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Functional Responses:  identified by C. S. Holling (1959, 1965, 1966)
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Figure 1.2: The three types of functional responses described by C.S. Holling: (a) type I,
(b) type II, and (c) type III functional responses. The abscissa and ordinate represent the
prey density and the number of prey eaten per predator per unit time. c is a maximum per
capita consumption rate and a is a half-saturation constant.
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Figure 1.2: The three types of functional responses described by C.S. Holling: (a) type I,
(b) type II, and (c) type III functional responses. The abscissa and ordinate represent the
prey density and the number of prey eaten per predator per unit time. c is a maximum per
capita consumption rate and a is a half-saturation constant.
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Models with Type I Functional Responses
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Laissez-faire Model with a type I functional response 

Nondimensionalization & Equilibria
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Laissez-faire Model with a type I functional response 

Linearized Stability Analysis
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Laissez-faire Model with a type I functional response 

Linearized Stability Analysis
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By Routh-Hurwitz criterion,
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Characteristic Equation



Laissez-faire Model with a type I functional response 

Global Stability Analysis of E2
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Using  Harrison’s “Gedankenexperiment” (1979),  construct  Lyapunov function 
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Figure 2.2: A figure illustrating (a) isoclines consistent with global asymptotic stability and
(b) a subset of the domain of attraction (D) for an equilibrium where the prey and predator
coexist in laissez-faire model (2.6). ULC and SLC signify unstable and stable limit cycles.

Laissez-faire Model with a type I functional response 

Global Stability Analysis of E2

The coexistence equilibrium
is globally asymptotically stable. A subset of the basin 

of attraction

D = {(x, y) | V (x, y) < u}

where

u = min {V (0, g(x∗)), V (xM , g(x∗)), V (x∗, 0), V (x∗,+∞)}

with xM =
γ −

√

γ2
− 8(γ − 2β)

2
when γ > 4 + 4

√

1 − β.
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Laissez-faire Model with a type I functional response 

Numerical Studies

Poincaré or first return map
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Laissez-faire Model with a type I functional response 

Numerical Studies

Poincaré or first return map
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Figure 2.5: Poincaré (or first-return) maps for laissez-faire model (2.6) for α = 2, γ = 8,
and for three different values of β: (a) β = 0.25, (b) β = 0.65, (c) β = 0.85. Fixed points of
the Poincaré map, which correspond to either equilibrium points or limit cycles of the flow,
can be found at the intersections of the Poincaré map (dotted curve) and the diagonal line.
No limit cycles are found for small β, but two limit cycles occur as β increases.

β = 0.25

α = 2, γ = 8
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Figure 2.5: Poincaré (or first-return) maps for laissez-faire model (2.6) for α = 2, γ = 8,
and for three different values of β: (a) β = 0.25, (b) β = 0.65, (c) β = 0.85. Fixed points of
the Poincaré map, which correspond to either equilibrium points or limit cycles of the flow,
can be found at the intersections of the Poincaré map (dotted curve) and the diagonal line.
No limit cycles are found for small β, but two limit cycles occur as β increases.

β = 0.65
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and for three different values of β: (a) β = 0.25, (b) β = 0.65, (c) β = 0.85. Fixed points of
the Poincaré map, which correspond to either equilibrium points or limit cycles of the flow,
can be found at the intersections of the Poincaré map (dotted curve) and the diagonal line.
No limit cycles are found for small β, but two limit cycles occur as β increases.
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Laissez-faire Model with a type I functional response 

Numerical Studies Bifurcation Diagrams  
(using XPPAUT)
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Figure 2.6: Bifurcation diagrams for laissez-faire model (2.6). The L2 norms of stable limit
cycles (filled circles), unstable limit cycles (open circles), and stable coexistence equilibria
(thick solid line) are computed for different values of (a) α (β = 0.7, γ = 8), (b) β (α = 2,
γ = 8), and (c) γ (α = 2, β = 0.7). Two global cyclic-fold bifurcations occur as I increase
(a) α and one cyclic-fold bifurcation appears as I increase (b) β or (c) γ.
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Figure 2.6: Bifurcation diagrams for laissez-faire model (2.6). The L2 norms of stable limit
cycles (filled circles), unstable limit cycles (open circles), and stable coexistence equilibria
(thick solid line) are computed for different values of (a) α (β = 0.7, γ = 8), (b) β (α = 2,
γ = 8), and (c) γ (α = 2, β = 0.7). Two global cyclic-fold bifurcations occur as I increase
(a) α and one cyclic-fold bifurcation appears as I increase (b) β or (c) γ.
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Figure 2.7: Two-parameter bifurcation diagrams for laissez-faire model (2.6). The curves
indicate cyclic-fold bifurcations. Two limit cycles occur above each curve in (a) and to the
right of each curve in (b) and (c).
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right of each curve in (b) and (c).
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Leslie-type Model
with a type I functional response
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Leslie-type Model with a type I functional response 

Nondimensionalization & Equilibria
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focus on the dynamics in 0 < x(t) ≤ γ , where a unique coexistence equilibrium exists.
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Leslie-type Model with a type I functional response 

Stability Analysis
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�E1 = (γ, 0)
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A
B

� y
x

�2
A
�
1− 2y

Bx

�
�

saddle point

Ê2 = (x̂∗, ŷ∗)!

