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Keen model with Erlang distributed delay

Keen Model

With capital assets being driven by

K̇ = κ(πn)Y − δK (1)

we get the following dynamical system

ω̇ = ω(Φ(λ)− α) (2)

λ̇ = λ

(
κ(πn)

ν
− α− β − δ

)
(3)

ḋ = κ(πn)− πn − d

(
κ(πn)

ν
− δ
)

(4)
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Introducing the delay
Capital assets should be delayed from the moment of investment:

K̇ (t) = κ(πn(t − τ))Y (t − τ)− δK (t) (5)

To avoid complications related to Delayed-Differential Equations, we
introduce investment stages:

Θ̇1 = κ(πn)Y − n

τ
Θ1

Θ̇2 =
n

τ
(Θ1 −Θ2)

...

Θ̇n =
n

τ
(Θn−1 −Θn)

K̇ =
n

τ
Θn − δK

Ḋ = (κ(πn)− πn)Y

(6)
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� Dollar travels between the investment substages taking an
exponential (with mean τ

n ) time in each of them.

� To see this, suppose that during investment stage k , the only
process occurring was transference to stage k + 1. Θ̇k would then be

dΘk/dt = −n

τ
Θk (7)

that is, if we start with $M dollars at time 0, $Me−
n
τ t will remain

there at time t.

� Still confused? If we start with $M at time 0, and dollars (or cents!)
leave at an exponentially distributed time, at time t we can expect
to still have

$M.P[exp.dist.r .v . > t] = $M(1− F (t)1) = $Me−
n
τ t (8)

1F(t) is the CDF for the exponentially distributed random variable describing the
waiting time.
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� The total time it takes for each dollar invested then follows an
Erlang distribution with shape parameter n and rate n

τ , which has
mean τ and variance τ 2/n.

(
Xi ∼ Exponential(n/τ) =⇒

n∑
i=1

Xi ∼ Erlang(n, n/τ)

)
(9)

� In the limit n→∞, the distribution converges to a deterministic
time delay of τ , which represents the Delayed-Differential Equation
we tried to avoid.
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Dividing the Θk variables by Y , θk = Θk/Y , we can derive the
n + 3-dimensional system

ω̇ = ω(Φ(λ)− α)

λ̇ = λ
( n

τν
θn − (α + β + δ)

)
ḋ = κ(πn)− πn − d

( n

τν
θn − δ

)
θ̇1 = κ(πn)− θ1

[
n

τ

(
1 +

1

ν
θn

)
− δ
]

θ̇2 =
n

τ
(θ1 − θ2)− θ2

( n

τν
θn − δ

)
...

θ̇k =
n

τ
(θk−1 − θk)− θk

( n

τν
θn − δ

)
...

θ̇n =
n

τ
(θn−1 − θn)− θn

( n

τν
θn − δ

)

(10)
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The “good” equilibrium has become

λ̂1 = Φ−1(α)

θ̂n,1 =
τν

n
(α + β + δ)

...

θ̂n−k,1 = θ̂n,1

[τ
n

(α + β + n/τ)
]k

...

θ̂1,1 = θ̂n,1

[τ
n

(α + β + n/τ)
]n−1

π̂n,1 = κ−1
[
θ̂1,1(α + β + n/τ)

]
d̂1 =

κ(π̂n,1)− π̂n,1
α + β

ω̂1 = 1− π̂n,1 − r d̂1

(11)
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The Jacobian matrix for the linearized system at this equilibrium is



0 ω̄Φ′(λ̄) 0 0 0 . . . 0 0 0

0 0 0 0 0 . . . 0 0 n
τν
λ̄

1 − κ′(π̄n) 0
r − rκ′(π̄n)
−(α + β)

0 0 . . . 0 0 − n
τν

d̄

−κ′(π̄n) 0 −rκ′(π̄n)
−α − β
− n
τ

0 . . . 0 0 − n
τν
θ̄1

0 0 0 n
τ

−α − β
− n
τ

. . . 0 0 − n
τν
θ̄2

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

0 0 0 0 0 . . . n
τ

−α − β
− n
τ

− n
τν
θ̄n−1

0 0 0 0 0 . . . 0 n
τ

− n
τ
− 2α

−2β − δ


(12)
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Armed with the Jacobian, we can investigate when stability is lost for
each n, in terms of τ .
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Figure 1: Stability threshold value for τ as a function of n
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Using XPPAUT, we verified that the there is a supercritical Hopf
bifurcation for τ larger than the threshold seen on Figure1. The stable
equilibrium point unfolds in a stable cycle, while the equilibrium point
loses its local stability, Figure 2.
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Figure 2: Supercritical Hopf bifurcation for n = 10
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Simulations
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Figure 3: Solution converging to the stable cycle, n = 10
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Figure 4: Solutions for different values of n
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Figure 5: Solutions for different values of τ
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