, or

(1 -d*)(1 = d*) - (bc — ad)* > 0, or

(1 —a®)(1 = b*) = (cd — ab)* > 0, or

(1 -b*)(1 - ¢*) = (ad - be)* > 0, or

min ((1 = b*)(1 = ) = (be)*, (1 — a*)(1 - d*) - (ad)*) > 0, or
min ((1 - a®)(1 - b%) = (ab)’, (1 = *)(1 = d*) = (cd)*) > 0.

mIfa=06, b=09, c=0.1, and d = 0.9, then we have
£(0.6,0.9,0.1,0.9) = 0.3324 > 0, but none of the inequalities
above is satisfied.



CompuTING 2(I')~! anD det X(I') WITHOUT COMPLETING I

Let G = (V, %) be an arbitrary undirected graph.

m For three disjoint subsets A, B and S of V we say that S separates
A from B in G if every path from a vertex in A to a vertex in B
intersects a vertex in S.

m Let I be a G-partial matrix. The zero-fill-in of T in G, denoted by
[[1Y,is a |V|x [V| matrix T s.t.

7 L; if{i,jle?,
Y710 otherwise.



A KEY LEMMA

Lemma

Let D = (V, &) be an arbitrary DAG. Let £ € PDy, and let (4, B, S) be
a partition of V s.t. S separates A from B in . Then we have

mx'= [(ZAUS)_I]V + [(EBUS)_I]V - [(ZS)_l]v and

det(Zs)
det(Zaus) det(Zpus)”

detz™!) =

Proof:

Since PDgy C PDgy» the proof directly follows from Lemma 5.5 in
Lauritzen (1996).



FOoRMULAE

m Let I be a partial positive definite matrix over D that can be
completed to a positive definite matrix X in PDg. Then

=y ([(Efa(,->)l]v - [(Zpa(n)l]v)

[17., det(Zpac) el

det(™!) = s
?:1 det(Zfa(i)) i=1 “iilpa(i)



ExamMPLE

Let © and I be given as follows.

I 2 o Xy %

2 1 * *  Xos

I'= * * 1 234 235
241 * 243 1 *
% 252 253 * 1

m By applying the first formula we obtain
Z_l = [(2{1,2,4})_11‘/ + [(2{2,5})_1]‘/ + [(2{3,4’5})_1]‘/ + [ZZHV
+ [Z;SI]V - [(2{2,4})_1]V - [Egsl Y [(2{4,5})_1]‘/ .

m Note that all the involved entries are given by I', except for Xs4
and 242.



EXAMPLE CONTINUED

Completing the computations we obtain
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EXAMPLE CONTINUED

By combining these terms into one matrix we have ™! is equal to

1 “Zip 0 —Zig 0
152,32, T 123X,

=) 1-%7, + L 0 Zp¥is —os

2 52 752 T 52 ) 2
1-37,-x, 1-3p,-x, =25 1 1-L-X, l’zzzs
0 0 —3 —235
1-33,-%5 s 1-35,-33, 5 1-35, -5

-Zis X% —Z34 -3y + -5 1 34235

7 52 3 32 T 52 T 52 T 52 2 52
125,-x, 1-X,-%y, 125,25 1-35,-%, 125,25 5 1-25,-25
0 —Zs —23s Z34%35 -3 +

2 52
17235 I’Z%A’E%s 172147215 I’Z%A’Zgi 17235
m Using the second formula we obtain

det(=™") = [(1 - 53, - 5301 - 22)(1 - 23, - 22|




A NUMERICAL EXAMPLE

m We apply the result for commuting the ! to the the following
specific OD-partial matrix

4 -2 x 1 =

-2 x % —1
=] % 31 -1

1 * 1 1 =

*= -1 -1 = 1

m We obtain

1 1 0 -1 0

1 2 0 -1 1
>'={0o 0 1 -1 1

m Note that ! has been evaluated without directly obtaining X,
and then computing its inverse — fewer computations.



THANK YoOU!
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