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Introduction

Overview

Information Geometry - our embedding approach
Focus on computation (CIG)

Boundaries - essential for graphical models
MCMC - geometric approach

Curvature and mixture models

Simplicial asymptotics - lack of uniformity
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Information Geometry

Information geometry (M, g, V¢) [20] intrinsic
We work by embedding in ‘space of all possible models’

Models can be simplicial rather than manifolds:
non-constant dimension

Operational means finite dimensional

Computational Information Geometry on extended
multinomials
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Discrete models

e Basic model have set of binary random variables

e Look at all possible joint distributions: simplex

e Models are sub-families of simplex
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Extended Multinomial

e Look at discrete
graphical models
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e Look at discrete
graphical models

e Space of distributions
simplicial

e Boundaries where
probabilities are zero
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Extended Multinomial

e Look at discrete
graphical models

e Space of distributions
simplicial

e Boundaries where
probabilities are zero

¢ Information geometry of
extended multinomial models
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e Look at discrete
graphical models

e Space of distributions
simplicial

e Boundaries where
probabilities are zero

¢ Information geometry of
extended multinomial models

e applications to

graphical models and
elsewhere
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Extended Multinomial

e Look at discrete
graphical models
e Space of distributions
simplicial
@/@\ e Boundaries where
(5) probabilities are zero
\ @ ¢ Information geometry of
(> © extended multinomial models

@ e applications to
graphical models and

elsewhere
e proxy for space of all models
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Extended Multinomial

e Look at discrete
graphical models
e Space of distributions
simplicial
@/Q\ e Boundaries where
(5) probabilities are zero
\ @ ¢ Information geometry of
(> © extended multinomial models

@ e applications to
graphical models and

elsewhere
e proxy for space of all models
¢ |G all explicit
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e How to connect two probability density or mass
functions f(x) and g(x) in some space of models?
12 pf(x) + (1 = p)g(x)

. f(x)Pgx)'
+1: )

¢ Two different affine structures used simultaneously
-1: Mixture affine geometry on unit measures
+1: Exponential affine geometry on positive measures
e Fisher Information’s roles
e measures angles and lengths

e maps between +1 and —1 representations of tangent
vectors, [3], [4], [19]
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Riemannian Geometry

e The 0-geometry defined by the Fisher information
metric

e Look at 0-geodesic spheres in simplex

00 02 04 06 08 10

e These are smoothly attached to boundary: c.f.
+1-geodesics

e Can use this smooth structure in MCMC
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Duality

There exists a mixed parameterisation [6] as solution of
differential equation

Mixed parameterisation

04 06 08 10

0.2

—1-geodesics Fisher orthogonal to +1-geodesics

Limit of mixed parameters give extended exponential
family

Key to structural theorem [3] and idea of inferential cuts
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Geometry of likelihood

For sparse extended multinomial models:
e Quadratic approximations to log-likelihood fail globally
e Many —1-flat directions
e MCMC
e Asymptotics



Computational
Information
Geometry and
Graphical
Models

Frank
Critchley and
Paul Marriott

Examples

Examples: Graphs, Networks
and 1G

Full exponential families [17]

Very high-dimensional models [21] - MCMC is one tool
here

Curved exponential families - curvature can be very
high
Closure of exponential families- boundaries
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e Models lie in 15-dimensonal simplex, but with
constraints imposed by conditional independence

e Constraints linear in +1-affine parameters

i+ =0+

e So get 7-dimensional full exponential family
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DAG with hidden variables

In multinomials independence is expressible as a finite
set of polynomial equalities

Add hidden variables

O

O, O,

Example lies in 7 dimensional simplex- mixes over a 3
dimensional CEF

The model space is not a manifold but a variety- union
of different dimensional manifolds- extended
exponential family
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Attaching to the boundaries

Models are low-dimensional families within high
dimensional simplexes

Need to understand how models are attached to
boundaries

Extended exponential families: see also [30], [9]

Need to be able to compute limit points in
computationally efficient way

Use linear programming and convex geometry
techniques

The following plot is generic
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Attaching to the boundaries

Minus 1 plot Plus 1 plot
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Geometric MCMC

When doing MCMC on models the boundaries matter

Riemann manifold Metropolis adjusted Langevin
algorithm, [13] uses Fisher metric structure.

Use a Metropolis-Hastings where the random-walk
proposals have variance determined by Fisher metric

Have seen how the 0-geometry smoothly attaches the
boundaries

Other geometric approaches are under active
development - cuts and mixed parameterisations
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Embedding curvature and affine

|

approximation

e Curvature(s) key part(s) of
differential geometry
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e Curvature(s) key part(s) of
differential geometry

e Tangent space gives best
linear approximation
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; e Curvature(s) key part(s) of

—— differential geometry

e Tangent space gives best
Mixtures I linear approximation

e Tangent and curvature gives

" best two dimensional
) affine embedding space
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Mixtures

Curvature and Dimension
Reduction

Dimension reduction (best approximating subspaces)
via tangent and curvature

Different affine geometries give different dimension
reduction

Low dimensional +1-affine spaces give approximate
sufficient statistics [28]

Low dimensional —1 approximations give limits to
identification and computation in mixture models [27],
2]
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e tri and bi pod example are ruled surfaces: exploit this
for computing 2-hull

Mixtures

|G gives ways to explore convex hull efficiently
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There is a paradoxical aspect to mixing in high
dimensional extended multinomial model

The convex hull of any open interval of a
one-dimensional exponential family is of full dimension

Mixtures

This is due to total positivity

--- But, there exist low dimensional approximations to
this convex hull based on curvature, [2]
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Asymptotic expansions

e Strong links between IG and higher order asymptotic

expansions [7]

e Can apply Edgeworth, saddlepoint or Laplace

expansions [32]

MLE of mean

Density
00 01 02 03 04 05

o Flexible, tractable given IG,
[3]

MLE of rate

15

Density
1.0

0.5

0.0

invariance properties clear
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e Many terms need to be computed in high dimensional
problems

o Singularity of Fisher information matters

Eigenvalues

Higher order
asymptotics

Eigenvalues
000 001 002 003 0.04 0.05 0.06
|

e Fisher information can be singular (or infinite) [24]
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e Laplace expansion can be problematic in
high-dimension- spectrum of Fl

15
I

Higher order
asymptotics

suffient statistics 2

suffient statistics 1
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e As near boundary statistical curvature can be
unbounded - most asymptotic formula not uniform
across simplex

Mixed parameterisation

1.0

04 06 08

Higher order
asymptotics

0.2

0.0
I

e Higher order corrections define the area where first
order formula can be used

e Note centre of very high-dimensional simplex also
problematic- get discretisation effects
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Information Geometry - our embedding approach
Focus on computation (CIG)

Boundaries - essential for graphical models
MCMC - geometric approach

Curvature and mixture models

Simplicial asymptotics - lack of uniformity

CIG useful generally in statistical modelling

Summary
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