The left (J
−

) and right (J+) Jacobians evaluated at Ê2

where 0 < x̂
∗

< 2 or 2 < x̂
∗

< γ,

J±

∣

∣

∣

(x̂∗,ŷ∗)
=

(

φI(x̂∗)g′±(x̂∗) − φI(x̂∗)
AB − A

)

with ŷ∗ = g(x̂∗) =
x̂∗(1 − x̂∗/γ)

φI(x̂∗)
and

{

g′
−

(x̂∗) = − 2/γ, 0 < x̂∗ < 2,

g′+(x̂∗) = 1 − 2x̂∗/γ, 2 < x̂∗ < γ.

λ2 + λ(A − φI(x̂
∗)g′±(x̂∗)) + AφI(x̂

∗)
(

B − g′±(x̂∗)
)

= 0
> 0

 
For 2 < x̂∗ < γ/2, 
Asymptotically stable where 0 < x̂∗ < 2 or γ/2 ≤ x̂∗ < γ

Unstable if A < g�(x̂∗)

Stable if A > g�(x̂∗)



Leslie-type Model with a type I functional response 

Stability Analysis
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 x
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γγ/2

!"#$%&'((!)(*+#,
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The generalized Jacobian of Clarke  
(1998)

JΣ = {(1 − q)J
−

+ qJ+ ,∀ 0 ≤ q ≤ 1}

J±

∣

∣

∣

(x̂∗,ŷ∗)
=

(

φI(x̂∗)g′±(x̂∗) − φI(x̂∗)
AB − A

)

: a convex combination of the left and right Jacobian,

⇒ JΣ =

(

J11
Σ

− 1

AB − A

)

with J11

Σ = qB + (B − 1) where 0 < B < 1 and 0 ≤ q ≤ 1.

Characteristic Equation: λ2 −
�
J11
Σ −A

�
λ+A(B − J11

Σ ) = 0

⇒ λ1,2 =
(J11

Σ −A)± i
�
4AB − (J11

Σ +A)2

2

A discontinuous Hopf bifurcation (Leine and Nijmeijer; 2004) is expected

when the eigenvalues are imaginary(J11

Σ = A) i.e., when q =
A − B + 1

B
where A ≤ 2B−1 < 1.
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Leslie-type Model with a type I functional response 

The generalized Jacobian of Clarke 

   The generalized Jacobian of Clarke  at x̂
∗

= 2

λ1 λ2
A = 0.1 q = 0 (!), q = 1 (!)
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Figure 2.8: Paths of eigenvalues of generalized Jacobian (2.38) evaluated at x = 2 in Leslie-
type model (2.26) for A = 0.1: (a) B = 0.28, (b) B = 0.3, (c) B = 0.43, (d) B = 0.5, (e)
B = 0.71, and (f) B = 0.85. The abscissa and the ordinate are the real and the imaginary
parts of λ. Arrows indicate the direction of eigenvalues that start at ! (q = 0) and that
end at ! (q = 1).
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Figure 2.11: Phase portraits showing subsets of the domain of attraction (DL) for the
coexistence equilibrium of Leslie-type model (2.26) obtained using Lyapunov function (2.43).
The coexistence equilibria in (a), for A = 1, B = 2, γ = 6, and (b), for A = 1, B = 0.18,
γ = 9, are globally asymptotically stable. A subset of the domain of attraction ((c) and
(d)) can be found when g(x) > ŷ∗ for x < x̂∗ and g(x) < ŷ∗ for x > x̂∗. For (c), A = 0.05,
B = 1.4, γ = 10.5, while for (d), A = 0.1, B = 0.35, γ = 10. Dashed lines are the prey
null-clines and solid lines are the predator null-clines. ULC and SLC signify unstable and
stable limit cycles. The dotted horizontal line is y = g(x̂∗).
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Figure 2.15: Two-parameter bifurcation curves for Leslie-type model (2.26) for (a) A = 0.1,
(b) γ = 10, and (c) B = 0.9. H+ stands for a super-critical Hopf bifurcation, DHB for a
discontinuous Hopf bifurcation, and CFB for a cyclic-fold bifurcation. The parameter plane
is divided into regions marked Li (i = 0, 1, 2): the subscript indicates the number of limit
cycles that encircle the coexistence equilibrium Ê2.
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A = 0.1

B = 0.9

The parameter plane is divided 
into regions marked Li (i = 0, 1, 2) : 
the subscript indicates the number 
of limit cycles that encircle the 
coexistence equilibrium

γ = 10
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Summary
  Laissez-faire & Leslie-type models with Type I 

    functional Responses
 Two limit cycles:  Cyclic-fold bifurcations

  Leslie-type model with Type I functional Responses

 At              :   the generalized Jacobian of Clarke (1998)x̂∗ = 2

JΣ = {(1 − q)J
−

+ qJ+ ,∀ 0 ≤ q ≤ 1}

 Discontinuous Hopf bifurcation 

 Super-critical Hopf and Cyclic-fold bifurcations

q =
A−B + 1

B
A ≤ 2B − 1 < 1when where
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Future Research Projects

  A predator!prey model with a type I functional response 
including an Allee effect in the growth rate of the prey.

  A predator!predator!prey model with two predators 
characterized by type I and other possible functional responses.

  A Delay-differential Equation
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